	Keyword
	VHDL Conflict
	Design Conflict
	Comment
	RW Vote
	RW Comment

	Vunit
	No
	Unlikely
	Not to be included as VHDL already has sufficient design unit/packaging constructs
	Concur
	No inclusion in VHDL

	Vprop
	No
	Unlikely
	Ditto
	Concur
	No inclusion in VHDL

	Vmode
	No
	Unlikely
	Ditto
	Concur
	No inclusion in VHDL

	Inherit
	No
	Unlikely
	Tied to vunit. Since no vunit addition to VHDL, no need for inherit
	Concur
	No inclusion in VHDL

	Assert
	Yes
	No
	Should be a generalization of existing assert
	Concur
	No inclusion in VHDL

	assume
	No
	Possible
	
	Include
	

	assume_guarantee
	No
	Unlikely
	Probably won't support in VHDL
	Include
	

	restrict
	No
	Possible
	
	Include
	

	restrict_guarantee
	No
	Unlikely
	Probably won't support in VHDL
	Include
	

	cover
	No
	Possible
	
	Include
	

	fairness
	No
	Possible
	Not part of simple subset (so not likely to be part of VHDL)
	Defer
	This semantic needs support from other constructs to operate correctly. Defer for now

	forall
	No
	Possible
	Possible to replace with existing for keyword?
	Include
	Syntactic distinction is needed between the VHDL FOR statement for loop iteration and the PSL FORALL statement for replication of properties.

	in
	Yes
	No
	Used with forall. So potential conflict eliminated if replace forall with for
	Include
	Part of FOR and FORALL issue

	@
	No
	No
	
	Include
	Conflicts with full path instance element. Since a parser would have context, no problem. Allow in construction of clock statements.

	abort
	No
	Possible
	Consider replacing with existing VHDL reserved word such as exit?
	Differ
	Abort does not have the same semantics as exit. Abort has the semantics of cessation of being where exit has the semantics of leaving, and thus implied returning, to a prior state. I turn to FORTRAN for an example, which had a stop/continue for interruption and resumption of computation and a stop/abort for interruption and cessation.

	X
	No
	Very likely
	
	No
	Notation a hold-over overlap

	X!
	No
	No
	
	No
	Notation a hold-over overlap

	F
	No
	Very likely
	
	No
	Notation a hold-over overlap

	G
	No
	Very likely
	
	No
	Notation a hold-over overlap

	U
	No
	Very likely
	
	No
	Notation a hold-over overlap

	W
	No
	Very likely
	
	No
	Notation a hold-over overlap

	always
	No
	Possible
	
	Include
	

	never
	No
	Possible
	
	Include
	

	next
	Yes
	No
	Should be able to reuse in this context
	Include
	

	next!
	No
	No
	
	Include
	

	next_a
	No
	Possible
	
	Include
	

	next_a!
	No
	No
	
	Include
	

	next_e
	No
	Possible
	
	Include
	

	next_e!
	No
	No
	
	Include
	

	next_event
	No
	Possible
	
	Include
	

	next_event!
	No
	No
	
	Include
	

	next_event_a
	No
	Possible
	
	Include
	

	next_event_a!
	No
	No
	
	Include
	

	next_event_e
	No
	Possible
	
	Include
	

	next_event_e!
	No
	No
	
	Include
	

	eventually!
	No
	Possible
	
	Include
	

	!
	No
	No
	
	Include
	

	{}
	No
	No
	
	Include
	

	&
	Yes
	No
	Concatenation operator is now sequence and!
	Include
	As the type of the operands for this are sequences of Booleans (SEREs) and not one dimensional arrays this would be an overload of "&"

	&&
	No
	No
	
	Include
	

	|
	No
	No
	
	Include
	

	*
	Yes
	No
	Multiplication is now replication (at least that is more consistent than & for logical and plus concatenation)
	Include
	The multiplication operator is a not a unary operator, and as an infix operator bounded by "[" and "]" would be in context for use in a repetition.

	+
	Yes
	No
	Addition now has an additional meaning
	Include
	Operator overloaded and bounded by "[" and "]" would be in context for use

	=
	Yes
	No
	Equality now has an additional meaning
	Include
	

	until
	Yes
	No
	Possible to reuse in PSL context?
	Include
	context determines meaning

	until!
	No
	No
	Exclamation point is not consistent with VHDL
	Include
	extend lexeme list

	until!_
	No
	No
	Trailing underscore is not consistent with VHDL
	Include
	extend lexeme list

	until_
	No
	No
	Ditto
	Include
	extend lexeme list

	within
	No
	Possible
	
	Include
	context determines meaning

	within!
	No
	No
	
	Include
	extend lexeme list

	within_
	No
	No
	
	Include
	extend lexeme list

	within!_
	No
	No
	
	Include
	extend lexeme list

	whilenot
	No
	Possible
	
	Include
	context determines meaning

	whilenot!
	No
	No
	
	Include
	extend lexeme list

	whilenot_
	No
	No
	
	Include
	extend lexeme list

	whilenot!_
	No
	No
	
	Include
	extend lexeme list

	before
	No
	Possible
	
	Include
	context determines meaning

	before!
	No
	No
	
	Include
	extend lexeme list

	before!_
	No
	No
	
	Include
	extend lexeme list

	before_
	No
	No
	
	Include
	extend lexeme list

	strong
	No
	Possible
	Unlikely
	Include
	

	union
	No
	Possible
	Define as an operator?
	Include
	

	rose
	No
	Possible
	Define as function or alias of rising_edge
	Include
	

	fell
	No
	Possible
	Defeine as function or alias of falling_edge
	Include
	

	prev
	No
	Possible
	Define as function?
	Include
	

	next
	Yes
	No
	
	Include
	context determines meaning

	
	
	
	
	
	

	Optional Branching Extension
	
	
	Don't think any of these apply to the simple subset
	
	

	AX
	No
	Possible
	
	No
	Notation a hold-over overlap

	AG
	No
	Possible
	
	No
	Notation a hold-over overlap

	AF
	No
	Possible
	
	No
	Notation a hold-over overlap

	A
	No
	Probable
	
	No
	Notation a hold-over overlap

	EX
	No
	Possible
	
	No
	Notation a hold-over overlap

	EG
	No
	Possible
	
	No
	Notation a hold-over overlap

	EF
	No
	Possible
	
	No
	Notation a hold-over overlap

	E
	No
	Probable
	
	No
	Notation a hold-over overlap

