
1 CADENCE DESIGN SYSTEMS, INC.

Introduction to PSL for VHDL 200x

Erich Marschner
Senior Architect, Advanced Verification

July 2003

2

Boolean Logic Review

• If P, P1, P2 are predicates, then the following are also:

– (P)

– not P

– P1 and P2

– P1 or P2 = (not ((not P1) and (not P2)))

– P1 -> P2 = ((not P1) or P2))

– P1 <-> P2 = ((P1 -> P2) and (P2 -> P1))

– true = (P or (not P)) for any P

– false = (P and (not P)) for any P

Basic
Definitions

“Syntactic
Sugar”

© 2003, Cadence Design Systms. All rights reserved.

3

Temporal Logics

• Computation Tree Logic (CTL)
– Expresses properties of states

– e.g., “for all states reachable in one step from this state,”
– leads to branching-time statements such as AGEFp:

– “for all states globally, there exists a future state in which p holds”

• Linear-Time Temporal Logic (LTL)
– Expresses properties of paths, or sequences of states

– e.g., “at every state along the path,”
– leads to linear-time statements such as Ap->Xq:

– “whenever p holds along a given path, q holds in the next state of the path.”

© 2003, Cadence Design Systms. All rights reserved.

4

Structure of PSL

• Linear-Time (LTL) part
– for formal verification

– for simulation

– Simple Subset

– LHS of certain binary
operators must be boolean

– easy to implement in
simulation

• Branching-Time (CTL) part
– for formal verification

CTL

LTL

Simple Subset

boolean-based
properties

sequence-based
properties

© 2003, Cadence Design Systms. All rights reserved.

5

Basic LTL Operators

• Pt = true iff predicate P is true at time t

• next P = true iff, at time t, Pt+1 = true

• always P = (P and next (P and next (P and ...)))

• eventually P = (P or next (P or next (P or ...)))

• never P = (not P and next (not P and next (not P and ...)))

∀t Pt

always
∃t Pt

eventually

∀t not Pt ∃t not Pt
never (not always)

© 2003, Cadence Design Systms. All rights reserved.

6

Sequences, SEREs, and
Suffix Implication

• A “Sequence” is a brace-enclosed series of Boolean expressions that are
considered in successive timesteps

– {B1; B2; B3; ... }

• A “Sequential Regular Expression” (SERE) is an element of a Sequence:
– B B[*] B[*n] B[*n:m] B[+]

– B[=0] B[=n] B[=n:m] B[->] B[->n] B[->n:m]

– r1 ; r2 {r1} : {r2} {r1} | {r2} {r1} & {r2} {r1} && {r2}

• General use of ‘next’
– B1 → next (B2 → next (B3 → ... → (Bn-2 and next (Bn-1 and next (Bn)))..)))

• Equivalent to suffix implication:
– {B1; B2; B3; ...} |=> {...; Bn-2; Bn-1; Bn}

© 2003, Cadence Design Systms. All rights reserved.

7

Reasoning over Finite Traces

• LTL is usually applied to infinite traces.

• Simulation deals with finite traces.

• How should we interpret temporal operators in simulation?

eventually b

b

b

Pass

???

end of
simulation

never b

b

b

Fail

???

end of
simulation

© 2003, Cadence Design Systms. All rights reserved.

8

Overview of PSL

• Boolean Expressions
– HDL expressions
– PSL/Sugar functions rose(), fell(), prev(), ...

• Temporal Operators
– always, never, next, eventually, until, before, abort, ...
– @ -> <-> ; { } [*] [=] [->] && & | :

• Verification Directives
– assert, cover, ...

• Modeling Constructs
– HDL statements used to model the environment

© 2003, Cadence Design Systms. All rights reserved.

9

Kinds of Assertions

FIFO FSM

Arbiter

Processor
AHB
Bus

PCI
Bus

Interface
Assertions

Structural
Assertions

Protocol
Assertions

© 2003, Cadence Design Systms. All rights reserved.

10

A Simple Example

• Two blocks A,B exchange data via
a common bus.

ReqA

Block A Block B

Arbiter

Busy

Done
GntA ReqB GntB

DRdy

• A and/or B sends ‘Req’ to
the Arbiter.

• Arbiter does round-robin
scheduling between A,B.

• Arbiter sends ‘Gnt’ back to
A or B, making it Master.

• Arbiter sets ‘Busy’ while A
or B is Master.

• Master sets ‘DRdy’ when
Data is on the bus.

• Master sets ‘Done’ in the
last cycle of a grant.

• ‘Reset’ resets the bus.

Data

Reset

© 2003, Cadence Design Systms. All rights reserved.

11

Some Assertions to Check

• A Grant never occurs without a Request.
– assert never GntA and not ReqA

• If A (B) receives a Grant, then B (A) does not.
– assert always GntA -> not GntB

• A (B) never receives a Grant in two successive cycles.
– assert never GntA and next GntA

• A Grant is always followed by Busy.
– assert always GntA or GntB -> next Busy

• A Request is eventually followed by a Grant.
– assert always ReqA -> eventually GntA

ReqA

Block A Block B

Arbiter

Busy

Done
GntA ReqB GntB

DRdy

Data

Reset

© 2003, Cadence Design Systms. All rights reserved.

12

Invariants

A Grant never occurs without a Request.

Verification
Directive

assert never GntA and not ReqA ;

Temporal
Operator Boolean

Expression

This assertion
should hold at
every time step

ReqA

GntA

© 2003, Cadence Design Systms. All rights reserved.

13

Unclocked Invariants

A Grant never occurs without a Request.

Verification
Directive

assert never GntA and not ReqA ;

Temporal
Operator Boolean

Expression

ReqA
Timing of

transitions
might result in a

failure...
GntA

© 2003, Cadence Design Systms. All rights reserved.

14

Clocked Invariants

A Grant never occurs without a Request. ... but
assertions can
be clocked ...

assert never GntA and not ReqA @rose(clk) ;

Verification
Directive Temporal

Operator Boolean
Expression

Clock
Expression

... which causes
them to ignore

glitches
ReqA

GntA

clk
© 2003, Cadence Design Systms. All rights reserved.

15

Clocked Invariants

A Grant never occurs without a Request.
Clock can be

level-sensitive or
edge-sensitive

assert never GntA and not ReqA @rose(clk) ;

Verification
Directive Temporal

Operator Boolean
Expression

Clock
Expression

@clk
@(not clk)ReqA
@rose(clk)
@fell(clk)GntA

@rising(clk)
@falling(clk)clk

© 2003, Cadence Design Systms. All rights reserved.

16

Conditional Behavior

If A receives a Grant, then B does not.

assert always (GntA -> not GntB) @rose(clk) ;

Implication (->)
expresses
“if...then”

clk

GntB
if

then
if

then
if if if if if if

GntA

At the rising clk,
if GntA is high,
then GntB must

be low

© 2003, Cadence Design Systms. All rights reserved.

17

Multi-Cycle Behavior

A (B) never receives a Grant in two successive cycles.

assert never GntA and next GntA @rose(clk) ;

If GntA is high
for two cycles,
the assertion

fails

‘next’ refers to
the next time
step (or clock

edge)

GntA

GntB

clk
© 2003, Cadence Design Systms. All rights reserved.

18

Multi-Cycle Behavior using Sequences

A (B) never receives a Grant in two successive cycles.

assert never GntA and next GntA @rose(clk) ;

assert never {GntA ; GntA} @rose(clk) ;

Sequence
A sequence is a
shorthand for a
series of ‘next’s

GntA

GntB

clk
© 2003, Cadence Design Systms. All rights reserved.

19

Multi-Cycle Conditional Behavior

A Grant is always followed by Busy.

assert always GntA or GntB -> next Busy @rose(clk) ;

if
then

if
then

if
then

GntA

Implication (->) and
‘next’ together

express multi-cycle
conditional

behavior

GntB
Now there is a

one-cycle delay
from ‘if’ to ‘then’

Busy

clk
© 2003, Cadence Design Systms. All rights reserved.

20

Multi-Cycle Conditional Behavior

• A Request is eventually followed by a Grant.

assert always ReqA -> eventually! GntA @rose(clk) ;

‘Eventually’
refers to now or

some future cycle

if
then

if
then

if
then

if
then

if
then

if
then

ReqA

One Grant
satisfies all

related ‘if-then’
requirements

GntA

clk
© 2003, Cadence Design Systms. All rights reserved.

21

More Assertions to Check

• If Request is followed by Grant, then next is Busy, and next is Done.
– assert always (ReqA -> next (GntA -> next (Busy and next Done)))
– assert always {ReqA; GntA} |=> {Busy; Done}

• If Request is followed by Grant, then next Busy is high until Done.
– assert always (ReqB -> next (GntB -> next (Busy until Done)))
– assert always {ReqB; GntB} |=> {Busy[*]; Done}

• A Grant is always followed by Busy until, and overlapping with, Done.
– assert always (GntA or GntB) -> next (Busy until_ Done)
– assert always {GntA or GntB} |=> {Busy[*]; Busy and Done}

• If A has a Request outstanding when B receives a Grant, then A will
receive a Grant before B receives another Grant.
– assert always (ReqA and GntB) -> next (GntA before GntB)
– assert always {ReqA and GntB} |=> {[*]; GntA} && {GntB[=0]}

© 2003, Cadence Design Systms. All rights reserved.

22

Sequences and Suffix Implication

assert always
(ReqA -> next (GntA -> next (Busy and next Done)))@rose(clk);

assert always ({ReqA; GntA} |=> {Busy; Done})@rose(clk);
if ... then ...

The left-hand
side (LHS)

sequence is the
‘enabling’
sequence

The right-hand
side (RHS)

sequence is the
‘fulfilling’
sequence

The suffix
implication

operator says “if
LHS, then RHS”

© 2003, Cadence Design Systms. All rights reserved.

23

Compound Assertions

If Request is followed by Grant, then next is Busy, and next is Done.

assert always
(ReqA -> next (GntA -> next (Busy and next Done))) @rose(clk) ;

assert always {ReqA; GntA} |=> {Busy; Done} @rose(clk) ;

GntA

clk

Busy

Done
and next

if
next

if
then

and next

if
next

if
then

if
next

if

if if
next

if

if
next

if

if
next

if

ifReqA The two
assertions are

equivalent.

Evaluation
starts again in

each cycle,
overlapping

with previous
evaluations

© 2003, Cadence Design Systms. All rights reserved.

24

More Precise Specification

If Request is followed by Grant, then next Busy is high until Done.

assert always (ReqB -> next (GntB -> next (Busy until Done))) @rose(clk) ;

assert always {ReqB; GntB} |=> {Busy[*]; Done} @rose(clk) ;

[*] means zero
or more

occurrences

until

if
next

if
then

ReqB

GntB

Busy
Busy can stay
high for any
number of

cycles
Done

clk
© 2003, Cadence Design Systms. All rights reserved.

25

Even More Precise Specification

A Grant is always followed by Busy until, and overlapping with,
Done.

assert always ((GntA or GntB) -> next (Busy until_ Done)) @rose(clk) ;

assert always {GntA or GntB} |=> {Busy[*]; Busy and Done} @rose(clk) ;

Busy
until

||
if

then

GntA
‘until_’

requires that
Busy be high
when Done

occurs

GntB

Done

clk
© 2003, Cadence Design Systms. All rights reserved.

26

Still More Assertions

If A has a Request outstanding when B receives a Grant, then
A will receive a Grant before B receives another Grant.

assert always ((ReqA and GntB) -> next (GntA before GntB)) @rose(clk) ;

assert always {ReqA and GntB} |=> {[*]; GntA} && {GntB[=0]} @rose(clk) ;

&&
if

then

- before -- before -- before -

GntB ‘before’
requires that
GntA occur
before GntB

occurs
ReqA

GntA

clk
© 2003, Cadence Design Systms. All rights reserved.

27

Assertions and Coverage

• Assertions only catch bugs that occur during verification.
– Conditional assertions must be enabled before they can fail.

• Coverage Monitors ensure that verification is thorough.
– Monitors check that all interesting behavior is exercised.

– Functional coverage is more effective than code coverage.

• PSL includes both
– Assert Directives (assertions)

– Cover Directives (coverage monitors)

© 2003, Cadence Design Systms. All rights reserved.

28

Some Scenarios to Cover

• Test the case in which a transfer includes from 1 to 3 successive data
ready cycles.
– cover {(GntA or GntB); {Busy[*] && DRdy[*1:3]} : {Done}}

• Test the case in which a transfer includes exactly 4 data ready cycles
(but not necessarily in succession).
– cover {(GntA or GntB); {Busy[*] && DRdy[=4]} : {Done}}

• Test the case in which a transfer completes without having the bus
reset.
– cover {(GntA or GntB); {Busy[*] && Reset[=0]} : {Done}}

• Test the case in which a transfer is interrupted by a bus reset.
– cover {(GntA or GntB); {Busy[*] && Reset[->1]}}

© 2003, Cadence Design Systms. All rights reserved.

	Introduction to PSL for VHDL 200x
	Boolean Logic Review
	Temporal Logics
	Structure of PSL
	Basic LTL Operators
	Sequences, SEREs, and Suffix Implication
	Reasoning over Finite Traces
	Overview of PSL
	Kinds of Assertions
	A Simple Example
	Some Assertions to Check
	Invariants
	Unclocked Invariants
	Clocked Invariants
	Clocked Invariants
	Conditional Behavior
	Multi-Cycle Behavior
	Multi-Cycle Behavior using Sequences
	Multi-Cycle Conditional Behavior
	Multi-Cycle Conditional Behavior
	More Assertions to Check
	Sequences and Suffix Implication
	Compound Assertions
	More Precise Specification
	Even More Precise Specification
	Still More Assertions
	Assertions and Coverage
	Some Scenarios to Cover

