

Introduction to PSL for VHDL 200x

Erich Marschner Senior Architect, Advanced Verification

July 2003

Boolean Logic Review

• If P, P₁, P₂ are predicates, then the following are also:

```
- (P)
– not P
-P_1 and P_2
                           = (not ((not P_1) and (not P_2)))
-P_1 or P_2
-P_1 -> P_2
                           = ((\text{not P}_1) \text{ or P}_2))
                           = ((P_1 -> P_2) \text{ and } (P_2 -> P_1))
-P_1 < -> P_2
                           = (P or (not P)) for any P
true
                           = (P and (not P)) for any P
false
```

Temporal Logics

- Computation Tree Logic (CTL)
 - Expresses properties of states
 - e.g., "for all states reachable in one step from this state,"
 - leads to branching-time statements such as AGEFp:
 - "for all states globally, there exists a future state in which p holds"
- Linear-Time Temporal Logic (LTL)
 - Expresses properties of paths, or sequences of states
 - e.g., "at every state along the path,"
 - leads to linear-time statements such as Ap->Xq:
 - "whenever p holds along a given path, q holds in the next state of the path."

Structure of PSL

Linear-Time (LTL) part

- for formal verification
- for simulation
- Simple Subset
 - LHS of certain binary operators must be boolean
 - easy to implement in simulation
- Branching-Time (CTL) part
 - for formal verification

Basic LTL Operators

- P_t = true iff predicate P is true at time t
- next P = true iff, at time t, P_{t+1} = true

- always P = (P and next (P and next (P and ...)))
- eventually P = (P or next (P or next (P or ...)))
- never P = (not P and next (not P and next (not P and ...)))

Sequences, SEREs, and Suffix Implication

- A "Sequence" is a brace-enclosed series of Boolean expressions that are considered in successive timesteps
 - {B1; B2; B3; ... }
- A "Sequential Regular Expression" (SERE) is an element of a Sequence:
 - B B[*] B[*n] B[*n:m] B[+]
 - B[=0] B[=n] B[=n:m] B[->n] B[->n] B[->n:m]
 - r1; r2 {r1}: {r2} {r1} | {r2} {r1} & {r2} {r1} & {r2}
- General use of 'next'
 - B1 → next (B2 → next (B3 → ... → (Bn-2 and next (Bn-1 and next (Bn)))..)))
- Equivalent to suffix implication:
 - {B1; B2; B3; ...} |=> {...; Bn-2; Bn-1; Bn}

Reasoning over Finite Traces

- LTL is usually applied to infinite traces.
- Simulation deals with finite traces.
- How should we interpret temporal operators in simulation?

Overview of PSL

- Boolean Expressions
 - HDL expressions
 - PSL/Sugar functions rose(), fell(), prev(), ...

- Temporal Operators
 - always, never, next, eventually, until, before, abort, ...
 - @ -> <-> ; {} [*] [=] [->] && & |
- Verification Directives
 - assert, cover, …
- Modeling Constructs
 - HDL statements used to model the environment

Kinds of Assertions

A Simple Example

 Two blocks A,B exchange data via a common bus.

- A and/or B sends 'Req' to the Arbiter.
- Arbiter does round-robin scheduling between A,B.
- Arbiter sends 'Gnt' back to A or B, making it Master.
- Arbiter sets 'Busy' while A or B is Master.
- Master sets 'DRdy' when Data is on the bus.
- Master sets 'Done' in the last cycle of a grant.
- 'Reset' resets the bus.

Some Assertions to Check

- A Grant never occurs without a Request.
 - assert never GntA and not ReqA
- If A (B) receives a Grant, then B (A) does not.
 - assert always GntA -> not GntB
- A (B) never receives a Grant in two successive cycles.
 - assert never GntA and next GntA
- A Grant is always followed by Busy.
 - assert always GntA or GntB -> next Busy
- A Request is eventually followed by a Grant.
 - assert always ReqA -> eventually GntA

11

Invariants

A Grant never occurs without a Request.

Unclocked Invariants

A Grant never occurs without a Request.

Clocked Invariants

... but

A Grant never occurs without a Request.

Clocked Invariants

A Grant never occurs without a Request. Clock can be level-sensitive or edge-sensitive Verification **Directive Temporal Operator Boolean** Clock **Expression Expression** GntA and not ReqA @rose(clk); assert never @clk @(not clk) ReqA @rose(clk) @fell(clk)

GntA

clk

@rising(clk)

@falling(clk)

Conditional Behavior

If A receives a Grant, then B does not.

Multi-Cycle Behavior

A (B) never receives a Grant in two successive cycles.

assert never GntA and next GntA @rose(clk);

Multi-Cycle Behavior using Sequences

A (B) never receives a Grant in two successive cycles.

Multi-Cycle Conditional Behavior

A Grant is always followed by Busy.

assert always GntA or GntB -> next Busy @rose(clk);

Multi-Cycle Conditional Behavior

A Request is eventually followed by a Grant.

assert always ReqA -> eventually! GntA @rose(clk);

More Assertions to Check

- If Request is followed by Grant, then next is Busy, and next is Done.
 - assert always (ReqA -> next (GntA -> next (Busy and next Done)))
 - assert always {ReqA; GntA} |=> {Busy; Done}
- If Request is followed by Grant, then next Busy is high until Done.
 - assert always (ReqB -> next (GntB -> next (Busy until Done)))
 - assert always {ReqB; GntB} |=> {Busy[*]; Done}
- A Grant is always followed by Busy until, and overlapping with, Done.
 - assert always (GntA or GntB) -> next (Busy until_ Done)
 - assert always {GntA or GntB} |=> {Busy[*]; Busy and Done}
- If A has a Request outstanding when B receives a Grant, then A will receive a Grant before B receives another Grant.
 - assert always (ReqA and GntB) -> next (GntA before GntB)
 - assert always {ReqA and GntB} |=> {[*]; GntA} && {GntB[=0]}

21

Sequences and Suffix Implication

Compound Assertions

If Request is followed by Grant, then next is Busy, and next is Done.

assert always (ReqA -> next (GntA -> next (Busy and next Done))) @rose(clk); assert always {ReqA; GntA} |=> {Busy; Done} @rose(clk); The two RegA assertions are next next next next equivalent. **GntA** then then **Busy Evaluation** and next and next starts again in each cycle, Done overlapping with previous evaluations clk

More Precise Specification

If Request is followed by Grant, then next Busy is high until Done.

```
assert always (ReqB -> next (GntB -> next (Busy until Done))) @rose(clk);
assert always {ReqB; GntB} |=> {Busy[*]; Done} @rose(clk);
```


Even More Precise Specification

A Grant is always followed by Busy until, and overlapping with, Done.

```
assert always ((GntA or GntB) -> next (Busy until_ Done)) @rose(clk);
assert always {GntA or GntB} |=> {Busy[*]; Busy and Done} @rose(clk);
```


Still More Assertions

If A has a Request outstanding when B receives a Grant, then A will receive a Grant before B receives another Grant.

```
assert always ((ReqA and GntB) -> next (GntA before GntB)) @rose(clk);
assert always {ReqA and GntB} |=> {[*]; GntA} && {GntB[=0]} @rose(clk);
```


Assertions and Coverage

- Assertions only catch bugs that occur during verification.
 - Conditional assertions must be enabled before they can fail.
- Coverage Monitors ensure that verification is thorough.
 - Monitors check that all interesting behavior is exercised.
 - Functional coverage is more effective than code coverage.

PSL includes both

- Assert Directives (assertions)
- Cover Directives (coverage monitors)

Some Scenarios to Cover

- Test the case in which a transfer includes from 1 to 3 successive data ready cycles.
 - cover {(GntA or GntB); {Busy[*] && DRdy[*1:3]} : {Done}}
- Test the case in which a transfer includes exactly 4 data ready cycles (but not necessarily in succession).
 - cover {(GntA or GntB); {Busy[*] && DRdy[=4]} : {Done}}
- Test the case in which a transfer completes without having the bus reset.
 - cover {(GntA or GntB); {Busy[*] && Reset[=0]} : {Done}}
- Test the case in which a transfer is interrupted by a bus reset.
 - cover {(GntA or GntB); {Busy[*] && Reset[->1]}}

cadence