IEEE P1076.1 Working Group
Requirements for Matrix/Vector Support
History:
v0.1 Zhichao Deng / June 7, 2010 Initial draft.
v0.2 Zhichao Deng / Aug 18, 2010 Updated to include changes from two meetings.
v0.3 Zhichao Deng / Sep 29, $2010 \quad$ Updated to include changes from meeting.
v0.4 Zhichao Deng / Oct 24, 2010 The final draft version.
IEEE recommendations on word usage

shall means is required to should means is recommended that
may means is permitted to
can means is able to

Purpose

Matrix/Vector operations allow models with equations with a pre-defined matrix/vector operator. Such support allows all the frequently used operators envolving matrix/vector.

Scope

To develop VHDL-AMS package(s) and/or new language constructs that support the required functionality.

General Requirements

MVS-R1 [shall]

Matrix/vector operations are defined as reference in a standard package.
The package will only cover 2-D matrix or vector since the multi-dimension matrix seem not being used quite often in the modeling world.

Matrix Definition

MVS-R2 [shall]
The package(s) shall provide the ability to describe matrix of real and complex type.

MVS-R3 [shall]

The package(s) shall provide the ability to describe matrix of non-floating type such as integer, boolean, physical type.

Matrix/vector Construction/access

\qquad
MVS-R4 [shall]
The package(s) shall provide the ability to get sub-matrices out of and put sub-matrices into a matrix (support block matrix manipulation). For example, matrix/vector slicing.

MVS-R5 [shall]

The package(s) shall provide the ability to construct a diagonal matrix with a vector of the diagonal element. Example: identity matrix construction

The package(s) shall provide the ability to construct a matrix with all the elements to be the same element specified by the user. Example: zero or unity matrix construction

Matrix/vector Operations

MVS-R7 [shall]

The package(s) shall provide the addition, subtraction, multiplication, division, exponentiation operators of matrix elements.

MVS-R8 [shall]

The package(s) shall provide dot product between matrix-matrix and matrix-vector.

$\mathbf{a} \cdot \mathbf{b}=\mathbf{a}^{\mathrm{I}^{4}} \mathbf{b}$,

The package(s) shall provide cross product between two 3 -vectors.

$\mathbf{a} \times \mathbf{b}=a b \sin \theta \mathbf{n}$

MVS-R9 [shall]

The package(s) shall provide transpose, conjugate transpose (complex), complex conjugate (complex) for matrix and vector.

MVS-R10 [shall]
The package(s) shall provide determinant computation for matrix and vector.

MVS-R11 [shall]

The package(s) shall provide matrix power operation.
Example: MatrixPower $(A, 3)=A$ * A * A is a matrix

MVS-R12 [shall]

The packages(s) shall provide matrix exponential operation.

$$
\text { Example: MatrixExponential(A) }=\exp (A) \quad \text { A is a matrix }
$$

MVS-R13 [shall]
The package(s) shall provide vector norm operation for 1, 2, and infinite norm.

MVS-R14 [shall]
The package(s) shall provide matrix 1-norm operation.
Rationale: the matrix 1 norm performs the same operation as Matlab.
MVS-R15 [should]
The package(s) should provide matrix trace operation.
MVS-R16 [should]
The package(s) should provide the Kronecker product of matrix.

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right]
$$

For example, outer product, a special case of Kronecker product, is used in performing transform operations in DSP. It is also useful in statistical analysis for computing the covariance matrices.

$$
\mathbf{u} \otimes \mathbf{v}=\mathbf{A}=\left[\begin{array}{cccc}
u_{1} v_{1} & u_{1} v_{2} & \ldots & u_{1} v_{n} \\
u_{2} v_{1} & u_{2} v_{2} & \ldots & u_{2} v_{n} \\
\vdots & \vdots & \ddots & \vdots \\
u_{m} v_{1} & u_{m} v_{2} & \ldots & u_{m} v_{n}
\end{array}\right]
$$

MVS-R17 [shall]
The standard shall perform the check for matrix dimension/size during all the matrix operations.

MVS-R18 [may]

The package(s) may provide the matrix inverse operation. But the result from the package definition is not enforced as the correct result by the standard.

Rationale: Due to the nature of numerical accuracy limitiation during matrix inverse, the correctness of the matrix inverse is difficult to be defined by the standard.

MVS-R19 [may]

The package(s) may provide a function for calculating a system of linear equations. But the result from the package definition is not enforced as the correct result by the standard.

Rationale: Due to the nature of numerical accuracy limitiation during matrix inverse, the correctness of solving a system of linear equation is difficult to be defined by the standard.
$A x=b$, where A is a known matrix and b is a known vector. X is the unknown vector to be solved.

