
Draft Proposal for Unifying Path Names

Peter Ashenden

16 April 2004

1. Introduction
Path names occur in various forms in VHDL, both as it stands in IEEE Std 1076-2002 and in
proposed revisions:

1. In expanded names

2. In the 'path_name and 'instance_name attributes

3. In the DefName and FullName prperties proposed for VHPI

4. In proposed cross module references (XMRs)

5. In proposed PSL descriptions

Path names are used for two purposes:

• As an informative identifier for a named entity

• To uniquely identify a named entity

It would be desirable to have a uniform syntax for all of these path names, while preserving
backward compatibility as much as is possible. Current proposals for VHPI and XMRs are
based on the path name syntax used in the 'path_name attribute. However, use of the colon char-
acter as a delimiter is problematic for PSL, which needs to deal with mixed VHDL/Verilog de-
scriptions. A similar problem may arise with other occurrences of path names in a mixed-
language design. Expanded names use the dot character as a delimiter, which is inconsistent
with the 'path_name attribute.

This proposal examines the forms of path name that are required in different contexts and sug-
gests a syntax that is uniform across those contexts.

2. Path Name Contexts
Three contexts for path names have been identified:

1. Library unit path names

This form of name identifes a named entity in an uninstantiated design unit that resides in a
library. The named entity may be the design unit itself, or a named entity nested within one
or more declarative regions.

2. Design hierarchy path names

This form of name identifies an instance of a named entity in the elaborated design hierar-
chy. The named entity may be the root design entity itself; or, recursively, a named entity
declared within the design entity, a named entity declared with a nested declarative region, a
named entity declared within an instance of a protected type, or a named entity declared
within a design entity bound to a component instantiation statement.

3. Wildcard path names

This form of name identifies zero or more instances of a named entity in the elaborated
design hierarchy. It consists of a head part that denotes a design entity in a library and a tail
part that denotes a path to an instance of a named entity in any instance of the design entity.

In addition to supporting these contexts, a name syntax should support specification of relative
path names, with the name of a declarative region or region instance giving the scope for inter-
pretation of the relative name.

2.1. Expanded names

Expanded names occur in context (1) and are used as unique identifiers of named entities. They
are relative path names, interpreted relative to the innermost visible occurrence of the first ele-
ment of the path name. For example, an expanded name A.B.C.D is interpreted by finding the
innermost visible occurrence of A, then treating B.C.D as a relative path from the region denot-
ed by A.

2.2. Path_name and Instance_name attributes

The 'path_name and 'instance_name attributes occur in context (2) and are used as informative
identifiers of named entities. They don't uniquely identify an instance of a named entity. There
are at least two forms of ambiguity. First, if a library containing a package in the design hierar-
chy has the same name as the root design entity, the 'path_name attributes for two named entities
can be the same. For example ":L:P:X" might be a named entity X in a package P in library L,
or a named entity X in a region P in the root design entity L. Second, for a named entity in a
subprogram, there is no way to distinguish between different instances occurring in different ac-
tivations of the subprogram. Similarly, for a named entity in a protected type body, there is no
way to distinguish between different instances occurring in different shared variables of the pro-
tected type.

2.3. VHPI name properties

The DefName property in the current VHPI proposal occurs in context (1) and is intended to
uniquely identify a named entity. It is of the form

@ <library_name>
. <primary_unit_name> [: <architecture_name> | body]
{ . <item_name> [<signature>] }

The combination of the leading '@' character and the use of '.' delimiters indicates that it is a
library unit path name.

The FullName property in the current VHPI proposal occurs in context (2) and is intended to
uniquely identify a named entity. It has various forms. If the named entity is statically elaborated
and occurs within an elaborated package, the path name is of the form

@ <library_name> :
<package_name> :
[<item_name> [<signature>]]

If the named entity is statically elaborated and occurs within the design hierarchy other than in
a package, the path name is of the form

: <root_entity_name > :
{ <region_name> : }
[<item_name> [<signature>]]

Each <region_name> is the label of a statement (block, generate, process, component instanti-
ation) in the hierarchy between the root and the named entity. In the case of a for-generate, the
<region_name> includes the value of the generate parameter.

The VHPI proposal does not currently address the path name of a named entity within a shared
variable of a protected type. It could do so by including the variable name as a <region_name>.
Since a shared variable can occur in a package, the form of path name for a statically elaborated
named entity in a package would have to be augmented to include an optional <region_name>
after the <package_name>.

If the named entity is dynamically elaborated (ie, it is declared within a subprogram that is ac-
tivated), the path name is of the form

<ancestor_full_name> { <call_depth> } :
[<item_name> [<signature>]]

where the <parent_full_name> is the hierachical path name to the process from which the sub-
program was called, and the <call_depth> indicates how many stack frames down from the
process to get to the named entity.

For both the DefName and FullName properties, implicitly defined labels are used for unla-
belled statements whose labels are needed as path name elements. The labels are of the form
_Pn for process statements and _Ln for for-loop statements.

The VHPI name properties also provide for identifying an element of an array or record or a
slice of a record by appending an index, element name or range using the same syntax as VHDL
names. Indices and range bounds have to be literals.

2.4. XMR names

Steve to advise...

2.5. PSL names

Erich to advise...

3. Abstract syntax for path names

3.1. Library unit path name

A library unit path name that needs to uniquely identify a named entity can be formed from the
following elements:

<library_name>
<primary_unit_name> [<secondary_unit_name>]
{ <item_name> [<signature>] }

The <library_name> is the logical name of the library containing the design unit. The
<primary_unit_name> is the either the simple name of the entity if the named entity is declared
in an entity declartion or architecture body, or the simple name of the package if the named en-
tity is declared in a package declaration or body. The <secondary_unit_name> is either the sim-
ple name of the architecture if the named entity is declared in an architecture body, or an
indicator of some sort if the named entity is declared in a package body. The sequence of item
names are names of nested declarative regions within which the named entity is declared. If any

of those is a subprogram, the signature is included. The simple name of the named entity (if the
named entity is other than the design unit itself) is the last item name in the sequence.

3.2. Design Hierarchy path name

A design hierachy path name that needs to uniquely identify an instance of a named entity must
include elements that identify parent region instances, whether those instances be statically or
dynamically elaborated.

For a statically elaborated named entity declared within a package or instantiated within a
shared variable that is declared within a package, the elements in the path name are

<library_name>
<package_name>
[<region_name>]
[<item_name> [<signature>]]

The <library_name> is the logical name of the library containing the package, and the
<package_name> is the simple name of the package. The <region_name> is included if the
named entity is within a shared variable; in that case, the <region_name> is the simple name of
the shared variable. The simple name of the declared entity (if the named entity is other than the
package itself) is the <item_name> at the end of the path name.

For a statically elaborated named entity declared within a design entity or instantiated within a
shared variable that is declared within a design entity, the elements of the path name are

<root_entity_name>
{ <region_name>}
[<item_name> [<signature>]]

Each <region_name> is the label of a statement (block, generate, process, component instanti-
ation), or simple name of a shared variable, in the hierarchy between the root and the named
entity. In the case of a for-generate statement, the <region_name> includes the value of the gen-
erate parameter. In the case of an unlabeled process statement, the <region_name> is a surrogate
identifier, unique in the region in which the process statement occurs, but deterministically gen-
erated so that the process can be identified. The simple name of the declared entity (if the named
entity is other than the root entity) is the <item_name> at the end of the path name.

For a dynamically elaborated named entity, a design hierarchy path only has validity for the life-
time of the named entity. At that time, there is a statically elaborated ancestor region from which
dynamic elaboration commenced. The ancestor region is either a statically elaborated declara-
tive region, if the subprogram is called as part of elaborating a declaration or an interface ele-
ment in a port map or generic map; or it is a process statement or equivalent, if the program is
called from a statement. In either case, the design hierarchy path name of the ancestor can be
used as a head part of the named entity’s path name to uniquely identify the site at which dy-
namic elaboration commenced. For that given site, there may be multiple activations of the sub-
program containg the named entity, so some indication destinquishing among them is required.
(In the VHPI FullName property, this is the call depth.) Putting all of this together, the elements
of the path name are

<ancestor_full_name> { <activation_indicator> }
[<item_name> [<signature>]]

Note that this is different from the 'path_name attribute, in which the path given leads to the de-
clarative region in which the subprogram is declared. The site at which dynamic elaboration

starts might be further nested within concurrent statements in that region (in which the subpro-
gram is visible), leading to a longer path to the dynamic elaboration site.

3.3. Wildcard path names

Erich to review and advise...

A wildcard path name can be formed from the following elements

<library_name>
<entity_name> [<architecture_name>]
{ <region_name>}
[<item_name> [<signature>]]

The is a hybrid of a library unit and a design hierachy path name, and matches zero or more in-
stances of a named entity in a design hierarchy. The <library_name> and <entity_name> spec-
ify an entity declaration; the wildcard path name only matches named entities for which the
specified entity declaration is an ancestor in the design hierachy. If the <architecture_name> is
included, matching is further constrained to require the design entity formed by the entity and
the architecture to be an ancestor.

The remainder of the path specifies a chain of containing regions in the design hierarchy down
to a named entity. The path matches any named entity whose simple name is the same as the
item name and which is contained in the specified chain of regions starting from an instance of
the specified design entity. If the chain of regions and the <item_name> is omitted, the path
matches just the design entity instance.

4. Issues
- unlabelled statements
- process statements and equivalents
- loop statements (to get to loop parameter)

- library name for package may be same as top-level entity

- delimiter between path elements

- should there be a trailing delimiter for a name that denotes a region?

	Draft Proposal for Unifying Path Names
	1. Introduction
	2. Path Name Contexts
	2.1. Expanded names
	2.2. Path_name and Instance_name attributes
	2.3. VHPI name properties
	2.4. XMR names
	2.5. PSL names

	3. Abstract syntax for path names
	3.1. Library unit path name
	3.2. Design Hierarchy path name
	3.3. Wildcard path names

	4. Issues

