
VHDL-200x Telecon Meeting
15 Apr 2004

Attendees:
Tim Schneider
John Ries
Chuck Swart
Charlie Guy
Deepak Pant
Ajay Varikat
Stephen Bailey
Peter Ashenden
Erich Marschner
Francoise Martinolle
John Shields

Discussion:

1) Jim started meeting in Steve's absence and read IEEE-SA Patent
policy and DASC modifications read to meeting attendees.

2) 1164 Integration
Reviewed std_logic_1164 change list.

Jim to integrate 1164 modifications into Fast Track changes.

Peter to send Jim "golden" version of package std_logic_1164 for
updates.

std_logic_1164 package details will be included into 1076
document as a new chapter or as part of the chapter on the
standard packages.

John Ries and Chuck Swart are looking into leveraging the
advantages of the integration of std_logic_1164. John Ries is
writing a proposal for case (either the current one or a new one)
that understands the std_logic value '-'. They will also look
into specifying that the type conversion functions in 1164 as
locally static.

3) Interfaces

Discussed different possibilities for interfaces. Protected
Types with shared variables, named events, signals.

Do not think we can accomplish this in the next 4-6 weeks, so it
will need to be deferred.

Steve Bailey to write up a requirements specification so we will
be ready to move on this for the language revision that follows
vhdl-200x-ft.

4) Generics
Discussed adding generics to packages. We want capabilities that
will address Bhasker’s TBV team’s need for generic container
objects (FIFO, associative array, etc.). Since we do not have

time to define all the enhanced generic capabilities we ideally
want due to the constraints of time for the FT revision, we also
want to be careful that the proposal will be forward compatible
with planned future directions.

Peter has agreed to provide a proposal that meets these goals.

5) Library IEEE

We determined that all the LRM should specify is IEEE standard
packages and which library they are located. If the 1076
standard identifies a package, then it is required of
implementations to support them. (As all packages are written in
legal VHDL, required support should be a non-issue. Optimized
support of any package is up to the implementation/vendor.)

Note: This means that the issue of non-IEEE standard packages
being present in library STD or IEEE will not be directly
addressed in the LRM. It was the consensus of those at the
meeting that the LRM should not directly reference packages that
are not IEEE standards.

6) PSL
We tried to identify as many issues as possible that need to be
addressed to properly incorporate PSL (by reference) into VHDL.
These issues included:

a. vunits as a VHDL design unit or some form of configuration
enhancement to allow binding of verification units
(entity/architectures that contain assertion/coverage
checkers) to the design hierarchy.

b. When are values of objects referenced in PSL sampled?
We should define this to ensure portability. As VHDL does
not suffer from the race conditions, this should be
relatively straight-forward.

Clocked sequences are activated when the clock expression
triggers (just like a VHDL wait).

PSL directives and endpoints are evaluated in that cycle
prior to evaluation of user processes. This ensures no
race conditions with shared variables that are referenced
in the PSL being changed by a user process after the clock
trigger but prior to PSL evaluation.

Unclocked sequences are evaluated whenever a signal
referenced in the sequence has an event. (Again, PSL is
evaluated prior to user processes.)

c. Erich Marschner reported that the labeling and report
clauses being added in the PSL 1.1 LRM are consistent with
existing VHDL syntax.

However, PSL does not define a severity clause. Therefore,
there is some difference in the PSL assert syntax and VHDL
syntax. The optionality of the severity clause in VHDL
makes this more manageable. I could see where non-

normative guidance could be provided to not use the
severity clause if strict portability with PSL is desired.

I (Steve Bailey) noted after the meeting that VHDL allows
concurrent assertions to be postponed. Preserving the
postponed capability would provide a Verilog-like “strobe”
evaluation of the PSL assertion. This could be useful in
some contexts. Again, such usage would not conform to
strict PSL portability and we could note this as well.

d. SystemVerilog Assertions (SVA) allows specification of
“action blocks” when an assertion passes or fails. Erich
reported that the Accellera FVTC considered this but
decided that assertions should remain passive. It seems
reasonable that we not attempt to build “action blocks”
infrastructure within VHDL at this time. We can respond in
a future release if users request it.

e. SVA also defines procedural assertions (assertions that are
embedded within an always block – process). SV defines
semantics for the equivalent concurrent assertion. Again,
we decided to not provide this capability now. We can
revisit it for a future revision, if users request it.
(NOTE: This has nothing to do with the existing VHDL
sequential assertion statement.)

f. Francoise Martinolle has agreed to work on defining an
assertion/coverage API. She will target finishing a draft
by DAC or shortly after.

g. PSL supports const parameters (which must be integers),
Boolean parameters (which need not be constant and include
bit/std_logic boolean equivalence) and sequence parameters.
These parameters apply to parameterized sequences and
properties. Issue is how to resolve the different
parameter passing mechanism/limitations, etc.

h. Need to define where PSL constructs can appear in VHDL. We
could treat them as specifications (and not declarations)
and allow specifications in statement parts – users have
requested such an enhancement to allow attribute
specifications near the thing being attributed.

If they are treated as declarations, then either users must
place them in declarative parts or we need to allow all
declarations outside of declarative parts.

Maybe we need to define a new “class” of language construct
to allow PSL to be specified in declarative and statement
parts without worrying about side-effect changes on
existing declaration and specification rules.

i. PSL’s assume and restrict directives are used for stimulus
generation. (Formal tools use them to reduce the input or
state space possibilities which is a form of stimulus.) In
simulation, we can define that they imply an equivalent
assert to ensure assumptions/restrictions are held. Or, we
can define that they are ignored. There seems to be
consensus for treatment as an assert.

7) Pathname issue that came up in VHPI LRM editing
Peter Ashenden and John Shields will visit the language’s use of
path names and see if we can define a canonical form within the
standard that meets all needs.

The result could be different from the current output of
‘Path_name and ‘Instance_name. If that should occur, these
attributes would remain unchanged for backward compatibility.
New attributes could be defined that comply with the new
canonical forms, if needed.

Erich mentioned that PSL has issues with ‘:’ as a path separator
since colon is used in Verilog for ranges and PSL needs to work
with both languages. He also mentioned the general desirability
to have hierarchical naming conventions that are standard across
both VHDL and Verilog as this would improve the ability to write
language-neutral PSL and would be helpful for the many users who
do mixed HDL simulations every day.

8) Chuck Swart mentioned that he and Jose Torres have been
discussing merging the math packages (1076.2) into 1076. There
was concern about whether doing so would require the packages to
be supported to be 1076 compliant. In general, it is possible to
identify optionally supported capabilities. However, as long as
the packages are fully specified in VHDL, the only issue should
be how well an implementation supports it. That is, what
optimizations and/or other tool-specific capabilities may exist
in regards to the package.

