April 22, 2004

Mr Stephen Bailey

Chairman, IEEE 1076 Working Group
6664 Cherokee Court

Niwot, CO 80503

Dear Mr. Bailey,

Cadence Design Systems hereby grants permission to the Institute of Electrical and
Electronics Engineers (IEEE) to reprint and/or modify the attached document entitled “A
Mechanism for VHDL Source Protection”.

It is understood that if the material is modified by IEEE, IEEE will be the sole owner of
the copyright to the resulting document, namely IEEE Std 1076 — IEEE Standard VHDL
Reference Manual, being developed by the IEEE 1076 Working Group, subject to
Cadence’s underlying right to the unmodified material.

If requested acknowledgement of the original work will be placed in the front matter of
the new work.

Very truly yours,

Mitch Weaver
Vice President, SFV
Cadence design Systems, Inc.

A Mechanism for VHDL Source Protection

Copyright © 2003 by Cadence Design Systems, Inc.

March 11,2004

1 OVERVIEW 5
1.1 INTENT AND SCOPE OF THIS DOCUMENTuuuuuuuuuuuuurerersrsssrsssnesne...... 5
1.2 SYNTACTIC DESCRIPTIONcciiiiutiirieeeeeeiiiteeeeeeeeeeesaereeeeeeseessaaseessesssesasresseesseesssssseeessesnssrsseeessennns 5

2 LEXICAL CONVENTIONS 5

PRAGMAS ...ttt e ettt e e e e e e e et e e e e e e eeaataeeeeeeseesaaaaaeeeeeseesaaaaeeeeeseenntaareeeeeeans 5
L et e e e et e e a——————teeeeaa——————taeeeeaa——————teeeeaa —————ateeeeaaa————taaeeeean———aaaas 5

3 COMPILER DIRECTIVES 6

3.1 PROTECTED ENVELOPEScuviiiiiiiiitittiiee e eeeeteeee e e e eeeeaaee e e e e eeesaaaeeeeeeeeesasaeseseeeeesntaaseseeeeeensasrreeeeas 6
3.1.1 Processing protected envelopes.................c.cccccoiviiiiiiiiiiiiiiiiiiieeeese s 9

3.1.1.1 Encryption
3.1.1.2 Decryption

4 PROTECTED ENVELOPES 9
5 ENVELOPE DIRECTIVES 9
5.1 ENVELOPE ENCODING KEYWORDSccuiiiiiiiiiiiiiiiiene ittt st ene st sae s ene s 10
5.1.1 BDOGIM ..ottt 10
51011 SPIEAK ceeteteieiiiret ettt bbbkttt ettt 10
S.T12 DESCIIPLION ..ttt ettt ettt ettt sttt eb et sb e et e e bt et e sbe e s eeebeea b e sbeeste bt e st enbeeste bt eabenbeeseenbeennante e 10
5.1.2 CIU .ottt e et et e e b e eate e ere e e s 11
5.1.2.1 SPIEAX ettt ettt ettt ettt ettt et s bt et e s bt et e sh e et e s bt ea e e eb e et e e bt ea b b e et e e bt en b e bt et e eh e et e ebe et e nbeenbebean 11
S.1.2.2 DESCIIPLION ..c.teutieuieieeetettetieteeite bttt ete s et e be e st esbeseteseeeseensesseesse st ensesseessenseensenseentenseensenseenaenseennansenes 11
5.13 DEGIN_PFOLECEE ...ttt ettt se s 11
5.1.3.1 N 117 > OO OO PO PPRUPUPPRRTR 11
S5.1.3.2 DESCIIPLION ..c.eteutieuieieettettetiete ettt et e e e tte bt ett et e sttebeeaeentesbeesse st ensesseenben st ense st e enteseensenseeneenseennansenes 11
514 €A _PFOLECIOU ...t 11
5.1.4.1 N 117 > OO OO O PO PRSPPSO 11
S.TA.2 DESCIIPLION ..c.utetieiieieeeietietestesteteettetesteesseestessesssessesseessesseessenseessesseessenseessensesssenseessesesssensenssensenss 11
515 AALA_KCYOWHET ...ttt ettt 12
5.16 SPRBAX <.ttt ettt ettt ettt et 12
5.1.6.1 DIESCTIPTION ..t vveetieeieeteeiie it ete st e et e bt et e teeseesteestesbeeseesseeseenseessensesseenseeseessesssenseaseensesssensenssensesseansenses 12
517 AAIA_MEINOC ..ottt 12
5.1.7.1 N 11 SR USRRRRR 12
S.1.7.2 DESCIIPLION ..c.vveutieeieieeeietietesieeeteteettesteseeesseestessesseessaaseessesseessesseassesseessanseessensesssenseassessesssenseessesenss 12
518 AALA_KCYNAINE ...ttt 13
5.1.8.1 N 11 PSSR
5.1.8.2 Description
5.1.9 AALA_DIOCK ...ttt

5.1.9.1 SPIAX ettt ettt ettt et b et bt et sb e et bt e st e e bt et s bt et e bt et e h e ea et e bt et sh e et e bt et enbeennebeas
5.1.9.2 Description
5.1.10 digest block

5.1.10.1 STTIEAX ettt ettt h et h et bt et e bt et s bt et bt et e bt en b bt e b e bt et e eh e et e e bt et e e bt et e nbeentenbean
5.1.10.2 DIESCIIPTION. ¢ttt ettt ettt b et st et e bt ea e st e e st e e bt et e s bt esteabeeabesbeentenbeeasentenee 13
S L TL KEY _K@YOWREE ..ottt ettt be et eae e se e easeenseeaaens 14
5.1.11.1 STIIEAX -ttt ettt ettt ettt b btttk b ettt b b b s sttt b ek b ettt b bbbttt ettt nenes 14
5.1.11.2 DIESCIIPLION. c..eteentetieiie ettt ettt ettt et st e e teeste s ae et e s bt enbesbeente bt enbesseense st ensenseentansesnsenseee 14
S 112 K@Y MMEROU. ...ttt 14
5.1.12.1 N 1LF D OO P U PPR PRSP 14
5.1.12.2 DIESCTIPLION. ..ttt ettt ettt sttt e e st e e st e st e s ae et e s bt eabesbeente bt enbesseentenseensenseensansesnsensenns 14
5113 KEY _KE@VHAME. ..ot et 14
5.1.13.1 SPIEAX ..ottt ettt se e et e et et e bt et e et e bt e e at e e bt e st e e bt e et e e sate et e e naneenteens 14
5.1.13.2 DIESCIIPLION. c..eveeiietieiteeitet et et et et e st et e e teestesseesbeeseesaesseessessesssesseensesesnsesseansesseessensasssensenssensanen 14

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

March 11, 2004

S L T4 KEY DIOCK ...ttt 15
5.1.14.1 N 1LF D OO USSR PP TP PSRRI 15
5.1.14.2 DIESCIIPLION. c.eeenetieiie ettt ettt ettt sttt ettt e et eatesae et e s bt entesbeente bt enbesseente st ensenseensansesnsensene 15

6 APPENDIX A 15
6.1 ENCRYPTION/DECRYPTION FLOWovviiiiiiiiieiiie et seenane s e 15
6.2 TOOL VENDOR SECRET KEY ENCRYPTION SYSTEMcuvtriiiiieiiiirereeeeeeeiiitiereeeeeeeenisneeeeseeeessnnseeeess 16
6.3 DIGITAL ENVELOPESuututtiiiieeieeiiiteeeeeeeeeeettee e e e eeeeetaereeeeeeesestaareseeeeeastsareseeeeeeesaaareeeeeeeenarnreeeeas 16

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

March 11, 2004

1 Overview

This section describes the purpose and organization of this document.

1.1 Intent and scope of this document
The intent of this specification is to define the VHDL source protection mechanism. It defines the rules to
encrypt the VHDL source. It also defines the format of the encrypted VHDL file. Its primary audiences

are the implementor of tools that produce encrypted VHDL, or the tools that consume and process the
encrypted VHDL.

1.2 Syntactic description

This specification has been described using the context-free syntax described in the IEEE Standard
VHDL Language Reference Manual (IEEE Std. 1076-1993) section 0.2.1.

2 Lexical Conventions

21 Pragmas
For encryption of the VHDL source, the pragmas are defined in the following format. This sub clause
specifies the syntactic mechanism that shall be used for specifying pragmas, without standardizing on any
particular pragmas.
pragma ::=-- pragma protect { pragma_ expression } \n
pragma_expression ::= pragma_keyword
| pragma_keyword = pragma_value
| pragma_value
pragma_value ::= constant_expression
| string
pragma_keyword := begin
| end
| data_keyowner
| data_keyname
| data_method

| key_keyowner

| key_method

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

March 11, 2004

| key_keyname

| begin_protected
| end_protected

| key_block

| end_key_block

| data_block

| end_data_block
| digest_block

| end_digest_block

3 Compiler Directives

3.1 Protected Envelopes
Protected Envelopes specify a region of text which shall be encrypted prior to analysis by the source
language processor. These regions of text are structured to provide the source language processor with the
specification of the cryptographic algorithm, key, envelope attributes, and textual design data.
All information which identifies a Protected Envelope is introduced by the protect pragma. This pragma
is reserved by this standard for the description of Protected Envelopes, and is the prefix for specifying the
regions and processing specifications for each protected envelope. Additional information is associated
with the pragma by appending pragma expressions.
Envelopes may be defined for either of two modes of processing. Encryption envelopes specify the
pragma expressions for encrypting source text regions. Decryption envelopes specify the pragma
expressions for decrypting encrypted text regions. Decryption envelopes may contain other envelopes
within their enclosed data block. The number of nested decryption envelopes that can be processed is
implementation-specified.

hdl envelope ::= encrypt_envelope
| decrypt_envelope

encrypt envelope ::= protect pragma encrypt content params begin pragma source text end pragma
encrypt_content params ::= key block params [data params_set]

key block params::= {key params_set}

key params_set ::= key keyowner pragma key keyname pragma key method pragma

data params_set ::= data keyowner pragma data keyname pragma data method pragma

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

March 11, 2004

decrypt_envelope ::= begin _protected pragma decrypt content params decrypt_data_block
end protected pragma
decrypt content params := {decrypt key block}

decrypt key block ::= key params_set key block digest block

key block ::= key block pragma encoded text end key block pragma

digest block ::= digest block pragma encoded text end digest block pragma
decrypt data_block ::= data block digest block

data_block ::= data block pragma encoded text end data block pragma

protect pragma ::= --pragma protect \n

begin_pragma ::= --pragma protect begin \n

end pragma ::=--pragma protect end \n

key keyowner pragma ::=--pragma protect key_keyowner=string \n

key keyname pragma ::=--pragma protect key_keyname=string \n

key method pragma ::= --pragma protect key_method=string \n

data_keyowner pragma ::=--pragma protect data_keyowner=string \n
data_keyname pragma ::=--pragma protect data_keyname=string \n
data_method_pragma ::= --pragma protect data_method=string \n

begin_protected pragma ::= --pragma protect begin_protected \n
end protected pragma ::= --pragma protect end_protected \n

key block pragma ::=--pragma protect key_block \n

end key block pragma ::=--pragma protect end_key block \n
digest block pragma ::=--pragma protect digest block \n

end digest block pragma ::= --pragma protect end_digest block \n
data_block pragma ::= --pragma protect data_block \n

end data block pragma ::= --pragma protect end_data_block \n
Note:

source_text: The source text encompasses all the text, comments, included pragma directives, user code
ete.

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

March 11, 2004

encoded_text: is the binary data encoded in printable characters, spanning over multiple lines. This can
contains both the encrypted and the message digest data.

The pragma expressions between the protect pragma and the begin_pragma in a encryption envelope or
between the begin protect pragma and end protect pragma are processed to encrypt or decypt the data
in the envelopes.

Examples:

library IEEE;

use IEEE.std_logic 1164.all;

package pack inst is

--pragma protect

--pragma protect data_keyowner =ownerl
--pragma protect data_method = RCS
--pragma protect data_keyname = data_test1.1
--pragma protect key_keyowner = keyowner1
--pragma protect key_method = RC4
--pragma protect key_keyname = key_test1.1
--pragma protect key keyowner = keyowner2
--pragma protect key_method = DES
--pragma protect key_keyname = key_test1.2
--pragma protect begin

signal sigp protected : std_logic ;

--pragma protect end

end pack_inst;

After processing the above input VHDL the encrypting tool should generate data similar to the following:

library IEEE;

use IEEE.std logic 1164.all;

package pack_inst is

--pragma protect begin_protected

--pragma protect key keyowner=keyownerl

--pragma protect key keyname=key _testl.1

--pragma protect key_method=RC4

--pragma protect key_block
T/ROBKmye8wSelN/JJdpeF3ga6182MsHal5sGnOPLiVkVehOYX4unuoXG6W65Nuy
FYOFWTXA+TskQu+qyW+5mVEeMFOtPa6UDSLfy2S8MuzTDVCGpg8d9k7nXb92SLdeC
JuE/rURMCQEOtFOsRvAcLGX5Mh3dUql3bncGe8CC2s lyDzmHdDwjuotUN3xDaZVM
sqRv98aQ6gZT5Dg=

--pragma protect end_key_block

--pragma protect digest_block

X9PyX59giDALGPEeblCyRkc3f7E=

--pragma protect end_digest_block

--pragma protect key keyowner=keyowner2

--pragma protect key_keyname=key_test1.2

--pragma protect key_method=DES

--pragma protect key_block
JgRb6WfTB471/JeMPU/Z6wYS/JES5gz6kExQo2XBDmXto/Zy6KCDSvQWEDgqd/PWW0
OloXudfttDIr5WmN/UvHA2FUHb6BrVVsqNDITZQZBiMGHxCJpDNZvuLezV9fnia6
pPITG2pGg6FQOMollouTK2X39Z/Tn/Q2unXPSLMI1Ftd7y580c/ViQZ4rEV05DzLw
8BuRP9/CdG3A5ICYbXn+Xg==

--pragma protect end_key_block

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

March 11, 2004

--pragma protect digest_block
dkSkDUS5xwADj+B7HhomnCn9A48tc=
--pragma protect end_digest_block
--pragma protect data_block
liK5iC2NkCoqsbvVio9kSak2/mZsigagqY5U570gsbc EHHAcTpMFSNYNqlusKUES
17mw8C24N3H6CoRiJBIVHA==
--pragma protect end_data_block
--pragma protect digest _block
TgouRSRZcvyiJFdcJieviuX6dZM=
--pragma protect end_digest_block
--pragma protect end_protected

end pack_inst;

3.1.1 Processing protected envelopes

Two modes of processing are defined for protected envelopes. Envelope encryption is the process of
recognizing encryption envelopes in the source text and transforming them into decryption envelopes.
Envelope decryption is the process of recognizing decryption envelopes in the input text and transforming
them into the corresponding clear text for the parsing step that follows.

3.1.1.1 Encryption
VHDL tools that provide encryption services shall transform source text containing encryption envelopes.
The tool replaces each encryption envelop with a decryption envelope by encrypting the source text
according to the specified pragmas. Source text which is not contained in an encryption envelope shall
not be modified by the encrypting language processor.

In the encryption block if the data pragmas (data_keyname, data keyowner, data _method) are defined,
the specified key and algorithm are used along with the session key to encrypt the data. If these pragmas
are absent, a random session key is generated and used to encrypt the data. The encrypted data is enclosed
in the data_block pragmas. This session key data (or the information about the session key) and the
information about the encryption algorithm is encrypted by another key and is output between the
key_block pragmas. This second key and the algorithm are specified by the key pragmas. If the key
pragmas (key method, key owner, key name) are absent in the encryption block, the tool’s internal key
is used.

3.1.1.2 Decryption

VHDL tools that support compilation of encrypted data internally decrypt the decryption envelopes
according to the specified pragma expressions.

4 Protected Envelopes

5 Envelope Directives

Protected envelopes are specified as lexical regions delimited by protect pragma declarations. The
semantics of a particular protect pragma declaration is specified by its pragma expressions. This standard
reserves the keyword names listed in the following table for use as keywords to the protect pragma. These
keywords are defined in section 6.1, with a specification of how each participates in the encryption and

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

March 11, 2004

decryption processing modes. Some keywords are used exclusively in the encryption envelope, some are
used exclusively in the decryption envelope, where as some are used in both kind of envelopes.

The following pragma keywords are relevant to encryption envelopes only:

<empty> Opens a new encryption envelope
begin Opens a input data block for encryption

end Closes an encryption envelope

The following are used only in the decryption envelope:

begin_protected Opens a new decryption envelope
end_protected Closes a decryption envelope

key block Begins an encoded block of key data
end key block Closes an encoded block of key data

data_block Begins a block of encrypted data

end data_block Closes a block of encrypted data

digest block Begins an encoded block of authentication code data for data integrity
end digest block Closes the authentication code

The following are used both by the encryption and decryption envelopes.
data_keyowner Identifies the owner of the data encryption key
data_method Identifies the data encryption algorithm
data_keyname Specifies the name of the data encryption key
key keyowner Identifies the owner of the key encryption key
key method Specifies the key encryption algorithm

key keyname Specifies the name of the key encryption key

The scope of protect pragma declarations is completely lexical and not associated with any declarative
region or declaration in the HDL text itself.

In the protection envelopes where a specific pragma keyword is absent, the VHDL tool shall use the
default value. VHDL tools that perform encryption should explicitly output all relevant pragmas

keywords (including the ones for which default values were used) for each envelope in order to avoid
unintended interpretations during decryption.

5.1 Envelope encoding keywords
5.1.1 begin

5.1.1.1 Syntax

5.1.1.2 Description
ENCRYPTION INPUT: The begin pragma expression is used in the input text to indicate to an
encrypting tool the point at which encryption begins. All text, including comments and other protect
pragmas, between the begin pragma expression and the corresponding end pragma expression is
encrypted and is stored in the output format using the data_block pragma expression.
Nesting of pragma begin/end blocks is not supported, although there may be begin_protected/
end_protected blocks containing previously encrypted content inside such a block. They are simply

treated as a byte stream and encrypted as if they were text.

ENCRYPTION OUTPUT: none

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

10

March 11, 2004

DECRYPTION INPUT: none
51.2 end

5.1.21 Syntax
end

5.1.2.2 Description

ENCRYPTION INPUT: The end pragma expression is used in the input clear text to indicate the end of
the region that shall be encrypted

ENCRYPTION OUTPUT: none
DECRYPTION INPUT: none
5.1.3 begin_protected

5.1.3.1 Syntax
begi n_prot ect ed

5.1.3.2 Description

ENCRYPTION INPUT: If found in an input file during encryption begin_protected/end_protected
block and its contents are treated as input clear text. This could result from a situation where a previously
encrypted model is being re-encrypted as a portion of a larger model. An additional requirement is that
any other protect pragmas inside the begin_protected/end_protected block shall not be interpreted or
override pragmas in effect. In this way, nested encryption will not corrupt pragma values in the current
encryption in process.

ENCRYPTION OUTPUT: After encrypting a begin/end block during encryption, the encrypting tool
produces a corresponding begin_protected/end_protected block in the output file. This block begins
with the begin_protected pragma expression. Following begin_protected all pragma expressions
required as encryption output shall be generated prior to outputting the end protected pragma
expression. In this way protected blocks are completely self-contained avoiding any undesired interaction
when using multiple encrypted models during the decryption process.

Note that this does not begin a block of encrypted data or keys, the data_block and key block pragma
expressions are used for this purpose and they are found within a begin_protected/end_protected block.

DECRYPTION INPUT: The begin_protected pragma expression begins a previously encrypted region.
A decrypting tool accumulates all the pragma expressions in the block for use in decryption of the block.

5.1.4 end_protected

5.1.4.1 Syntax
end_pr ot ect ed

5.1.4.2 Description
ENCRYPTION INPUT: This pragma expression indicates the end of a previous begin_protected block.

This indicates that the block is complete and new pragma expression values shall be accumulated for the
next envelope.

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

11

March 11, 2004

ENCRYPTION OUTPUT: The end_protected pragma expression shall be output to indicate the end of a
protected block.

DECRYPTION INPUT: The end_protected pragma expression indicates the end of a set of pragmas that
should be sufficient to decrypt the current block. Upon encountering end_protected a tool shall verify
that all required information is present.

5.1.5 data_keyowner

5.1.6 Syntax
dat a_keyowner =<stri ng>

5.1.6.1 Description

ENCRYPTION INPUT: The data_keyowner specifies the company or tool that is providing the keys
used for encryption and decryption of the data. The keys might be provided by an IP Author, the
encrypting tool, the IP consumer, or possibly even a third party distributor of the IP. It has to be a value
which is available in the tool’s key database. If this pragma is absent the encrypting tool shall use its own
embedded key. If specified, the tool reads the key from the database and uses this to encrypt the data
block.

ENCRYPTION OUTPUT: The data_keyowner is encrypted with the key method and found in the
key_block.

DECRYPTION INPUT: During decryption, the data_keyowner is combined with the data_keyname to
determine the appropriate secret/private key to use during decryption of the data_block.

5.1.7 data_method

5.1.7.1 Syntax
dat a_mnet hod=<net hod_nane>

5.1.7.2 Description
ENCRYPTION INPUT: The data_method pragma expression indicates the encryption algorithm that
shall be used to encrypt subsequent begin/end block. The encryption method is an identifier that is

commonly associated with a specific encryption algorithm.

This standard specifies the following values for the data_method pragma expression. Additional
identifier values are implementation-defined:

DES Data Encryption Standard
RSA RSA Public Key

RC2 RSA RC2

RC4 RSA RC4

RC5 RSA RC5

RC6 RSA RC6

Editor's Note: The above list should be replaced with a normative reference to an existing registry of encryption
algorithm identifiers. IETF and W3C are potential registries, and others may exist.

ENCRYPTION OUTPUT: The data_method is encrypted with the key method and found in the
key_block.

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

12

March 11, 2004

DECRYPTION INPUT: The data_method indicates the algorithm that should be used to decrypt the
data_block.

5.1.8 data_keyname

5.1.8.1 Syntax
dat a_keynane=<stri ng>

5.1.8.2 Description

ENCRYPTION INPUT: The data_keyname pragma expression provides the name of the key or key pair
that is used to decrypt the data_block. A given data_keyowner will typically have multiple keys that
they have shared in different ways with different vendors or customers. This pragma expression indicates
which of these many keys has been used.

ENCRYPTION OUTPUT: When a data_keyname is provided in the input, it indicates the key that is to
be used for encrypting the data. The encrypting tool must be able to combine this pragma expression with
the data_keyowner and determine the key to use. The data_keyname is encrypted using key method
and and encoded in the key_block.

DECRYPTION INPUT: In use models where the data_keyowner has provided a secret/private key to a
Tool Vendor, or a Tool Vendors secret key has been used, then a unique key name must be identified for

each key during this exchange. This key name is then used to identify at decryption time which of many
possible secret keys for a given key owner should be used for decryption.

5.1.9 data_block

5.1.9.1 Syntax
dat a_bl ock

5.1.9.2 Description

ENCRYPTION INPUT: A data_block should never be found in an input file unless it is contained within
a previously generated begin_protected/end_protected block in which case it is ignored.

ENCRYPTION OUTPUT: The data_block pragma expression indicates that a data block begins on the
next line in the file. An encrypting tool takes each begin/end block, encrypts the contents as specified by
the data_method pragma expression, and then encodes the block. The resultant text is generated as the
output.

DECRYPTION INPUT: The data_block is first read in the encoded form. The encoding is reversed, and
then the block should be decrypted in-memory for consumption.

5.1.10 digest_block

5.1.10.1 Syntax
di gest _bl ock

5.1.10.2 Description

ENCRYPTION INPUT: none

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

13

March 11, 2004

ENCRYPTION OUTPUT: A Message Authentication Code (MAC) is used to ensure that the IP has not
been modified. In Message Authentication Code, the encrypting tool generates the message digest (fixed
length, computationally unique identifier corresponding to a set of data). The message digest is generated
for both data_block and the key block.

DECRYPTION INPUT: In order to authenticate the message, the consuming tool shall first decrypt the
message, then generate the message digest on the original message, and compare the two message
digests. If the two don’t match this means that either the MAC or data_block or the key block has been
altered, and the tool can error out.

5.1.11 key_keyowner

5.1.11.1 Syntax
key keyowner =<stri ng>

5.1.11.2 Description
ENCRYPTION INPUT: The key_keyowner specifies the company or tool that is providing the keys
used for encryption and decryption of the key information. The value of the key keyowner also has the
similar constraint as mentioned in the data_keyowner values.

ENCRYPTION OUTPUT: The key_keyowner should be unchanged in the output file.

DECRYPTION INPUT: During decryption, the key keyowner can be combined with the key keyname
to determine the appropriate secret/private key to use during decryption of the key_block.

5.1.12 key_method

5.1.12.1 Syntax
key_net hod=<net hod_nane>

5.1.12.2 Description
ENCRYPTION INPUT: The key method pragma expression indicates the encryption algorithm that
shall be used to encrypt the keys used to encrypt the data_block. The same names and formats are used
for data_method and key method. The values have the same constraint as mentioned for the
data_method values.

ENCRYPTION OUTPUT: The key_method remains unchanged in the output file.

DECRYPTION INPUT: The key method indicates the algorithm that shall be used to decrypt the
key_block.

5.1.13 key_keyname

5.1.13.1 Syntax
key keyname=<stri ng>

5.1.13.2 Description

ENCRYPTION INPUT: The key_keyname pragma expression provides the name of the key or key pair
that should be used to decrypt the key_block. A given key keyowner will typically have multiple keys

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

14

March 11, 2004

that they have shared in different ways with different vendors or customers. This pragma expression
indicates which of these many keys has been used.

ENCRYPTION OUTPUT: When a key_keyname is provided in the input, it indicates the key that shall
be used for encryption of the data encryption keys. The encrypting tool must be able to combine this
pragma expression with the key_keyowner and determine the key to use. The key_keyname itself should
be output as clear text in the output file.

DECRYPTION INPUT: In use models where the key_keyowner has provided a secret/ private key to a
Tool Vendor, or a Tool Vendors secret key has been used, a unique key name must be identified for each
key during encryption. This key name is then used to identify at decryption time which of the many
possible secret keys for a given key owner shall be used for decryption.

5.1.14 key_block

5.1.14.1 Syntax
key bl ock

5.1.14.2 Description

ENCRYPTION INPUT: A key_block shall never be found in an input file unless it is contained within a
previously generated begin_protected/end_protected block in which case it is ignored.

ENCRYPTION OUTPUT: The key_block pragma expression indicates that a key block begins on the
next line in the file. An encrypting tool takes data_method, data_keyname and data_keyowner to form
a text buffer. This buffer is then encrypted with the appropriate key method, key keyname and
key keyowner. Then the encrypted region is be encoded. The output of this encoding shall be generated
as the contents of the key_block.

Where more than one key block pragma expression occurs within a single begin/end block, the
generated key blocks shall all encode the same data decryption key data. Multiple key blocks are
specified for the purpose of providing alternative decryption keys for a single decryption envelope.

DECRYPTION INPUT: The key block is first read. The encoding is reversed and then the block
internally decrypted. The resulting text can now be parsed to determine the keys required to decrypt the

data_block. If for a key_block the specified key is not available, the tool should try the subsequent
key_blocks for availability.

6 Appendix A

6.1 Encryption/Decryption Flow

This section describes the various scenarios which can be used for IP Protection, and it also shows how to
achieve the desired effect of securely protecting, distributing, and decrypting the model.

The data that needs to be protected from access or from unauthorized modification, should be placed in
within the protect begin/end block. As the tool encrypts all the information in the begin/end block, the
information is also protected.

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

15

March 11, 2004

6.2 Tool Vendor Secret key encryption system

In the secret key encryption system the key is tool vendor proprietary and will be embedded within the
tool itself. The same key is used for both encryption and decryption. (In the EDA domain this is the
simplest scenario and is roughly equivalent to the existing Verilog-XL ‘protect technique). It has the
drawback of being completely tool vendor specific. Using this technique, the IP author can encrypt the IP
and any IP consumer with appropriate licenses and the same tool vendor can utilize the IP.

If the key pragma are absent in the encryption block, the tool uses its internal key to encrypt the data
block. As usual the session is specified by the data pragmas, i.e. data pragmas are specified the mentioned
key is used, otherwise a random key is generated to encrypt the data.

6.3 Digital Envelopes

Editor’s Note: This is the preferred exchange form in that it permits use of session keys to limit the amount of cipher
text exposure for the exchanged encryption keys. The following text is incorrect in the assumption that asymmetric
algorithms are the only useful exchange key mechanisms.

In this mechanism, each user will have a public and private key. The public key is made public while the
private key remains secret. The sender encrypts the message using a symmetric key encryption algorithm,
then encrypts the symmetric key using the recipient’s public key. The recipient then decrypts the
symmetric key using the appropriate private key and then decrypts the message with the symmetric key.
In this way a fast encryption methods processes large amount of data, yet secret information is never
transmitted without encryption. In digital envelopes, using the above encryption technology (secret key
encryption system, where the key will be given by the IP author/end user), encryption tool will protect the
IP. This symmetric key and algorithm information is them encrypted with a public key, the corresponding
private key of which is available to the tool. So only the tool can decrypt the symmetric key internally
and decrypt the protected IP.

Instead of using the public key of public/private key pair, a tool specific embedded key can also be used
to encrypt the key_block. In this case also as only the tool knows its embedded key, only it can internally
decrypt the design, hence the same effect can be achieved. The only disadvantage is that the tool’s
embedded key will have to be provided to the IP Author in some form.

The data method and data_keyowner/data_keyname are used to encrypt the data_block. The
encrypting tool then encrypts the data_keyowner and data_keyname pragmas with the
key_keymethod/key keyname and puts them in the key_block along with data_method. Alternatively
if a dynamic session key is generated, the session key itself is encrypted along with the data method and
put in the key block.

In the first approach the data_keyowner/data_keyname should also be present with the decrypting tool.
No such dependency exists with the second approach as the key is present in the file itself.

For better security in the first approach the encrypting tool can actually read the data_keyowner/
data_keyname key and put it in the key block as data_decrypt_key. Which not only will remove the

dependency mentioned above, but will also protect against the hit & trial breaking of the data_block with
the existing keys at the IP users end.

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

16

