# **IP Decryption Management**

Jeff Fox July 9, 2012



### **Scope of This Presentation**

- Protection of plain text IP source code at any level of abstraction
- Control over authorization for EDA tools to decrypt
- Tool-specific permissions not addressed here
  - Each EDA, FPGA or ASIC vendor may support a large variety of controls over what may be done with encrypted and licensed IP
    - Example: Altera permissions are encoded in IP encryption header and authorized by license. Least restrictive wins for each right



## **Types of IP Decryption Authorization**

#### Open – no license required for specified EDA tools

- Permissions granted by IP provider during encryption, embedded in encryption header
- Altera uses this for most company owned IP
  - IP can be parameterized, simulated, synthesized, fit
  - FPGA can be programmed, but device will stop working when time limit expires

#### License required

- IP vendor must provide a license to grant permission to decrypt for specified EDA tools
- In Altera's implementation, the IP vendor crypt key is in the FlexIm license in an encrypted format



## **Granularity of Permissions**

- To provide as much control and flexibility to IP providers as possible, the 1735 spec should allow a range of decryption authorization choices from coarse to fine grained
  - Independent of whether the "open" or "licensed" permission models are used
- EDA vendors may choose the level of control that they will support



#### **Examples of Decryption Authorization Options**

- Vendor(s)
- List of product names or codes
- List of release numbers or date codes
  - Minimum
  - Exact
  - Maximum
  - No limit
- List of SW components in tools, including version numbers or date codes for each component
  - Would allow authorization for tools with common code bases

