IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

13. Temporal struct members

13.1 Events

The e language provides temporal constructs for specifying and verifying behavior over time. All e temporal
language features depend on the occurrence of events, which are used to synchronize activity with a
simulator and within the e program.

13.1.1 Causes of events

Table 26 describes how an event is made to occur.

Table 26—Event causation

Syntax Cause of the event
eventais (@b and @c)@d Derived from other events (see Clause 12).
event a is rise('top.b")@sim Derived from behavior of a simulated device (see Clause 12).
event a; By the emit action in procedural code (see 13.1.3.2).
meth_b()@cis {...;emita; .. };

13.1.2 Scope of events

Events are defined as a part of a struct definition. When a struct is instantiated, each instance has its own
event instances. Each event instance has its own schedule of occurrences. There is no relation between
occurrences of event instances of the same type. All references to events are to event instances.

The scoping rules for events are similar to other struct members, such as fields.

— If a path is provided, use the event defined in the struct instance pointed to by the path.
— If no path is provided, the event is resolved at compile time. The current struct instance is searched.
— If the event instance is not found, a compile-time error shall be issued.

13.1.3 Defining and emitting named events

This subclause describes the event and emit constructs.

Copyright © 2011 IEEE. All rights reserved. 215

IEEE
Std 1647-2011 IEEE STANDARD

13.1.3.1 event

Purpose Define a named event

Category | Struct member

event event-type[is temporal-expression [using temporal-operators]]

Syntax event event-type[is only temporal-expression] [using also temporal-operators]
event-type The name of the event type (any legal e identifier).
temporal- An event or combination of events and temporal operators.
expression See also Clause 12.
temporal- One or more temporal operators of the form: operation condition, separated by com-
operators mas, where:
operation is one of the following keywords:
abort Terminate evaluation of the temporal expression in the current tick
and restart it in the next tick.
start Start the evaluation of the temporal expression in the current tick if the
event is currently in a stopped state.
exclusive_ Similar to start, but in addition the event is stopped when the struct is
Parameters start created, and remains stopped until acted upon by the exclusive start.

stop Stop the evaluation of the temporal expression in the current tick. It
will remain stopped until a start instruction is issued.

condition is one of the following:

@event- Triggering temporal event. This event can belong to the context struct
name (that is, [me.]Jevent-name), or reachable via a constant path (that is,
const-or-unit-instance-field-path.event-name).

none Return to the default state. This value is intended for use when there
was a previous triggering event for this instruc-tion that should be
removed.

empty Used to specify a dummy event (i.e., an event that never happens), for

use with the procedural API - see (Yuri/AlanH: Add XREF to new
section once done).

Events can be attached to TEs, using the is temporal-expression syntax, or they can be unattached. An
attached event is emitted automatically during any tick in which the TE attached to it succeeds. For a
definition of the success of a TE, see 12.3. If an event has been attached to a TE, one or more temporal
operators can also be attributed to it, with the using temporal-operators syntax

Events, like methods, can be redefined in struct extensions. The is only temporal-expression syntax is used
to change the definition of an event, e.g., to define an event once and then attach it to several different TEs
under different when struct subtypes. The using also temporal-operators syntax is used to add a temporal
operator in a redefinition of the event (when used together with is only), or to add it as a separate extension
to an existing event (when used without is only).

216 Copyright © 2011 IEEE. All rights reserved.

IEEE

FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

13.1.3.2 emit

Purpose | Cause a named event to occur

Category | Action

Syntax emit [struct-exp.]event-type

struct-exp
Parameters

An expression referring to the struct instance in which the event is defined.

event-type

The type of event to emit.

This causes an event of the specified type to occur.

— Emitting an event causes the immediate evaluation of all TEs containing that event.

— The emit event does not consume time. It can be used in regular methods and in TCMs.

— The simplest usage of emit is to synchronize two TCMs, where one TCM waits for the named event
and the other TCM emits it.

Syntax example:

emit ready

13.1.4 Predefined events

Predefined events are emitted at particular points in time.

13.1.4.1 General predefined events

Table 27 lists the general predefined events.

Table 27—Predefined events

Predefined event

Description

sys.any

Emitted on every tick.

sys.tick_start

Emitted at the start of every tick.

sys.tick_end

Emitted at the end of every tick.

session.start_of_test

Emitted once at test start.

session.end_of _test

Emitted once at test end.

struct.quit Emitted when a struct’s quit() method is called. Only exists in structs that contain
events or have members that consume time (for example, TCMs or on struct
members).

sys.new_time In stand-alone operation (no simulator), this event is emitted on every sys.any event.

When a simulator is being used, this event is emitted whenever a callback occurs and
the attached simulator’s time has changed since the previous callback.

Copyright © 2011 IEEE. All rights reserved. 217

IEEE
Std 1647-2011 IEEE STANDARD

13.1.4.1.1 sys.any

This event is a special event that defines the finest granularity of time. The occurrence of any event in the
system causes an occurrence of the any event at the same tick. In stand-alone e program operation (that is,
with no simulator attached), the sys.any event is the only one that occurs automatically. It typically is used
as the clock for stand-alone operation.

13.1.4.1.2 sys.tick_start

This event is provided mainly for visualizing and debugging the program flow.

13.1.4.1.3 sys.tick_end

This event is provided mainly for visualizing and debugging the program flow. It also can be used to provide
visibility into changes of values that are computed during the tick, such as the values of coverage items.

13.1.4.1.4 session.start_of_test

The first action the predefined run() method executes is to emit the session.start_of test event. This event
is typically used to anchor TEs to the beginning of a test.

13.1.4.1.5 session.end_of test

This event is typically used to sample data at the end of the test. This event cannot be used in TEs, as it is
emitted after evaluation of TE has been stopped. The on session.end_of_test struct member is typically used
to prepare the data sampled at the end of the test.

13.1.4.1.6 struct.quit

This only exists in structs that contain temporal members (events, on, expect, or TCMs). It is emitted when
the struct’s quit() method is called, to signal the end of time for the struct.

The first action executed during the check test phase is to emit the quit event for each struct that contains it.
This event can be used to cause the evaluation of TEs that contain the eventually temporal operator (and
check for eventually TEs that have not been satisfied).

13.1.4.1.7 sys.new_time

This event is emitted on every sys.any event in stand-alone operation (no simulator). When a simulator is
being used, this event is emitted whenever a callback occurs and the attached simulator’s time has changed
since the previous callback.

13.1.4.2 Simulation time and ticks

Using any of the following expressions causes the DUT to be monitored for a change in that expression:

— rise | fall | change (HDL expression) @sim
— wait delay expression
— Verilog event

For each simulation delta cycle where a change in at least one of these monitored expressions occurs, the

simulator passes control to the e program. If simulation time has advanced since the last time control was
passed to the e program, a new_time event is issued. In any case, tick_start and any events are issued.

218 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Then, after emitting all events initiated by changes in monitored expressions in that simulation delta cycle, a
tick_end event is issued.

Thus, the new_time event corresponds to a new simulation time slot and a tick corresponds to a simulation
delta cycle where at least one monitored expression changes.

Multiple ticks can occur in the same simulation time slot under the following conditions:

— When a new value is driven into the DUT and that value causes a change in a monitored HDL object,
as in a clock generator

— When a monitored event is derived from another monitored event, as in a clock tree

— When a zero-delay HDL subprogram is called from e

For an explanation of when values are assigned, see 19.5.

NOTE—Glitches that occur in a single simulation time slot are ignored; only the first occurrence of a particular moni-
tored event in a single simulation time slot is recognized.

13.2 on

Purpose | Specify a block of actions that execute on an event

Category | Struct member

Syntax on [const-exp.]Jevent-type {action; ...}

const-exp An optional expression identifying the struct or unit in which event-type is
defined. This expression must remain constant and thus can consist only of:

— A const field
— A unit instance name

— Indexing a unit from a list of unit instances (a constant unit
pointer)
If not provided, the context struct or unit is assumed.

Parameters

event-type The name of an event that invokes the action block.

action; ... A block of non-time-consuming actions.

This defines a struct member that executes a block of actions immediately whenever a specified event
occurs. An on struct member is similar to a regular method, except that it is invoked automatically upon an
occurrence of the event. An on action block is executed before TCMs waiting for the same event. The
actions are executed in the order in which they appear in the action block.

To extend an on struct member, its declaration can be repeated and a different action block used. This has
the same effect as using is also to extend a method.

If no const-exp is specified, the on struct member is implemented as a method, named on_event-type(). In this
case, the action block can be invoked without the occurrence of the event, call the on_event-type() method.
This method can be extended like any other method, by using is, is also, is only, or is first (see 18.1.3).

The following restrictions also apply:

Copyright © 2011 IEEE. All rights reserved. 219

IEEE
Std 1647-2011 IEEE STANDARD

— The named event shall be local to the struct specified by const-exp, or to the struct in which the on is
defined if no const_exp is specified.

— The on action block shall not contain any time-consuming actions or TCMs.
See also 4.2.3 and 18.1.3.

Syntax example:

on xmit_ready {
transmit()

}

13.3 on event-port

Purpose Specify a block of actions that execute on on the triggering an event.

Category | Struct member

Syntax on [const-exp.]event-port-name$ {action; ...}

const-exp An optional expression identifying the struct or unit in which event-type is
defined. This expression must remain constant and thus can consist only of:

— A const field
— A unit instance name

— Indexing a unit from a list of unit instances (a constant unit
Parameters pointer)

If not provided, the context struct or unit is assumed.

event-port-name The event port that invokes the action block. The port direction must be either
in or inout.

action; ... A block of non-time-consuming actions.

This defines a struct member that executes a block of actions immediately whenever a specified event port is
triggered. An on event-port struct member is similar to a regular method, except that it is invoked
automatically upon an occurrence of the event that triggers the event port. An on action block is executed
before TCMs waiting for the same event. The actions are executed in the order in which they appear in the
action block.

To extend an on struct member, its declaration can be repeated and use a different action block. This has the
same effect as using is also to extend a method.

The following restriction also applies:

— The on action block shall not contain any time-consuming actions or TCMs.
See also 4.2.3 and 18.1.3.

Syntax example:

on sys.clk$ {
out("'clock tick™)

}

220 Copyright © 2011 IEEE. All rights reserved.

IEEE

FOR THE FUNCTIONAL VERIFICATION LANGUAGE € Std 1647-2011
13.4 expect | assume
Purpose Define a temporal rule
Category | Struct member
expect | assume [rule-name is]
temporal-expression [else dut_error(string-exp)] [using temporal_operators]
Syntax expect | assume rule-name
[is only temporal-expression [else dut_error(string-exp)]]
[using also temporal_operators]
rule-name A name that uniquely identifies the rule from other rules or events within the struct. It
can be used to override the temporal rule later on in the code or change from expect to
assume or vice versa.
temporal- A TE that is always expected to succeed. Typically involves a temporal yield (=>)
expression operator (see 12.2.13).
string-exp A string or an expression that can be converted to a string. If the TE fails, the string is
printed.
temporal- ~ One or more temporal operators of the form: operation condition, separated by com-
operators mas, where:
operation is one of the following keywords:
abort Terminate evaluation of the temporal expression in the current tick
and restart it in the next tick.
start Start the evaluation of the temporal expression in the current tick if
Parameters the expect is currently in a stopped state.
exclusive_ Similar to start, but in addition the expect is stopped when the struct is
start created, and remains stopped until acted upon by the exclusive start.
stop Stop the evaluation of the temporal expression in the current tick. It

will remain stopped until a start instruction is issued.

condition is one of the following:

@event- Triggering temporal event. This event can belong to the context struct

name (that is, [me.]event-name), or is reachable via a constant path (that is,
const-or-unit-instance-field-path.event-name).

none Return to the default state. This value is intended for use when there
was a previous triggering event for this instruction that should be
removed.

empty Used to specify a dummy event (i.e., an event that never happens), for

use with the procedural API - see (Yuri/AlanH: Add XREF to new
section once done).

Both the expect and assume struct members are used for defining temporal properties.

— When a simulation-based tool executes the e program, it evaluates the rule expressed by the TE. If
the TE fails at some point in time (see 12.3), the tool reports an error as specified with the dut_error
clause (if no dut_error clause is specified, the tool prints the rule name). The notion of failure of the
TE implies a new evaluation starts on every state following a state in which the sampling event

Copyright © 2011 IEEE. All rights reserved.

221

IEEE
Std 1647-2011 IEEE STANDARD

occurs (see 12.3.3). Simulation-based tools typically treat expect and assume in exactly the same
manner.

— When a formal verification tool analyzes the e program, expect struct members are interpreted as
rules the tool needs to verify, whereas assume struct members are interpreted as constraints on legal
behavior. This means the tool looks for program execution paths where the TE bound to an expect
fails (see 12.3) and none of the TEs bound to the assumes fail.

In addition, one or more temporal operators can also be attributed to it, with the using temporal-operators
syntax.

Once a rule has been defined, it can be modified using the is only syntax and can be changed from an expect
to an assume or vice versa. To perform multiple verification runs, the rules can be varied slightly or the
same set of rules can be used in different expect/assume combinations. The using also temporal-operators
syntax can be used to add a temporal operator in a redefinition of the rule (when used together with is only),
or to add it as a separate extension to an existing rule (when used without is only).

Syntax example:
expect @a => {[1..5]; @b} @clk

Example

This example defines an expect, bus_cycle_length, that requires the length of the bus cycle to be no
longer than 1000 cycles.

struct bus_e {
event bus_clk is change("top.b_clk”) @sim;
event transmit_start is rise ((Ctop.-trans’) @bus_clk;
event transmit_end is rise ((Ctop.transmit_done”) @bus_clk;
event bus_cycle_length;

expect bus_cycle_length is

@transmit_start => {[0..999]; @transmit_end} @bus_clk
else dut_error("'Bus cycle did not end in 1000 cycles')

13.5 Procedural API for Temporal Operators on event and expect struct Members

13.5.1 do_abort_on_event()

Purpose | Apply the abort operator on the event struct member

Category | Predefined method of any struct or unit

Syntax do_abort_on_event(name: string, force: bool)

name The name of an event struct member of this struct or unit
Parameters

force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the abort operator on the event name of the target struct, if attributed
operators of the event name and force parameters allow it:

— Ifforce is FALSE, the event name is affected only if no abort operator is attributed to it, or its condi-
tion is none; condition @event-name or empty disables the method.

222 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

— If force is TRUE, the event name is affected regardless attributed operators.

Syntax example:

do_abort_on_event(*“checker™, FALSE)

13.5.2 do_stop_on_event()

Purpose Apply the stop operator on the event struct member

Category | Predefined method of any struct or unit

Syntax do_stop_on_event(name: string, force: bool)

name The name of an event struct member of this struct or unit

Parameters
force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the stop operator on the event name of the target struct, if attributed
operators of the event name and force parameters allow it:

— If force is FALSE, the event name is affected only if no stop operator is attributed to it, or its condi-
tion is none; condition @event-name or empty disables the method.

— Ifforce is TRUE, the event name is affected regardless attributed operators.

Syntax example:

do_stop_on_event(''checker', FALSE)

13.5.3 do_start_on_event()

Purpose Apply the start operator on the event struct member

Category | Predefined method of any struct or unit

Syntax do_start_on_event(name: string, force: bool)

name The name of an event struct member of this struct or unit
Parameters

force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the start operator on the event name of the target struct, if attributed
operators of the event name and force parameters allow it:

— If force is FALSE, the event name is affected only if no start operator is attributed to it, or its condi-
tion is none; condition @event-name or empty disables the method.

— Ifforce is TRUE, the event name is affected regardless attributed operators.

Syntax example:

do_start_on_event("checker', FALSE)

Copyright © 2011 IEEE. All rights reserved. 223

IEEE
Std 1647-2011 IEEE STANDARD

13.5.4 do_abort_on_expect()

Purpose | Apply the abort operator on the expect struct member

Category | Predefined method of any struct or unit

Syntax do_abort_on_expect(name: string, force: bool)
name The name of an expect struct member of this struct or unit
Parameters
force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the abort operator on the expect name of the target struct, if attributed
operators of the expect name and force parameters allow it:

— If force is FALSE, the expect name is affected only if no abort operator is attributed to it, or its con-
dition is none; condition @event-name or empty disables the method.

— If force is TRUE, the expect name is affected regardless attributed operators.

Syntax example:
do_abort_on_expect(‘'checker™, FALSE)

13.5.5 do_stop_on_expect()

Purpose Apply the stop operator on the expect struct member

Category | Predefined method of any struct or unit

Syntax do_stop_on_expect(name: string, force: bool)

name The name of an expect struct member of this struct or unit
Parameters

force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the stop operator on the expect name of the target struct, if attributed
operators of the expect name and force parameters allow it:

— Ifforce is FALSE, the expect name is affected only if no stop operator is attributed to it, or its condi-
tion is none; condition @event-name or empty disables the method.

— Ifforce is TRUE, the texpect name is affected regardless attributed operators.

Syntax example:

do_stop_on_expect(*checker™, FALSE)

224 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

13.5.6 do_start_on_expect()

Purpose | Apply the start operator on the expect struct member

Category | Predefined method of any struct or unit

Syntax do_start_on_expect(name: string, force: bool)

name The name of an expect struct member of this struct or unit
Parameters

force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the start operator on the expect name of the target struct, if attributed
operators of the expect name and force parameters allow it:

— If force is FALSE, the expect name is affected only if no start operator is attributed to it, or its con-
dition is none; condition @event-name or empty disables the method.

— If force is TRUE, the expect name is affected regardless attributed operators.

Syntax example:

do_start_on_expect(‘'checker™, FALSE)

13.5.7 do_abort_on_struct()

PUrDOSE Apply the abort operator on events and expects of a struct. By default it applies it on all of them, but
P can be customized by extending the apply_abort_on_struct() method (see 13.5.10).

Category | Predefined method of any struct or unit

Syntax do_abort_on_struct(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the abort operator on events and expects of the target struct, by calling the
apply_abort_on_struct() method with the same force parameter. By default, its effect is as follows:

— If force is FALSE, the events and expects are affected only if no abort operator is attributed to them,
or its condition is none; condition @event-name or empty disables the method.

— If force is TRUE, the events and expects are affected regardless attributed operators.

Syntax example:

do_abort_on_struct(FALSE)

Copyright © 2011 IEEE. All rights reserved. 225

IEEE
Std 1647-2011 IEEE STANDARD

13.5.8 do_stop_on_struct()

Apply the stop operator on events and expects of a struct. By default it applies it on all of them, but

PUrPOse | :an be customized by extending the apply_stop_on_struct() method (see 13.5.11).

Category | Predefined method of any struct or unit

Syntax do_stop_on_struct(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the stop operator on events and expects of the target struct, by calling the
apply_stop_on_struct() method with the same force parameter. By default, its effect is as follows:

— If force is FALSE, the events and expects are affected only if no stop operator is attributed to them,
or its condition is none; condition @event-name or empty disables the method.

— If force is TRUE, the events and expects are affected regardless attributed operators.

Syntax example:
do_stop_on_struct(FALSE)

13.5.9 do_start_on_struct()

Apply the start operator on events and expects of a struct. By default it applies it on all of them, but

PUrpose | .an be customized by extending the apply_start_on_struct() method (see 13.5.12).

Category | Predefined method of any struct or unit

Syntax do_start_on_struct(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the start operator on events and expects of the target struct, by calling the
apply_start_on_struct() method with the same force parameter. By default, its effect is as follows:

— If force is FALSE, the events and expects are affected only if no start operator is attributed to them,
or its condition is none; condition @event-name or empty disables the method.

— If force is TRUE, the events and expects are affected regardless attributed operators.

Syntax example:
do_start_on_struct(FALSE)

226 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

13.5.10 apply_abort_on_struct()

Purpose | Customize how the abort operator is applied on temporal struct members of a struct

Category | Predefined method of any struct or unit

Syntax apply_abort_on_struct(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

To customize how the abort operator is applied on temporal struct members, this method can be extended
for the specific struct. The default implementation of the method contains two calls:

— do_abort_on_all_events(force);
— do_abort_on_all_expects(force);

In an extension, these or other predefined methods can be called, for example, do_abort_on_event() on a
specific event.

Syntax example:

extend sys {
apply_abort_on_struct(force: bool) is only {
do_abort_on_all_expects(force)

}

13.5.11 apply_stop_on_struct()

Purpose | Customize how the stop operator is applied on temporal struct members of a struct

Category | Predefined method of any struct or unit

Syntax apply_stop_on_struct(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

To customize how the stopoperator is applied on temporal struct members, this method can be extended for
the specific struct. The default implementation of the method contains two calls:

— do_stop_on_all_events(force);
— do_stop_on_all_expects(force);

In an extension, these or other predefined methods can be called, for example, do_stop_on_event() on a
specific event.

Syntax example:

extend sys {
apply_stop_on_struct(force: bool) is only {
do_stop_on_all_expects(force)

}

Copyright © 2011 IEEE. All rights reserved. 227

IEEE
Std 1647-2011 IEEE STANDARD

13.5.12 apply_start_on_struct()

Purpose | Customize how the start operator is applied on temporal struct members of a struct

Category | Predefined method of any struct or unit

Syntax apply_start_on_struct(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

To customize how the start operator is applied on temporal struct members, this method can be extended for
the specific struct. The default implementation of the method contains two calls:

— do_start_on_all_events(force);
— do_start_on_all_expects(force);

In an extension, these or other predefined methods can be called, for example, do_start_on_event() on a
specific event.

Syntax example:

extend sys {
apply_start_on_struct(force: bool) is only {
do_start_on_all_expects(force)

}

13.5.13 do_abort_on_all_events()

Apply the abort operator on all events of a struct. This method is used in extensions of the
Purpose | apply_abort_on_struct() method (see 13.5.10), to customize how the abort operator is applied on
temporal struct members a struct.

Category | Predefined method of any struct or unit

Syntax do_abort_on_all_events(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the abort operator on all events of the struct, if attributed operators of the
event and force parameter allow it:

— If force is FALSE, the events are affected only if no abort operator is attributed to them, or its condi-
tion is none; condition @event-name or empty disables the method.

— If force is TRUE, the events are affected regardless attributed operators.

Syntax example:

extend sys {
apply_abort_on_struct(force: bool) is only {
do_abort_on_all_events(force)

}

228 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

13.5.14 do_stop_on_all_events()

Apply the stop operator on all events of a struct. This method is used in extensions of the
Purpose apply_stop_on_struct() method (see 13.5.11), to customize how the abort operator is applied on
temporal struct members a struct.

Category | Predefined method of any struct or unit

Syntax do_stop_on_all_events(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the stop operator on all events of the struct, if attributed operators of the
event and force parameter allow it:

— If force is FALSE, the events are affected only if no stop operator is attributed to them, or its condi-
tion is none; condition @event-name or empty disables the method.

— If force is TRUE, the events are affected regardless attributed operators.

Syntax example:

extend sys {
apply_stop_on_struct(force: bool) is only {
do_stop_on_all_events(force)

}

13.5.15 do_start_on_all_events()

Apply the start operator on all events of a struct. This method is used in extensions of the
Purpose apply_start_on_struct() method (see 13.5.12), to customize how the abort operator is applied on
temporal struct members a struct.

Category | Predefined method of any struct or unit

Syntax do_start_on_all_events(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the start operator on all events of the struct, if attributed operators of the
event and force parameter allow it:

— If force is FALSE, the events are affected only if no start operator is attributed to them, or its condi-
tion is none; condition @event-name or empty disables the method.

— If force is TRUE, the events are affected regardless attributed operators.

Syntax example:

extend sys {
apply_start_on_struct(force: bool) is only {
do_start_on_all_events(force)

Copyright © 2011 IEEE. All rights reserved. 229

IEEE
Std 1647-2011 IEEE STANDARD

13.5.16 do_abort_on_all_expects()

Apply the abort operator on all expects of a struct. This method is used in extensions of the
Purpose | apply_abort_on_struct() method (see 13.5.10), to customize how the abort operator is applied on
temporal struct members a struct.

Category | Predefined method of any struct or unit

Syntax do_abort_on_all_expects(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the abort operator on all expects of the struct, if attributed operators of the
expect and force parameter allow it:

— If force is FALSE, the expects are affected only if no abort operator is attributed to them, or its con-
dition is none; condition @expect-name or empty disables the method.

— If force is TRUE, the expects are affected regardless attributed operators.

Syntax example:

extend sys {
apply_abort_on_struct(force: bool) is only {
do_abort_on_all_expects(force)

}

13.5.17 do_stop_on_all_expects()

Apply the stop operator on all expects of a struct. This method is used in extensions of the
Purpose | apply_stop_on_struct() method (see 13.5.11), to customize how the stop operator is applied on
temporal struct members a struct.

Category | Predefined method of any struct or unit

Syntax do_stop_on_all_expects(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the stop operator on all expects of the struct, if attributed operators of the
expect and force parameter allow it:

— If force is FALSE, the expects are affected only if no stop operator is attributed to them, or its condi-
tion is none; condition @expect-name or empty disables the method.

— If force is TRUE, the expects are affected regardless attributed operators.

Syntax example:

extend sys {
apply_stop_on_struct(force: bool) is only {

230 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

do_stop_on_all_expects(force)

}

13.5.18 do_start_on_all_expects()

Apply the start operator on all expects of a struct. This method is used in extensions of the

Purpose apply_start_on_struct() method (see 13.5.12), to customize how the start operator is applied on
temporal struct members a struct.

Category | Predefined method of any struct or unit

Syntax do_start_on_all_expects(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the start operator on all expects of the struct, if attributed operators of the
expect and force parameter allow it:

— If force is FALSE, the expects are affected only if no start operator is attributed to them, or its con-
dition is none; condition @expect-name or empty disables the method.

— If force is TRUE, the expects are affected regardless attributed operators.

Syntax example:

extend sys {

apply_start_on_struct(force: bool) is only {
do_start_on_all_expects(force)

}

13.5.19 do_abort_on_subtree()

Purpose Apply the abort operator on the specified unit and propagate to the unit sub-tree under it.

Category | Predefined method of any unit

Syntax do_abort_on_subtree(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the abort operator on events and expects of the target unit and unit sub-

tree under it, by calling the propagate_abort_on_subtree() method with the same force parameter. By
default, its effect is as follows:

— If force is FALSE, the events and expects are affected only if no abort operator is attributed to them,
or its condition is none; condition @event-name or empty disables the method.

— If force is TRUE, the events and expects are affected regardless attributed operators.

This default effect can be changed by extending the propagate_abort_on_subtree() method (see 13.5.22).

Syntax example:

Copyright © 2011 IEEE. All rights reserved. 231

IEEE
Std 1647-2011 IEEE STANDARD

do_abort_on_subtree(FALSE)

13.5.20 do_stop_on_subtree()

Purpose Apply the stop operator on the specified unit and propagate to the unit sub-tree under it.

Category | Predefined method of any unit

Syntax do_stop_on_subtree(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the stop operator on events and expects of the target unit and unit sub-tree
under it, by calling the propagate_stop_on_subtree() method with the same force parameter. By default, its
effect is as follows:

— If force is FALSE, the events and expects are affected only if no stop operator is attributed to them,
or its condition is none; condition @event-name or empty disables the method.

— If force is TRUE, the events and expects are affected regardless attributed operators.
This default effect can be changed by extending the propagate_stop_on_subtree() method (see 13.5.23).

Syntax example:

do_stop_on_subtree(FALSE)

13.5.21 do_start_on_subtree()

Purpose | Apply the start operator on the specified unit and propagate to the unit sub-tree under it.

Category | Predefined method of any unit

Syntax do_start_on_subtree(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method immediately applies the start operator on events and expects of the target unit and unit sub-tree
under it, by calling the propagate_start_on_subtree() method with the same force parameter. By default,
its effect is as follows:

— If force is FALSE, the events and expects are affected only if no start operator is attributed to them,
or its condition is none; condition @event-name or empty disables the method.

— If force is TRUE, the events and expects are affected regardless attributed operators.
This default effect can be changed by extending the propagate_start_on_subtree() method (see 13.5.24).

Syntax example:

do_start_on_subtree(FALSE)

232 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

13.5.22 propagate_abort_on_subtree()

Customize how the abort operator is propagated on temporal struct members of a specified unit and

Purpose the unit sub-tree under it

Category | Predefined method of any unit

Syntax propagate_abort_on_struct(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

To customize how the abort operator is propagated on temporal struct members of a specified unit and the
unit sub-tree under it, this method can be extended for the specific unit. The default implementation of the
method contains two calls:

— do_abort_struct(force);

— do_abort_on_all_instance_fields(force);

In an extension, these or other predefined methods can be called, for example, do_abort_on_struct() can be
called on a struct pointed to by a specific field.

Syntax example:

extend sys {
propagate_abort_on_subtree(force: bool) is only {
do_abort_on_all_instance_fields(force)

}

13.5.23 propagate_stop_on_subtree()

Customize how the stop operator is propagated on temporal struct members of a specified unit and

Purpose the unit sub-tree under it

Category | Predefined method of any unit

Syntax propagate_stop_on_struct(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

To customize how the stop operator is propagated on temporal struct members of a specified unit and the
unit sub-tree under it, this method can be extended for the specific unit. The default implementation of the
method contains two calls:

— do_stop_struct(force);
— do_stop_on_all_instance_fields(force);

In an extension, these or other predefined methods can be called, for example, do_stop_on_struct() can be
called on a struct pointed to by a specific field.

Syntax example:

extend sys {
propagate_stop_on_subtree(force: bool) is only {

Copyright © 2011 IEEE. All rights reserved. 233

IEEE
Std 1647-2011 IEEE STANDARD

do_stop_on_all_instance_fields(force)

13.5.24 propagate_start_on_subtree()

Customize how the start operator is propagated on temporal struct members of a specified unit and

Purpose the unit sub-tree under it

Category | Predefined method of any unit

Syntax propagate_start_on_struct(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

To customize how the start operator is propagated on temporal struct members of a specified unit and the
unit sub-tree under it, this method can be extended for the specific unit. The default implementation of the
method contains two calls:

— do_start_struct(force);

— do_start_on_all_instance_fields(force);

In an extension, these or other predefined methods can be called, for example, do_start_on_struct() can be
called on a struct pointed to by a specific field.

Syntax example:

extend sys {
propagate_start_on_subtree(force: bool) is only {
do_start_on_all_instance_fields(force)

}

13.5.25 do_abort_on_all_instance_fields()

Propagate the abort operator on all instance fields of a unit. This method is used in extensions of the
Purpose | propagate_abort_on_subtree() method (see 13.5.22), to customize how the abort operator is
propagated on temporal struct members of a unit and unit sub-tree under it

Category | Predefined method of any unit

Syntax do_abort_on_all_instance_fields(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method recursively applies the abort operator on on all instance fields of the unit, by calling the
do_abort_on_subtree() method on them with the same force parameter.
Syntax example:

extend sys {
propagate_abort_on_subtree(force: bool) is only {
do_abort_on_all_instance_fields(force)

234 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

13.5.26 do_stop_on_all_instance_fields()

Propagate the stop operator on all instance fields of a unit. This method is used in extensions of the
Purpose | propagate stop_on_subtree() method (see 13.5.23), to customize how the stop operator is
propagated on temporal struct members of a unit and unit sub-tree under it

Category | Predefined method of any unit

Syntax do_stop_on_all_instance_fields(force: hool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method recursively applies the stop operator on on all instance fields of the unit, by calling the
do_stop_on_subtree() method on them with the same force parameter.

Syntax example:

extend sys {
propagate_stop_on_subtree(force: bool) is only {
do_stop_on_all_instance_Tfields(force)

}

13.5.27 do_start_on_all_instance_fields()

Propagate the start operator on all instance fields of a unit. This method is used in extensions of the
Purpose | propagate start on_subtree() method (see 13.5.24), to customize how the start operator is
propagated on temporal struct members of a unit and unit sub-tree under it

Category | Predefined method of any unit

Syntax do_start_on_all_instance_fields(force: bool)

Parameters | force Denotes whether the effect is forced, regardless attributed operators

This method recursively applies the start operator on on all instance fields of the unit, by calling the
do_start_on_subtree() method on them with the same force parameter.

Syntax example:

extend sys {
propagate_start_on_subtree(force: bool) is only {
do_start_on_all_instance_fields(force)

}

Copyright © 2011 IEEE. All rights reserved. 235

IEEE
Std 1647-2011 IEEE STANDARD

236 Copyright © 2011 IEEE. All rights reserved.

	13. Temporal struct members
	13.1 Events
	13.2 on
	13.3 on event-port
	13.4 expect | assume
	13.5 Procedural API for Temporal Operators on event and expect struct Members

