
IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 431

28. Predefined routines library

Predefined routines are e macros that look like methods. The distinguishing characteristics of predefined
routines are as follows:

— They are not associated with any particular struct.

— They share the same name space for user-defined routines and global methods.

— They cannot be modified or extended with the is only, is also, or is first constructs.

See also 17.2.

28.1 Deep copy and compare routines

The following routines perform recursive copies and comparisons of nested structs and lists. See also 6.11.

28.1.1 deep_copy()

This returns a deep, recursive copy of the struct instance. This routine descends recursively through the
fields of a struct and its descendants, copying each field by value, copying it by reference, or ignoring it,
depending on the deep_copy attribute set for that field.

The return type of deep_copy() is the same as the declared type of the struct instance.

Table 41 details how the copy is made, depending on the type of the field and the deep_copy attribute
(normal, reference, ignore) set for that field. See also 6.11.

The following considerations also apply:

— A deep copy of a scalar field (numeric, Boolean, or enumerated) or a string field is the same as a
shallow copy performed by a call to copy().

— A struct or list is duplicated no more than once during a single call to deep_copy().
— If there is more than one reference to a struct or list instance and that instance is duplicated by the

call to deep_copy(), every field that referred to the original instance is updated to point to the new
instance.

— The copy() method of the struct is called by deep_copy().
— The struct’s copy() method is called before its descendants are deep copied. If the default copy()

method is overwritten or extended, this new version of the method is used.

— Add the reference attribute to fields that store shared data and to fields that are back-pointers
(pointers to the parent struct). Shared data in this context means data shared between objects inside
the deep copy graph and objects outside the deep copy graph. A deep copy graph is the imaginary
directed graph created by traversing the structs and lists duplicated, where its nodes are the structs or
lists and its edges are deep references to other structs or lists.

Purpose Make a recursive copy of a struct and its descendants

Category Predefined routine

Syntax deep_copy(struct-inst: exp): struct instance

Parameters struct-inst An expression that returns a struct instance.

IEEE
Std 1647-2015 IEEE STANDARD

432 Copyright © 2015 IEEE. All rights reserved.

Syntax example:

var pmv : packet = deep_copy(sys.pmi)

28.1.2 deep_compare()

This returns a list of strings, where each string describes a single difference between the two struct instances.
This routine descends recursively through the fields of a struct and its descendants, comparing each field or
ignoring it, depending on the deep_compare attribute set for that field.

The two struct instances are “deep equal” if the returned list is empty.

Deep equal is defined as follows:

— Two struct instances are deep equal if they are of the same type and all their fields are deep equal.

— Two scalar fields are deep equal if an equality operation applied to them is TRUE.

— Two list instances are deep equal if they are of the same size and all their items are deep equal.

Table 41—Copying procedure

Field type/
attribute normal reference ignore

scalar The new field holds a copy of the orig-
inal value.

The new field holds a copy
of the original value.

The new field holds a copy
of the original value.

scalar list A new list is allocated with the same
size and same elements as the original
list.

The new list field holds a
copy of the original list
pointer. a

A new list is allocated with
zero size.

struct A new struct instance with the same
type as the original struct is allocated.
Each field is copied or ignored,
depending on its deep_copy attribute.

The new struct field holds
a pointer to the original
struct.

No allocation occurs; the
field is set to NULL.

list of structs A new list is allocated with the same
number of elements as the original list.
New struct instances are also allocated
and each field in each struct is copied
or ignored, depending on its
deep_copy attribute.

The new list field holds a
copy of the original list
pointer. a

A new list is allocated with
zero size.

aIf the list or struct that is pointed to is duplicated (possibly because another field with a normal attribute is also pointing
to it), the pointer in this field is updated to point to the new instance. This duplication applies only to instances
duplicated by the deep_copy() itself and not to duplications made by the extended/overridden copy() method.

Purpose Perform a recursive comparison of two struct instances

Category Predefined routine

Syntax deep_compare(struct-inst1: exp, struct-inst2: exp, max-diffs: int): list of string

Parameters

struct-inst1,
struct-inst2

An expression returning a struct instance.

max-diffs An integer representing the maximum number of differences to report.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 433

Topology is taken into account. If two non-scalar instances are not in the same location/order in the deep
compare graphs, they are not equal. A deep compare graph is the imaginary directed graph created by
traversing the structs and lists compared, where its nodes are the structs or lists and its edges are deep
references to other structs or lists.

Table 42 details the differences that are reported, depending on the type of the field and the deep_compare
attribute (normal, reference, or ignore) set for that field. See also 6.11.

The difference string reported has the following format:

Differences between inst1-id and inst2-id

path: inst1-value != inst2-value

Table 42—Reporting procedure

Field type/
attribute normal reference ignore

scalar Their values, if different, are reported. Their values, if different,
are reported.

The fields are not compared.

scalar list Their sizes, if different, are reported. All
items in the smaller list are compared to
those in the longer list and their
differences are reported.

The fields are equal if their
addresses are the same.
The items are not
compared.

The fields are not compared.

struct If two structs are not of the same type,
their type difference is reported. Also,
any differences in common fields are
reported. a, b

If two structs are of the same type,
every field difference is reported.

aTwo fields are considered common only if the two structs are the same type, if they are both subtypes of the same base
type, or if one is a base type of the other.

bIf the reference points inside the deep compare graph, a limited topological equivalence check is performed, not just
an address comparison.

The fields are equal if their
addresses are the same.
The items are not
compared.

The fields are not compared
and no differences for them
or their descendants are
reported.

list of structs Their sizes, if different, are reported. All
structs in the smaller list are deep
compared to those in the longer list and
their differences are reported.

The fields are equal if their
addresses are the same and
they point to the same
struct instance. b

The fields are not compared
and no differences for them
or their descendants are
reported.

IEEE
Std 1647-2015 IEEE STANDARD

434 Copyright © 2015 IEEE. All rights reserved.

where

NOTE—The same two struct instances or the same two list instances are not compared more than once during a single
call to deep_compare().

Syntax example:

var diff : list of string = deep_compare(pmi[0], pmi[1], 100)

28.1.3 deep_compare_physical()

Syntax example:

var diff : list of string = deep_compare_physical(pmi[0], pmi[1], 100)

This returns a list of strings, where each string describes a single difference between the two struct instances.
This routine descends recursively through the fields of a struct and its descendants, ignoring all non-physical
fields and comparing each physical field or ignoring it, depending on the deep_compare_physical attribute
set for that field.

This routine is the same as the deep_compare() routine (see 28.1.2), except only physical fields (indicated
by the % operator prefixed to the field name) are compared.

NOTE—Adding a field under a when construct only causes the parent type and the when subtype to be different if the
added field is a physical field.

28.2 Integer arithmetic routines

The following subclauses describe the predefined arithmetic routines in e.

path is a list of field names separated by periods (.), from (and not including) the struct instances
being compared to the field with the difference.

value a) for scalar field differences, value is the result of out(field).
b) for struct field type differences, the type of the field is appended to the path and value

is the type of the field.

c) for list field size differences, size() is appended to the path and value is the result of
out(field.size()).

d) for a shallow comparison of struct fields that point outside the deep compare graph,
value is the struct address.

e) for a comparison of struct fields that point to different locations in the deep compare
graphs (topological difference), value is struct# appended to an index representing its
location in the deep compare graph.

Purpose Perform a recursive comparison of the physical fields of two struct instances

Category Predefined routine

Syntax deep_compare_physical(struct-inst1: exp, struct-inst2: exp, max-diffs: int): list of string

Parameters

struct-inst1,
struct-inst2

An expression returning a struct instance.

max-diffs An integer representing the maximum number of differences to report.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 435

28.2.1 min()

This returns the smaller of the two numeric values.

Syntax example:

print min((x + 5), y)

28.2.2 max()

This returns the larger of the two numeric values.

Syntax example:

print max((x + 5), y)

28.2.3 abs()

This returns the absolute value of the expression.

Syntax example:

print abs(x)

Purpose Get the minimum of two numeric values

Category Pseudo-routine

Syntax min(x: numeric-type, y: numeric-type): numeric-type

Parameters
x A numeric expression.

y A numeric expression.

Purpose Get the maximum of two numeric values

Category Pseudo-routine

Syntax max(x: numeric-type, y: numeric-type): numeric-type

Parameters
x A numeric expression.

y A numeric expression.

Purpose Get the absolute value

Category Pseudo-routine

Syntax abs(x: numeric-type): numeric-type

Parameters x A numeric expression.

IEEE
Std 1647-2015 IEEE STANDARD

436 Copyright © 2015 IEEE. All rights reserved.

28.2.4 odd()

This returns TRUE if the expression is odd, FALSE if the expression is even.

Syntax example:

print odd(x)

28.2.5 even()

This returns TRUE if the expression passed to it is even, FALSE if the expression is odd.

Syntax example:

print even(x)

28.2.6 ilog2()

This returns the integer part of the base-2 logarithm of x.

Syntax example:

print ilog2(x)

Purpose Check if an integer is odd

Category Pseudo-routine

Syntax odd(x: numeric-type): bool

Parameters x A numeric expression.

Purpose Check if an integer is even

Category Pseudo-routine

Syntax even(x: numeric-type): bool

Parameters x A numeric expression.

Purpose Get the base-2 logarithm

Category Pseudo-routine

Syntax ilog2(x: numeric-type): bool

Parameters x A numeric expression.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 437

28.2.7 ilog10()

This returns the integer part of the base-10 logarithm of x.

Syntax example:

print ilog10(x)

28.2.8 ipow()

This raises x to the power of y and returns the result.

Syntax example:

print ipow(x, y)

28.2.9 isqrt()

This returns the integer part of the square root of x.

Syntax example:

print isqrt(x)

Purpose Get the base-10 logarithm

Category Pseudo-routine

Syntax ilog10(x: numeric-type): bool

Parameters x A numeric expression.

Purpose Raise to a power

Category Pseudo-routine

Syntax ipow(x: numeric-type, y: numeric-type): numeric-type

Parameters
x A numeric expression.

y A numeric expression.

Purpose Get the square root

Category Pseudo-routine

Syntax isqrt(x: numeric-type): int

Parameters x A numeric expression.

IEEE
Std 1647-2015 IEEE STANDARD

438 Copyright © 2015 IEEE. All rights reserved.

28.2.10 div_round_up()

This returns the result of x / y rounded up to the next integer. See also 4.9.2.

Syntax example:

print div_round_up(x, y)

28.3 Real arithmetic routines

Table 43 shows the arithmetic routines support of real type objects:

Purpose Division rounded up

Category Routine

Syntax div_round_up(x: int, y: int): int

Parameters
x A numeric expression.

y A numeric expression.

Table 43—Arithmetic routines supporting real types

Routine Description

floor(real): real Returns the largest integer that is less than or equal to the parameter.

ceil(real): real Returns the smallest integer that is greater than or equal to the parameter.

round(real): real Returns the closest integer to the parameter. In the case of a tie then it returns the integer
with the higher absolute value.

log(real): real Returns the natural logarithm of the parameter.

log10(real): real Returns the base-10 logarithm of parameter.

pow(real, real): real Returns the value of the first parameter raised to the power of second one.

sqrt(real): real Returns the square root of the parameter.

exp(real): real Returns the value of e raised to the power of the parameter.

sin(real): real Returns the sine of the parameter given in radians.

cos(real): real Returns the cosine of the parameter given in radians.

tan(real): real Returns the tangent of the parameter given in radians.

asin(real): real Returns the arc sine of the parameter.

acos(real): real Returns the arc cosine of the parameter.

atan(real): real Returns the arc tangent of the parameter.

sinh(real): real Returns the hyperbolic sine of the parameter.

cosh(real): real Returns the hyperbolic cosine of the parameter.

tanh(real): real Returns the hyperbolic tangent of the parameter.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 439

28.4 bitwise_op()

This performs a Verilog-style unary reduction operation on a single operand to produce a single bit result.
There is no reduction operator in e, but the bitwise_op() routines perform the same functions as reduction
operators in Verilog, e.g., bitwise_xor() can be used to calculate parity.

For bitwise_nand(), bitwise_nor(), and bitwise_xnor(), the result is computed by inverting the result of the
bitwise_and(), bitwise_or(), and bitwise_xor() operations, respectively. Table 44 shows the predefined
pseudo-methods for bitwise operations.

asinh(real): real Returns the inverse hyperbolic sine of the parameter.

acosh(real): real Returns the inverse hyperbolic cosine of the parameter.

atanh(real): real Returns the inverse hyperbolic tangent of the parameter.

atan2(real, real): real Returns the arc tangent of the two parameters.

hypot(real, real): real Returns the distance of the point defined by the two parameters from the origin.

is_nan(real): bool Returns TRUE if the parameter’s value is Not-a-Number (NaN).

is_finite(real): bool Returns TRUE if the parameter’s value is a finite real value (that is, it is not infinity,
negative infinity, or NaN).

NOTE—For integer routines like ilog(), ilog10(), ilog2(), ipow(), and isqrt(), whose return type is based on the
expected type, if the expected type is real, then the return type is int (bits:*).

Purpose Perform a Verilog-style unary reduction operation

Category Pseudo-routine

Syntax bitwise_op(exp: numeric-type): bit

Parameters
op One of and, or, xor, nand, nor, or xnor.

exp A numeric expression.

Table 44—Bitwise operation pseudo-methods

Pseudo-method Operation

bitwise_and() Boolean AND of all bits

bitwise_or() Boolean OR of all bits

bitwise_xor() Boolean XOR of all bits

bitwise_nand() !bitwise_and()

bitwise_nor() !bitwise_or()

bitwise_xnor() !bitwise_xor()

Table 43—Arithmetic routines supporting real types (continued)

Routine Description

IEEE
Std 1647-2015 IEEE STANDARD

440 Copyright © 2015 IEEE. All rights reserved.

Syntax example:

print bitwise_and(b)

28.5 get_all_units()

This routine receives a unit type as a parameter and returns a list of instances of this unit type, as well as any
unit instances whose type is contained in the specified unit type.

Syntax example:

print get_all_units(XYZ_channel)

28.6 String routines

None of the string routines in e modify the input parameters. When a parameter is passed to one of these
routines, the routine makes a copy of the parameter, manipulates the copy, and returns the copy. See also
4.11, 5.1.10, and Table 23.

28.6.1 append()

This calls to_string() (see 27.4.4) to convert each expression to a string using the current radix setting for
any numeric expressions, then it concatenates them and returns the result as a single string.

Syntax example:

message = append(list1, " ", list2)

Purpose Return a list of instances of a specified unit type

Category Pseudo-routine

Syntax get_all_units(unit-type: exp): list of unit type

Parameters unit-type The name of a unit type, unquoted. The type needs to be defined or an error
shall occur.

Purpose Concatenate expressions into a string

Category Pseudo-routine

Syntax append(): string
append(item: exp, ...): string

Parameters
item A legal e expression. String expressions shall be enclosed in double quotes

(" "). If the expression is a struct instance, the struct ID is printed. If no
items are passed to append(), it returns an empty string.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 441

28.6.2 appendf()

This converts each expression to a string. An expression can match either a string format (%s) or a numeric
format. If it matches a string format, the current radix is used. If it matches a numeric format, that numeric
format defines the conversion to a string (see 28.7.3). Once all the expressions are converted, they are
concatenated and returned as a single string.

If the number and type of masks in the format string does not match the number and type of expressions, an
error shall be issued.

Syntax example:

message = appendf("%4d\n %4d\n %4d\n", 255, 54, 1570)

28.6.3 bin()

This concatenates zero or more expressions into a string, using binary representation for any expressions of
numeric types, regardless of the current radix setting. Non-numeric types are converted to a string using
to_string() (see 27.4.4).

Syntax example:

var my_string : string = bin(pi.i, " ", list1, " ", 8)

Purpose Concatenate expressions into a string according to a given format

Category Pseudo-routine

Syntax appendf(format: string, item: exp, ...): string

Parameters

format A string expression containing a standard C formatting mask for each item
(see 28.7.3).

item A legal e expression. String expressions shall be enclosed in double quotes
(" "). If the expression is a struct instance, the struct ID is printed.

Purpose Concatenate expressions into string, using binary representation for numeric types

Category Pseudo-routine

Syntax bin(item: exp, ...): string

Parameters item A legal e expression.

IEEE
Std 1647-2015 IEEE STANDARD

442 Copyright © 2015 IEEE. All rights reserved.

28.6.4 dec()

This concatenates zero or more expressions into a string, using decimal representation for any expressions of
numeric types, regardless of the current radix setting. Non-numeric types are converted to a string using
to_string() (see 27.4.4).

Syntax example:

var my_string : string = dec(pi.i, " ", list1, " ", 8)

28.6.5 hex()

This concatenates zero or more expressions into a string, using hexadecimal representation for any
expressions of numeric types, regardless of the current radix setting. Non-numeric types are converted to a
string using to_string() (see 27.4.4).

Syntax example:

var my_string : string = hex(pi.i, " ", list1, " ", 8)

28.6.6 quote()

This returns a copy of the text, enclosed in double quotes (" "), with any internal quote or backslash
preceded by a backslash (\).

Syntax example:

Purpose Concatenate expressions into string, using decimal representation for numeric types

Category Pseudo-routine

Syntax dec(item: exp, ...): string

Parameters item A legal e expression.

Purpose Concatenate expressions into string, using hexadecimal representation for numeric types

Category Pseudo-routine

Syntax hex(item: exp, ...): string

Parameters item A legal e expression.

Purpose Enclose a string in double quotes

Category Routine

Syntax quote(text: string): string

Parameters text An expression of type string.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 443

out(quote(message))

28.6.7 str_chop()

This removes characters from the end of a string, returning a string of the desired length. If the original
string is already less than or equal to the desired length, this routine returns the original string.

Syntax example:

var test_dir : string = str_chop(tmp_dir, 13)

28.6.8 str_empty()

This returns TRUE if the string is empty.

Syntax example:

print str_empty(s1)

28.6.9 str_exactly()

This returns a copy of the original string, whose length is the desired length, by adding blanks to the right or
by truncating the expression from the right as necessary. If non-blank characters are truncated, the *
character appears as the last character in the string returned.

Purpose Chop the tail of a string

Category Routine

Syntax str_chop(str: string, length: int): string

Parameters
str An expression of type string.

length An integer representing the desired length.

Purpose Check if a string is empty

Category Routine

Syntax str_empty(str: string): bool

Parameters str An expression of type string.

Purpose Get a string with exact length

Category Routine

Syntax str_exactly(str: string, length: int): string

Parameters
str An expression of type string.

length An integer representing the desired length.

IEEE
Std 1647-2015 IEEE STANDARD

444 Copyright © 2015 IEEE. All rights reserved.

Syntax example:

var long : string = str_exactly("123", 6)

28.6.10 str_insensitive()

This returns an AWK-style regular expression string that is the case-insensitive version of the original
regular expression. See also 4.11.2.

Syntax example:

var insensitive : string = str_insensitive("/hello.*/")

28.6.11 str_join()

This returns a single string that is the concatenation of the strings in the list of strings, separated by the
separator. The strings in the list are not changed.

Syntax example:

var s := str_join(slist," - ")

28.6.12 str_len()

This returns the number of characters in the original string, not counting the terminating NULL character \0.

Purpose Get a case-insensitive AWK-style regular expression

Category Routine

Syntax str_insensitive(regular_exp: string): string

Parameters regular_exp An AWK-style regular expression.

Purpose Concatenate a list of strings

Category Routine

Syntax str_join(list: list of string, separator: string): string

Parameters
list An list of type string.

separator The string used to separate the list elements.

Purpose Get string length

Category Routine

Syntax str_len(str: string): int

Parameters str An expression of type string.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 445

Syntax example:

var length : int = str_len("hello")

28.6.13 str_lower()

This returns a copy of the string with all uppercase characters converted to lowercase.

Syntax example:

var lower : string = str_lower("UPPER")

28.6.14 str_match()

This returns TRUE if the strings match or FALSE if the strings do not match. The routine str_match() is
fully equivalent to the operator ~. After doing a match, the local pseudo-variables $1, $2, ..., $27 can be
used, which correspond to the parenthesized pieces of the match. $0 stores the entire matched piece of the
string. See also 4.10.4.

Syntax example:

print str_match("ace", "/c(e)?$/")

Purpose Convert string to lowercase

Category Routine

Syntax str_lower(str: string): string

Parameters str An expression of type string.

Purpose Match strings

Category Routine

Syntax str_match(str: string, regular-exp: string): bool

Parameters

str An expression of type string.

regular-exp An AWK-style or native e regular expression. If not surrounded by slashes
(/), the expression is treated as a native style expression (see 4.11).

IEEE
Std 1647-2015 IEEE STANDARD

446 Copyright © 2015 IEEE. All rights reserved.

28.6.15 str_pad()

This returns a copy of the original string padded with blanks on the right, up to the desired length. If the
length of the original string is greater than or equal to the desired length, then the original string (not a copy)
is returned with no padding.

Syntax example:

var s : string = str_pad("hello world", 14)

28.6.16 str_replace()

A new copy of the original string is created, and then all the matches of the regular expression are replaced
by the replacement string. If no match is found, a copy of the source string is returned.

— To incorporate the matched substrings in the replacement string, use the backslash escaped numbers:
\1, \2,

— In native e regular expressions, the portion of the original string that matches the * or the ...
characters is replaced by the replacement string.

— In AWK-style regular expressions, to replace portions of the regular expressions, mark them with
parentheses [()].

Syntax example:

var s : string = str_replace("crc32", "/(.*32)/", "32_flip")

Purpose Pad string with blanks

Category Routine

Syntax str_pad(str: string, length: int): string

Parameters
str An expression of type string.

length An integer representing the desired length.

Purpose Replace a substring in a string with another string

Category Routine

Syntax str_replace(str: string, regular-exp: string, replacement: string): string

Parameters

str An expression of type string.

regular-exp An AWK-style or native e regular expression. If not surrounded by slashes
(/), the expression is treated as a native style expression (see 4.11).

replacement The string used to replace all occurrences of the regular expression.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 447

28.6.17 str_split()

This splits the original string on each occurrence of the regular expression and returns a list of strings. If the
regular expression occurs at the beginning or the end of the original string, an empty string is returned as the
first or last item, respectively. If the regular expression is an empty string, it has the effect of removing all
blanks in the original string and the splitting is done on blanks.

The original string is not changed by this operation.

Syntax example:

var s : list of string = str_split("first-second-third", "-")

28.6.18 str_split_all()

This splits the original string on each occurrence of the regular expression and returns a list of strings. If the
regular expression occurs at the beginning or the end of the original string, an empty string is returned as the
first or last item, respectively. The original string is not changed by this operation.

This routine is similar to str_split(), except it includes the separators in the resulting list of strings.

Syntax example:

var s : list of string = str_split_all(" A B C", "/ +/")

Purpose Split a string to substrings

Category Routine

Syntax str_split(str: string, regular-exp: string): list of string

Parameters

str An expression of type string.

regular-exp An AWK-style or native e regular expression that specifies where to split the
string (see 4.11).

Purpose Split a string to substrings, including separators

Category Routine

Syntax str_split_all(str: string, regular-exp: string): list of string

Parameters

str An expression of type string.

regular-exp An AWK-style or native e regular expression that specifies where to split the
string (see 4.11).

IEEE
Std 1647-2015 IEEE STANDARD

448 Copyright © 2015 IEEE. All rights reserved.

28.6.19 str_sub()

This returns a copy of a substring of the specified length from the original string, starting from the specified
index position. from shall be between 0 and length + 1 of str. If str is shorter than from + length, only the
available part is returned.

Syntax example:

var dir : string = str_sub("/rtests/test32/tmp", 8, 6)

28.6.20 str_upper()

This returns a copy of the original string, converting all lowercase characters to uppercase characters.

Syntax example:

var upper : string = str_upper("lower")

28.7 Output routines

The predefined output routines print formatted and unformatted information to the screen and to open log
files.

Purpose Extract a substring from a string

Category Routine

Syntax str_sub(str: string, from: int, length: int): string

Parameters

str An expression of type string.

from The index position from which to start extracting. The first character in the
string is at index 0.

length An integer representing the number of characters to extract.

Purpose Convert a string to uppercase

Category Routine

Syntax str_upper(str: string): string

Parameters str An expression of type string.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 449

28.7.1 out()

This calls to_string() (see 27.4.4) to convert each expression to a string and prints them to the screen (and to
the log file if it is open), followed by a newline.

Syntax example:

out("pkts[1].data is ", pkts[1].data)

28.7.2 outf()

This converts each expression to a string using the corresponding format string and then prints them to the
screen (and to the log file if it is open). For the %s mask, to_string() (see 27.4.4) is used for creating the
string representation of the expression.

— To add a newline, add the \n characters to the format string.

— outf() can be used to add the newlines where needed.

— Printing of lists is not supported with outf().
— If the number and type of masks in the format string does not match the number and type of

expressions, an error shall be issued.

Syntax example:

outf("%s %#08x", "pkts[1].data[0] is ", pkts[1].data[0])

28.7.3 Format string

The format string for the outf() and for the appendf() routine uses the following syntax:

"%[0|-][#][min_width][.[max_chars]](s|d|x|b|o|u)"

Purpose Print expressions to output, with a newline at the end

Category Pseudo-routine

Syntax out()
out(item: exp, ...)

Parameters
item A legal e expression. String expressions shall be enclosed in double quotes

(" "). If the expression is a struct instance, the struct ID is printed. If no
items are passed to out(), an empty string is printed, followed by a newline.

Purpose Print formatted expressions to output, with no newline at the end

Category Pseudo-routine

Syntax outf(format: string, item: exp, ...)

Parameters

format A string expression containing a standard C formatting mask for each item
(see 28.7.3).

item A legal e expression. String expressions shall be enclosed in double quotes
(" "). If the expression is a struct instance, the struct ID is printed. If the
expression is a list, an error shall be issued.

IEEE
Std 1647-2015 IEEE STANDARD

450 Copyright © 2015 IEEE. All rights reserved.

where

Printing real values with integer formatting will cause an automatic conversion to int(bits:*).

28.8 Operating system interface routines

The routines in this subclause enable use of OS commands from within the e programming language. These
routines work on all supported OSs.

0 pads with 0 instead of blanks. Padding is only done when right alignment is used, on the left
end of the expression.

- aligns left. The default is to align right.

adds 0x before the number. Can be used only with the x (hexadecimal) format specifier, e.g.,
%#x or %#010x.

min_width is a number that specifies the minimum number of characters. This number determines the
minimum width of the field. If there are not enough characters in the expression to fill the field,
the expression is padded to make it this many characters wide. If there are more characters in
the expression than this number (and if max_chars is set large enough), this number is
ignored and enough space is used to accommodate the entire expression.

max_chars is a number that specifies the maximum number of characters to use from the expression.
Characters in excess of this number are truncated. If this number is larger than min_width,
then the min_width number is ignored. For real number formats e, f, and g, max_chars
defines the precision—the number of digits after the decimal point.

s converts the expression to a string. The routine to_string() (see 27.4.4) is used to convert a
non-string expression to a string.

d prints a numeric expression in decimal format.

x prints a numeric expression in hex format. With the optional # character, adds 0x before the
number.

b prints a numeric expression in binary format.

o prints a numeric expression in octal format.

u prints integers (int and uint) in uint format.

e prints a numeric value in the style [-]d.ddde?dd where there is one digit before the
decimal-point character and the number of digits after it is equal to the precision. If the
precision is missing, it is taken as 6; if the precision is zero, no decimal-point character
appears.

f prints a numeric value in the style [-]d.ddde?dd, where the number of digits after the
decimal-point character is equal to the precision specification. If the precision is missing, it is
taken as 6; if the precision is explicitly zero, no decimal-point character appears.

g prints a numeric value in the style of either f or e. The precision specifies the number of
significant digits. If the precision is missing, 6 digits are given; if the precision is zero, it is
treated as 1. Style e is used if the exponent from its conversion is less than –4 or greater than or
equal to the precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 451

28.8.1 spawn()

This takes a variable number of parameters, concatenates them together, and executes the string result as an
OS command via system() (see 28.8.3).

Syntax example:

spawn("touch error.log && ", "grep Error my.elog >error.log")

28.8.2 spawn_check()

This executes a single string as an OS command via system() (see 28.8.3), then calls error() (see 16.3.2) if
the execution of the command returned an error status.

Syntax example:

spawn_check("grep Error my.elog >& error.log")

28.8.3 system()

This executes the string as an OS command and returns the result. On UNIX systems, the command string is
passed to the C system() call.

Syntax example:

stub = system("cat my.v")

Purpose Send commands to the OS

Category Pseudo-routine

Syntax spawn()
spawn(command: string, ...)

Parameters command An expression of type string.

Purpose Send a command to the OS and report error

Category Routine

Syntax spawn_check(command: string)

Parameters command An expression of type string.

Purpose Send a command to the OS

Category Routine

Syntax system(command: string): int

Parameters command An expression of type string.

IEEE
Std 1647-2015 IEEE STANDARD

452 Copyright © 2015 IEEE. All rights reserved.

28.8.4 output_from()

This executes the string as an OS command and returns the output as a list of string. Under UNIX, stdout
and stderr go to the string list.

Syntax example:

log_list = output_from("ls *log")

28.8.5 output_from_check()

This executes the string as an OS command, returns the output as a list of string, and then calls error() (see
16.3.2) if the execution of the command returns an error status. Under UNIX, stdout and stderr go to the
string list.

Syntax example:

log_list = output_from_check("ls *.log")

28.8.6 get_symbol()

This returns the environment variable as a string or an empty string if the symbol is not found.

Syntax example:

current_display = get_symbol("DISPLAY")

Purpose Collect the results of a system call

Category Routine

Syntax output_from(command: string): list of string

Parameters command An expression of type string.

Purpose Collect the results of a system call and check for errors

Category Routine

Syntax output_from_check(command: string): list of string

Parameters command An expression of type string.

Purpose Get UNIX environment variable

Category Routine

Syntax get_symbol(env-variable: string): string

Parameters env-variable An expression of type string.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 453

28.8.7 date_time()

This returns the current date and time as a string. The date/time is represented in the standard format
supplied by the C library routine ctime.

Syntax example:

print date_time()

28.8.8 getpid()

This returns the current process ID as an integer.

Syntax example:

print getpid()

Purpose Retrieve current date and time

Category Routine

Syntax date_time(): string

Purpose Retrieve process ID

Category Routine

Syntax getpid(): int

IEEE
Std 1647-2015 IEEE STANDARD

454 Copyright © 2015 IEEE. All rights reserved.

28.9 set_config()

This routine sets the configuration options to the specified values.

Syntax example:

set_config(memory, gc_threshold, 100M)

28.10 Random routines

The e language supports the routines shown in Table 45 to generate random real numbers:

28.11 Simulation-related routines

The routines in this subclause relate to interactions with the simulator. See also Clause 23.

Purpose Set values of global configuration parameters

Category Predefined routine

Syntax set_config(category: keyword, option: keyword, value: exp [, option: keyword, value: exp...])

Parameters

category Is one of the following: cover, gen, memory, print, or run, or any additional
implementation-dependent category.

option The valid cover options are:
— mode (either normal or count_only)
— absolute_max_buckets

The valid generate options are:
— absolute_max_list_size
— max_depth
— max_structs

The valid memory options are:
— gc_threshold
— gc_increment
— max_size
— absolute_max_size

The valid print option is: radix.
The valid run option is: tick_max.
The implementation can also introduce additional options.

value The valid values for each option are implementation specific.

Table 45—Random routines

Routine Description

rdist_uniform(from: real,
to:real): real

Returns a random real number using uniform distribution in the range from to to.

NOTE—The behavior of rdist_uniform() in e is equivalent to Verilog’s $rdist_uniform() defined in IEEE Std 1364
(17.9.2).

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 455

28.11.1 simulator_command()

This passes a command to the HDL simulator from e. The command shall not return a value. The output of
the command is sent to the standard output and log file.

Syntax example:

simulator_command("force -deposit memA(31:0)")

28.11.2 stop_run()

This stops the simulator and initiates post-simulation phases. This method needs to be called by a user-
defined method or TCM to stop the simulation run cleanly. The following things occur when stop_run() is
invoked:

a) The quit() method of each struct under sys is called. Each quit() method emits a “quit” event for that
struct instance at the end of the current tick.

b) All executing threads shall continue until the end of the current tick.

c) At the end of the current tick, the extract, check, and finalize test phases are performed.

d) If a simulator is linked here, e terminates the simulation cleanly after the test is finalized.

Plus, the following restrictions also apply:

— Executing a tick after calling stop_run() shall be considered an error.

— If the simulator exit command is called before stop_run(), the global methods for extracting,
checking, and finalizing the test are called.

NOTE—Use sys.extract() and extend that to make something happen right after stopping a run [rather then extending or
modifying the stop_run() method].

See also 27.2.2.5 and the run option of 28.9.

Syntax example:

stop_run()

Purpose Issue a simulator command

Category Predefined routine

Syntax simulator_command(command: string)

Parameters

command A valid simulator command, enclosed in double quotes (" ").
simulator_command() cannot be used to pass commands that change the
state of simulation, such as run, restart, restore, or exit (to the
simulator).

Purpose Stop a simulation run cleanly

Category Predefined routine

Syntax stop_run()

IEEE
Std 1647-2015 IEEE STANDARD

456 Copyright © 2015 IEEE. All rights reserved.

28.11.3 get_timescale()

This returns the current timescale, used to represent the time in sys.time (see also 4.3.1.4).

Syntax example:

print get_timescale()

Purpose Return the current timescale

Category Predefined routine

Syntax get_timescale() : string

