
IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 115

9. e ports

This clause describes ports, e unit members that enhance the portability and interoperability of verification
environments by making separation between an e unit and its interface possible.

9.1 Introduction to e ports

A port is an e unit member that makes a connection between an e unit and its interface to another internal or
external entity. There are two ways to use ports:

— Internal ports (e2e ports) connect an e unit to another e unit.

— External ports connect an e unit to a simulated object.

External ports are a generic way to access simulated objects of various kinds. An external port is bound to a
simulated object, e.g., an HDL signal in the DUT. Then all access to that signal is made via the port. The
port can be used to access a different signal simply by changing the binding; all the code that reads or writes
to the port remains the same. Similarly, port semantics remain the same, regardless of what simulator is
used. A simulator is any hardware or software agent that runs in parallel with an e program and models the
behavior of any part of the DUT or its environment.

9.1.1 Creating port instances

A port type is defined by the following aspects:

a) The kind of port: simple port, buffer port, event port, or method port.

1) Simple ports access data directly.

2) Buffer ports implement an abstraction of queues, with blocking get() and put().

3) Event ports transfer events between e units or between an e unit and a simulator.

4) Method ports enable a regular or TCM defined in an e unit or a foreign programming language
module to be called from another e unit or foreign programming language module.

b) Direction, either input or output (or inout for simple and event ports).

c) Data element, the e type that can be passed through this port.

Ports can only be instantiated within units using a unique instance name and the port type (direction, port
kind, and a kind-specific type specifier). Like units, port instances are generated during pre-run generation
and cannot be created, modified, or removed during a run.

The generic syntax for ports is:

port-instance-name : [direction] port-kind [of type-specifier] is instance

Event ports do not have a type specifier.

Examples

The following unit member creates a port instance:

data_in : in buffer_port of packet is instance

where

— The port instance name is data_in.

— The port kind is a buffer port.

IEEE
Std 1647-2015 IEEE STANDARD

116 Copyright © 2015 IEEE. All rights reserved.

— The port direction is input.

— The data element the port accepts is packet.

As another example, the following line creates a list of simple ports that each pass data of type bit:

ports : list of simple_port of bit is instance

9.1.2 Using ports

A port’s behavior is influenced by port attributes, such as hdl_path() or bind(), that are applied to port
instances using pre-run generation keep constraints. For example, the following lines of code create a port
named data and connect (bind) it to an external simulator-related object whose HDL pathname is data.

data : inout simple_port of list of bit is instance;

 keep bind(data, external);

 keep data.hdl_path() == "data"

Each port kind has predefined methods that can be used to access the port values. For example, buffer ports
have a predefined method put(), which writes a value onto an output port, as follows:

data_out : out buffer_port of cell is instance;

drive_all() @sys.any is {

 var stimuli : cell;

 var counter : int = 0;

 while counter < cells do {

 wait [1]*cycle;

 gen stimuli;

 data_out.put(stimuli);

 counter += 1

 }

}

9.1.3 Using port values and attributes in constraints

Like units, port instances can be created only during pre-run generation. They cannot be created by using
new or generated at runtime. Consequently, a port value cannot be initialized or sampled in pre-run
generation constraints. Port values can be used in on-the-fly generation constraints, in accordance with the
basic constraint principles, such as the bidirectional nature of constraints.

9.2 Using simple ports

Simple ports can be used to transfer one data element at a time to or from an external simulated object, such
as a Verilog register, a VHDL signal, a SystemC field, or an internal object (another e unit). A simple port’s
direction can be either input, output, or inout.

Use the $ port access operator to read or write port values. To access MVL on simple ports, either declare a
port’s data element to be mvl or list of mvl, or use the MVL methods. See 9.2.1 and 9.2.2 for more
information.

Internal and external ports shall have a bind() attribute that defines how they are connected. In addition, the
delayed() attribute can be used to control whether new values are propagated immediately or at the next
tick.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 117

An external simple port needs to have an hdl_path() attribute to specify the name of the object to which it is
connected. In addition, an external simple port can have several additional attributes that enable continuous
driving of external signals (see 9.7).

9.2.1 Accessing simple ports and their values

Ports are containers, and the values they hold are separate entities from the port itself. The $ access operator
distinguishes port value expressions from port reference expressions.

The $ operator, e.g., p$, can also be used to access or update the value held in a simple port p. When used
on the RHS, p$ refers to the port’s value. On the LHS of an assignment, p$ refers to the value’s location, so
an assignment to p$ changes the value held in the port.

Without the $ operator, an expression of any type port refers to the port itself, not to its value. In particular,
an expression without the $ operator can be used for operations involving port references.

Examples

Accessing port values

Accessing a port

9.2.2 MVL on simple ports

There are two ways to read and write MVL on simple ports, as follows:

— Define a port and use the predefined MVL methods described in 9.9 to read and write values to the
port.

— Define ports of type mvl or list of mvl and use the $ access operator to read and write the port values.

Ports of type mvl or list of mvl (MVL ports) allow easy transformation between exact e values and MVL,
which is useful for communicating with objects that sometimes model bit values other than 0 or 1 during a
test. Otherwise, using non-MVL ports is preferable, since they allow keeping the port values in a bit-by-bit
representation, while MVL ports require having an e list for an MVL vector. MVL type definition and MVL
functions are described in 9.9.

print p$ Prints the value of a simple port, p. a

aCompare with print p, which prints information about port p.

p$ = 0 Assigns the value 0 to a simple port, p. b

bCompare p$ = 0;with pref = NULL, which modifies a port reference so it does not
point to any port instance.

force p$= 0 Forces a simple external port to 0.

print q$[1:0] Prints the two lists of the value of q.

print p Prints the information about port p. Port p is defined as:
p: simple_port of int (bits:8) is instance

keep q == p q refers to the port instance p. Port reference q is defined as:
!q: simple_port of int (bits:8)

IEEE
Std 1647-2015 IEEE STANDARD

118 Copyright © 2015 IEEE. All rights reserved.

The Verilog comparison operators (=== or !==) cannot be used with numeric ports or MVL ports. These
operators can be used only with the tick access syntax.

9.2.3 @sim temporal expressions with external simple ports

Specifying an event port causes e to be sensitive to the corresponding HDL signal during the entire
simulation session. This might result in some unnecessary runtime performance cost if e only needs to be
sensitive in certain scenarios. In such cases, use an external simple port in TEs with @sim instead. The
syntax is:

[change | rise | fall] (simple-port$)@sim

Typically, this syntax is used in wait actions.

Example
transaction_complete : in simple_port of bit is instance;
 keep bind(transaction_complete, external);

write_transaction(data: list of byte) @clk$ is {
 //...
 data_port$ = data;
 wait rise(transaction_complete$)@sim
}

Trying to apply the @sim operator to a bound internal port shall cause an error when the corresponding TE
is evaluated, which occurs at runtime.

9.3 Using buffer ports

Buffer ports can be used to insert data elements into a queue or extract elements from a queue. Data is
inserted and extracted from the queue in first-in-first-out (FIFO) order. When the queue is full, write-access
to the port is blocked. When the queue is empty, read-access to the port is blocked. The queue size is fixed
during generation by the buffer_size() attribute and cannot be changed at runtime. The queue size can be set
to 0 for rendezvous ports. See 9.7.2.2 and 9.3.1 for more information.

A buffer port’s direction can be either input or output. Use the buffer port’s predefined get() and put()
methods to read or write port values. These methods are time-consuming methods (TCMs). The $ port
access operator cannot be used with buffer ports.

Buffer ports shall have a bind() attribute that defines how they are connected. In addition, the delayed()
attribute can be used to control whether new values are propagated immediately or at the next tick. The
pass_by_pointer() attribute controls how data elements of composite type are passed. See also 9.7.

9.3.1 Rendezvous-zero size buffer queue

In rendezvous-style handshaking protocol, access to a port is blocked after each put() until a subsequent
get() is performed, and access is blocked after each get() until a subsequent put() is performed.

This style of communication is easily achieved by using buffer ports with a data queue size of 0. The
following example shows how this is done.

Example

unit consumer {
 in_p : in buffer_port of atm_cell is instance

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 119

}
unit producer {

out_p : out buffer_port of atm_cell is instance
};
extend sys {

consumer : consumer is instance;
producer : producer is instance;
keep bind(producer.out_p, consumer.in_p);
keep producer.out_p.buffer_size() == 0

}

9.4 Using event ports

Event ports can be used to transfer events between two e units or between an e unit and an external object.
An internal event port’s direction can be either input, output, or inout. Use the $ port access operator to read
or write port values (see 9.4.1).

Internal and external ports need to have a bind() attribute that defines how they are connected. An external
port needs to have an hdl_path() attribute to specify the name of the object to which it is connected. The
edge() attribute for an external input event port specifies the edge on which an event is generated. See also
9.7.

9.4.1 Accessing event ports

Use the $ access operator to access the event associated with an event port. An expression of type
event_port without the $ operator refers to the port itself and not to its event.

Example

This example shows how to connect event ports [using a bind() constraint] and use the $ operator to access
event ports in event contexts.

unit u1 {
 in_ep : in event_port is instance;
 tcm1()@in_ep$ is {
 // ...
 }
};

unit u2 {
 out_ep : out event_port is instance;
 counter : uint;
 event clk is @sys.any;

 on clk {
 counter = counter + 1;
 if counter %10 == 0 then {
 emit out_ep$
 }
 }
};

extend sys {
 u1 : u1 is instance;
 u2 : u2 is instance;
 keep bind(u1.in_ep, u2.out_ep)
}

IEEE
Std 1647-2015 IEEE STANDARD

120 Copyright © 2015 IEEE. All rights reserved.

9.5 Using method ports

Method ports can be used to either call or export methods and TCMs defined in other e units or in foreign
programming language modules. The advantages of method ports are:

— A transaction-level interface can be implemented between e and a high-level model described in a
foreign language.

— The decision about which method to call (e.g., an e method or a foreign function) can be postponed
from compile time to pre-run generation.

9.5.1 Method types

A method port shall be parameterized by a type of a special kind—a method type. The method type specifies
the prototype (signature) of the method and implies specific user-defined semantics. For example, the
following declares a method type for a method that accepts two integer arguments and returns an integer:

method_type adder_method_t(arg1:int, arg2:int): int

The following method type declaration has the same prototype as adder_method_t, but implies different
user-defined semantics:

method_type local_adder_method_t(arg1:int, arg2:int): int

A method type that is associated with a TCM shall be defined with the @sys.any sampling event, e.g.,

method_type send_packet_method_t(p:packet)@sys.any

Method types shall be defined with a unique name; this name shall be explicitly specified in the instance
declaration of the method port (see 9.6.4). For example, the following associates the add method port with
the adder_method_t method type:

add : out method_port of adder_method_t is instance

The method type has semantic implications for a port beyond the simple matching of parameters and result
types; it is also used to clarify runtime messages related to a particular method port. Thus, two method ports
cannot be bound just because they have the same signature; they also need to be associated with the same
method type.

9.5.2 Input method ports

An input method port declares an e method as callable from another e unit or from a foreign agent. The
method port instance shall:

a) Reside in the same unit as its associated method;

b) Have an instance name that matches the name of the associated method;

c) Have a method type that matches the prototype of the associated method.

The method type and its prototype match if:

1) They have the same number of parameters.

2) Any parameters are of the same types (and in the right order).

3) Any return values are of the same type.

d) Include the @sys.any sampling event (in the method type declaration) if the method type is
associated with a TCM.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 121

9.5.3 Output method ports

Output method ports can be used to call regular or time-consuming methods defined in other e units or
written in foreign programming languages.

9.5.4 Invoking method ports

The $() access operator can be used to call the method port (see also 9.6.13). The rules for parameter type
checking, TCM call requirements, etc., are the same as those for invoking an e method directly. In
particular, TCM method ports can only be called from inside a TCM scope.

The parameter passing semantics are the same as in direct calls to e methods. Scalar parameters are passed
by value, while composite parameters (struct or list types) are passed by reference.

Other considerations:

— Do not rely on the ability to modify separate fields or list elements of the incoming parameter in the
actual method. Instead, use the return value (or explicit passing of parameters by reference).

— All ports are elaborated after the end of post_generate(). Thus, method ports cannot be invoked
before generation or from constraints.

— Calling an empty-bound method port is equivalent to calling an empty e method.

9.5.5 Binding method ports

If a set of input and output ports are bound, all the ports are connected (no matter how the binding pairs were
specified) and a change on any output port affects all input ports. While this makes sense for simple ports,
which are used to emulate wires, it does not for method ports. For example, if there are two output method
ports, Ao and Bo, three input method ports, Ai, Bi, and ABi, and the binding looks like:

bind(Ao, Ai);
bind(Bo, Bi);
bind(Ao, ABi);
bind(Bo, ABi)

the intention probably is that a call to Ao causes a call of Ai and ABi, while a call to Bo causes a call of Bi
and ABi. This intention is implemented; however, a call to Ao also causes a call of Bi, and a call to Bo also
causes a call of Ai.

To bind multiple output ports to a common input, define the common input as a list of in method ports (see
9.6.4). Then, each of the input method ports is associated with the method via the list name.

Example

The list of in method ports is

type src_t : [A, B];
method_type p_t(s:src_t);

extend sys {
 Ao : out method_port of p_t is instance;
 Bo : out method_port of p_t is instance;

 ABi : list of in method_port of p_t is instance;
 keep ABi.size() == 2;

 ABi(src: src_t) is {
 out("AB(", src, ")")
 }

IEEE
Std 1647-2015 IEEE STANDARD

122 Copyright © 2015 IEEE. All rights reserved.

and the binding is:

// each output also invokes the common input

 keep bind(Ao, ABi[0]);

 keep bind(Bo, ABi[1]);

 run() is also {

 Ao$(A);

 Bo$(B)

 }

}

9.6 Defining and referencing ports

This subclause details how to define or reference a port.

9.6.1 simple_port

Simple ports can be used to transfer one data element at a time to or from an external simulated object or
internal object (another e unit). External ports can transfer scalar types and lists of scalar types, including
MVL data elements. Structs or lists of structs cannot be passed through external simple ports.

The port can be configured to access a different signal simply by changing the binding; all the code that
reads or writes to the port remains the same. Similarly, port semantics remain the same, regardless of what
simulator is used. Binding is fixed during generation.

A simple port’s direction can be either in, out, or inout. Omitting the direction is the same as writing inout.
Port types with different directions are not equivalent. The following types are fully equivalent:

data : simple_port of byte is instance;

data : inout simple_port of byte is instance

Syntax example:

data : in simple_port of byte is instance

Purpose Access other port instances or external simulated objects directly

Category Unit member

Syntax port-instance-name : [list of] [direction] simple_port of element-type is instance

Parameters

port-instance-
name

A unique identifier used to reference the port or access its value.

direction One of in, out, or inout. The default is inout, which means values can be read
from and written to this port. For an in port, values can only be read from the
port; for an out port, values can only be written to the port.

element-type Any predefined or user-defined e type, except a port type or unit type.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 123

9.6.2 buffer_port

Buffer ports can be used to insert data elements into a queue or extract elements from a queue. Data is
inserted and extracted from the queue in FIFO order. When the queue is full, write-access to the port is
blocked. When the queue is empty, read-access to the port is blocked.

The queue size is fixed during generation by the buffer_size() attribute and cannot be changed at runtime.
The queue size can be set to 0 for rendezvous ports.

Use the buffer port’s predefined get() and put() methods to read or write port values. These methods are
TCMs. The $ port access operator cannot be used with buffer ports.

A typical usage of a buffer port is in a producer and consumer protocol, where one object puts data on an
output port at possibly irregular intervals, and another object with the corresponding input port reads the
data at its own rate.

Syntax example:

rq : in buffer_port of bool is instance

9.6.3 event_port

Event ports can be used to transfer events between two e units or between an e unit and an external object.
Use the $ port access operator to read or write port values (see 9.4.1).

Purpose Implement an abstraction of queues with blocking get and put

Category Unit member

Syntax port-instance-name : [list of] direction buffer_port of element-type is instance

Parameters

port-instance-
name

A unique identifier used to reference the port or access its value.

direction One of in or out. There is no default. For an in port, values can only be read
from the port; for an out port, values can only be written to the port. See 9.8
for information on how to read and write buffer ports.

element-type Any predefined or user-defined e type, except a port type or a unit type.

Purpose Transfer events between units or between simulators and units

Category Unit member

Syntax event-port-field-name : [list of] [direction] event_port is instance

Parameters

event-port-field-
name

A unique identifier used to reference the port or access its value.

direction One of in, out, or inout. The default is inout, which means events can be
emitted and sampled on the port. For a port with direction in, events can only
be sampled. For a port with direction out, events can only be emitted.

IEEE
Std 1647-2015 IEEE STANDARD

124 Copyright © 2015 IEEE. All rights reserved.

An event port’s direction can be either in, out, or inout. Omitting the direction is the same as writing inout.
Port types with different directions are not equivalent. The following types are fully equivalent:

clk : event_port is instance;
clk : inout event_port is instance

In addition, the following are not allowed:

— Using the on struct member for event ports

— Coverage on event ports

— Specifying a temporal formula (e.g., out event_port is ...) to define an out event port

It is possible, however, to define an additional event and connect it to the event port, e.g.,

ep : in event_port is instance;
 keep bind(ep, external);
event e is @ep$

Syntax example:

clk : in event_port is instance

9.6.4 method_port

Method ports implement an abstraction of the calling methods (time-consuming or not) in other units or
external agents, while delaying the binding from compile time to pre-run generation time.

Syntax example:

convert_string : out method_port of str2uint_method_t is instance

Purpose Enable invocation of abstract functions

Category Unit member

Syntax port-instance-name : [list of] direction method_port of method-type is instance

Parameters

port-instance-
name

A unique identifier used to reference the method port or invoke the actual
method. For input method ports, this name shall be the same as that of the
associated method.

direction One of in or out. There is no default. For an in port, only the method to
activate can be specified; for an out port, the method can be invoked.

method-type A method type that specifies the port semantics (see also 9.6.5).

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 125

9.6.5 method_type method-type-name

A method port (see 9.6.4) shall be parameterized by a method type, which specifies the prototype (signature)
of the method. The method type name can also be included in any runtime messages related to a specific
method port.

Syntax example:

method_type str2uint_method_t(s:string): uint

9.6.6 Port reference

If a port reference is a field, then it shall be marked as non-generated or it needs to be constrained to an
existing port instance. Otherwise, a generation error shall result.

Syntax example:

!in_int_buffer_port_ref : in buffer_port of int

Purpose Associate method prototype with type name and enable notification

Category Statement

Syntax method_type method-type-name ([param-list]) [:return-type] [@sys.any]

Parameters

method-type-
name

A unique identifier used to reference the method type.

param-list This needs to match the parameter list of the e method or external function.

return-type This needs to match the return type of the e method or external function.

@sys.any If the method type declaration includes the @sys.any sampling event, this
method type can only be used for method ports associated with a TCM.

Purpose Reference a port instance

Category Unit field, variable, or method parameter

Syntax [! | var] port-reference-name: [direction] port-kind [of element-type]

Parameters

port-reference-
name

A unique identifier.

direction One of in or out; for simple ports and event ports, this can also be inout.

port-kind One of simple_port, buffer_port, or event_port.

element-type Required if port-kind is simple_port or buffer_port.

IEEE
Std 1647-2015 IEEE STANDARD

126 Copyright © 2015 IEEE. All rights reserved.

9.6.7 Port: $

The $ access operator can be used to access or update the value held in a simple port or event port. When
used on the RHS, p$ refers to the port’s value. On the LHS of an assignment, p$ refers to the value’s
location, so an assignment to p$ changes the value held in the port.

Without the $ operator, an expression of any type port refers to the port itself, not to its value. In particular,
an expression without the $ operator can be used for operations involving port references.

Syntax example:

p$ = 32'bz // Assigns an mvl literal to the port 'p'

9.6.8 Port bit slice access

The bit slice operator can be used to extract or update the specified bits of the value held in a simple port.

When the expression appears on the LHS of an assignment, the specified bits in the location that the port
refers to are set to the value of the RHS expression. The RHS value is chopped or zero/sign extended, if
necessary.

When the expression appears on the RHS, the specified bits in the location that the port refers to are used.

See also 4.12.2, 9.6.7.

Syntax example:

Purpose Read or write a value to a simple port or event port

Category Operator

Syntax exp$

Parameters exp An expression that returns a simple port or event port instance.

Purpose Read or write a value to a bit or a bit slice of a simple port

Category Operator

Syntax simple-port-exp$[[high-exp]:[low-exp][:slice]]

Parameters

simple-port-exp An expression that returns a simple port instance. The element type must be
scalar, list of bit or list of byte.

high-exp A non-negative numeric expression. The high expression must be greater
than or equal to low-exp. The default value depends on the size of the exp. For
example, if exp is a 32-bit integer and the slice is bit, the default value is 32.

low-exp A non-negative numeric expression, less than or equal to the high expression.
The default value is 0.

slice Can be bit, byte, int, or uint. The default is bit.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 127

print p$[15:0]

9.6.9 Force simple port

This forces the value of exp to the port specified by simple-port-exp. The value held inside the port is
updated immediately. Until the port is released by a release action (see 9.6.11), any other non-force
assignment to the port will be ignored. Any subsequent force assignment overrides the last one.

Syntax example:

force p$ = 0xabc

9.6.10 Force simple port bit slice

This writes the value of exp to the specified bits slice of the port specified by simple-port-exp. In addition, it
forces the entire port, (similarly to Force simple port – see 9.6.9). That is, until the next release action, any
subsequent non-force assignment is ignored. Any subsequent force assignment overrides the last one.

See also 9.6.9, 9.6.8.

Syntax example:

force p$[15:0] = 0xabc

Purpose Force a value to a simple port

Category Action

Syntax force simple-port-exp$ = exp

Parameters
simple-port-exp An expression that returns a simple port instance.

exp An expression of the same type as the port's type.

Purpose Force a value to a bit or a bit slice of a simple port

Category Action

Syntax force simple-port-exp$[[high-exp]:[low-exp][:slice]] = exp

Parameters simple-port-exp An expression that returns a simple port instance.

high-exp A non-negative numeric expression. The high expression must be greater
than or equal to low-exp. The default value depends on the size of the exp. For
example, if exp is a 32-bit integer and the slice is bit, the default value is 32.

low-exp A non-negative numeric expression, less than or equal to the high expression.
The default value is 0.

slice Can be bit, byte, int, or uint. The default is bit.

exp An expression of the same type as the port's type.

IEEE
Std 1647-2015 IEEE STANDARD

128 Copyright © 2015 IEEE. All rights reserved.

9.6.11 Release simple port

This releases the port specified by simple-port-exp that previously has been forced (see 9.6.9).

Syntax example:

release p$

9.6.12 Method port reference

Method port instances may be referenced by a field, variable, or method parameter of the same port type.

If a port reference is a field, it shall be marked as non-generated, or it needs to be constrained to an existing
port instance. Otherwise, a generation error shall result. Also, port binding is allowed only for port instance
fields, not for port reference fields (see also 9.5.5).

Syntax example:

!in_method_port_ref : in method_port of burst_method_t

Purpose Remove a force action from a simple port

Category Action

Syntax release simple-port-exp$

Parameters simple-port-exp An expression that returns a simple port instance.

Purpose Reference a method port instance

Category Unit field, variable, or method parameter

Syntax [! | var] port-reference-name: direction method_port of method-type

Parameters

port-reference-
name

A unique identifier used to reference the method port.

direction One of in or out.

method-type A method type that specifies the port semantics (see also 9.6.5).

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 129

9.6.13 Method port: $

The $ access operator can be used to call an output method port. An attempt to call a method via the port
without using the $ operator shall result in a syntax error. Without the $ operator, an expression of any type
port refers to the port itself, not to its value. In particular, an expression without the $ operator can be used
for operations involving port references.

Syntax example:

u = convert_string$("32") //calls the convert_string out method port

9.7 Port attributes

Ports have attributes that affect their behavior and how they can be used. Use the attribute() syntax to assign
port attributes in pre-generation constraints, as follows:

keep [soft] port_instance.attribute() == value

Use soft constraints for attributes that can be overridden.

Most port attributes are ignored, unless the port is an external port, but it does no harm to specify attributes
for ports that are not external ports. Attributes intended for external ports do not have to be supported for a
particular simulator.

9.7.1 Generic port attributes

Port attributes that are potentially valid for all simulators are described in Table 21. However, a particular
simulator adapter might not implement some of these attributes. Depending on the simulator adapter, port
attributes might cause additional code to be written to the stubs file (see Clause 23). In that case, if an
attribute is added or changed, the stubs file needs to be rewritten.

Purpose Call an out method port

Category Operator

Syntax port-exp$(out-method-port-param-list)

Parameters

port-exp An expression that returns an output method port instance.

out-method-port-
param-list

A list of actual parameters to the output method port. The number and type of
the parameters, if any, shall match the method type (see also 9.6.5).

IEEE
Std 1647-2015 IEEE STANDARD

130 Copyright © 2015 IEEE. All rights reserved.

Table 21—Generic port attributes

Attribute Description Applies to

bind() Connects two internal ports or connect a port to an
external object.
Type: bool
Default: none
See also 9.7.2.1.

All kinds of internal and
external ports

buffer_size() Specifies the maximum number of elements for a buffer
port queue.
Type: uint
Default: none
See also 9.7.2.2.

Buffer ports

declared_range() Specifies the bit width of an external multi-bit object.
Type: string
Default: none
See also 9.7.2.3.

External output simple ports
that are bound to some kinds
of multi-bit objects

delayed() Specifies whether propagation of a new port value
assignment occurs immediately or is delayed to the tick
boundary.
Type: bool
Default: TRUE
See also 9.7.2.4.

Internal and external simple
ports

driver() When TRUE, an additional resolved HDL driver is
created for the corresponding simulator item, and that
driver is written to instead of the port.
Type: bool
Default: FALSE
See also 9.7.2.5.

External output simple ports

driver_delay() Specifies the delay time for all assignments from e to the
port.
Type: time
Default: 0
See also 9.7.2.6.

External output simple ports

edge() Specifies the edge on which an event is generated.
Type: event_port_edge
Default: change
See also 9.7.2.8.

External input event ports

hdl_convertor() Specifies the rules for converting method port arguments
between e and a foreign language, such as SystemVerilog
or VHDL. The syntax of the string value associated with
hdl_convertor() is defined by the language adapter itself.
Type: string
Default: none

Method ports

hdl_path() Specifies a relative path of the corresponding simulated
item as a string.
Type: string
Default: none
See also 9.7.2.9.

External ports

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 131

9.7.2 Port attributes for HDL simulators

Port attributes that are potentially valid for all HDL simulators are described in Table 22. However, a
particular simulator adapter might not implement some of these attributes. The port attributes in Table 22
enable extended functionality. They cause additional information to be written into the HDL stubs file to
enhance user control over the driving of HDL signals. For this reason, any attribute shown in Table 22 is
added or changed, the stubs file needs to be rewritten.

Example

The following attributes define a port that is eight bits wide; read operations occur with one-unit delay; drive
operations have a five-unit delay:

data : inout simple_port of uint(bits:8) is instance;

 keep bind(data, external);

 keep data.hdl_path() == "sig";

 keep data.declared_range() == "[7:0]";

 keep data.verilog_strobe() == "#1";

 keep data.verilog_drive() == "#5"

pack_options() Specifies how the port’s data element is implicitly packed
and unpacked.
Type: pack_options
Default: NULL
See also 9.7.2.10.

External simple ports

pass_by_pointer When TRUE, composite data (structs or lists) are passed
by reference.
Type: bool
Default: FALSE (pass by value)
See also 9.7.2.11.

Internal simple or buffer
ports whose data element is a
composite type (lists and
structs)

Table 22—Port attributes for Verilog or VHDL agents

Attribute Description Applies to

driver_initial_value() Applies an initial mvl value to the port.
Type: list of mvl
Default: {} (empty list)
See also 9.7.2.7.

External output simple
ports

verilog_drive() Specifies the event on which the data is driven to the
Verilog object.
Type: string
Default: none
See also 9.7.2.12.

External output simple
ports

verilog_drive_hold() Specifies an event after which the port data is set to Z.
Type: string
Default: none
See also 9.7.2.13.

External output simple
ports

Table 21—Generic port attributes (continued)

Attribute Description Applies to

IEEE
Std 1647-2015 IEEE STANDARD

132 Copyright © 2015 IEEE. All rights reserved.

9.7.2.1 bind()

Ports are connected to other e ports or to external simulated objects, such as Verilog registers, VHDL
signals, or SystemC methods, using a pre-run generation constraint on the bind() attribute. Ports can also be
left explicitly disconnected by using empty or undefined.

verilog_forcible() Allows forcing of Verilog wires.
Type: bool
Default: FALSE
See also 9.7.2.14.

External output simple
ports

verilog_strobe() Specifies the sampling event for the Verilog signal that is
bound to the port.
Type: string
Default: none
See also 9.7.2.15.

External output simple
ports

verilog_wire() Binds an external out port to a Verilog wire.
Type: bool
Default: FALSE
See also 9.7.2.16.

External output simple
ports

vhdl_delay_mode() Specifies whether pulses whose period is shorter than the
delay are propagated through the driver.
Type: vhdl_delay_mode
Default: TRANSPORT (all pulses, regardless of length,
are propagated)
See also 9.7.2.17.

External output simple
ports

vhdl_driver() This is an alias for the driver() attribute.
Type: bool
Default: FALSE
See also 9.7.2.5.

External output simple
ports

Purpose Connect two internal ports or connect a port to an external object

Category Generic port attribute

Syntax
bind(exp1, exp2)
bind(exp1, (external | empty | undefined))

Parameters

exp1, exp2 One or more expressions of port type. If two expressions are given and the
port types are compatible, the two port instances are connected.

external Defines a port as connected to a simulated object, such as a Verilog register,
VHDL signal, or SystemC object.

empty Defines a disconnected port. Runtime accessing of a port with an empty
binding is allowed.

undefined Defines a disconnected port. Runtime accessing of a port with an undefined
binding shall cause an error.

Table 22—Port attributes for Verilog or VHDL agents (continued)

Attribute Description Applies to

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 133

9.7.2.1.1 Rules

a) All ports shall be bound in one of the following ways:

1) A set of bound ports must include at least two ports, one of which is an input or inout port, and
the other an output or inout port.

2) Bound to an external simulated item.

3) Explicitly disconnected (empty or undefined).

b) Only ports of the same kind can be bound together. A simple port cannot be bound to a buffer port or
an event port, and a buffer port cannot be bound to an event port.

c) Dangling ports [ports without bind() attributes] shall cause an error during elaboration (see
9.7.2.1.2).

d) A port can be explicitly disconnected and then overridden with a binding to an internal or external
object.

e) All ports connected together shall have the exact same element type.

9.7.2.1.2 Checking of ports

Binding and checking of ports takes place automatically at the end of the predefined generate_test() test
method. This process, called elaboration of ports, includes checking for dangling ports and binding
consistency (directions, buffer sizes, and so on).

A port that has no bind() constraint is a dangling port. Since all ports need to be bound, a dangling port shall
cause an elaboration-time error.

9.7.2.1.3 Disconnected ports

A port that is bound using the empty or undefined keyword is called a disconnected port. The empty or
undefined keyword can only appear as the second argument of the bind() constraint, in place of a second
port instance name.

Empty binding can be used to define a port that is connected to nothing. Runtime accessing of an empty-
bound port is allowed. Its effect depends on the operation and type of the port.

— Reading from an empty-bound simple port returns the last written value or the default of the port
element type, if no value has been written so far.

— Writing to an empty-bound output or inout simple port stores the new value internally.

— Reading from an empty-bound buffer port causes the thread to halt.

— Writing to an empty-bound buffer port causes the thread to halt if the buffer is full.

— Waiting for an empty-bound event port causes the thread to halt. If the port direction is inout, then
emitting the port resumes the thread.

— An empty-bound event port can be emitted.

A subsequent constraint can be used to overwrite the empty binding constraint.

Like empty binding, undefined binding can define a port that is connected to nothing. The difference is
runtime accessing of a port with an undefined binding shall cause an error.

A subsequent constraint can be used to overwrite the undefined binding constraint.

Syntax example:

buf_in1 : in buffer_port of int(bits:16) is instance;

IEEE
Std 1647-2015 IEEE STANDARD

134 Copyright © 2015 IEEE. All rights reserved.

 keep bind(buf_in1, empty)

9.7.2.2 buffer_size()

This attribute determines the number of put() actions that can be performed before a get(). A get() action is
required to remove data and make more room in the queue. Specifying a buffer size of 0 means rendezvous-
style synchronization.

No default buffer size is provided. If a buffer size is not specified in a constraint, an error shall occur. It is
only necessary to specify a buffer size for one of the two ports in a pair of connected ports. That size applies
to both ports. If the two ports have different buffer sizes specified, then both of them get the larger of the two
sizes.

Syntax example:

keep u.p.buffer_size() == 20

9.7.2.3 declared_range()

This string attribute is meaningful for external simple ports that are bound to multi-bit objects. Because it is
legal to bind a port to an HDL object with a different size, the range information is not extracted from the
port declaration. In order to implement access to multi-bit signals correctly in the stubs file (see
Clause 23), this attribute is required when using the verilog_wire(), verilog_drive(), verilog_strobe(), or
driver() attributes.

The interpretation of the string is simulator-specific.

Syntax example:

keep u.p.declared_range() == "[31:0]"

Purpose Specify the size of a buffer port queue

Category Buffer port attribute

Syntax exp.buffer_size() == num

Parameters
exp An expression of type [in | out] buffer_port of type.

num An integer specifying the maximum number of elements for the queue.

Purpose Specify the bit width of a multi-bit external object

Category External port attribute

Syntax exp.declared_range() == string

Parameters

exp An expression of a simple port type.

string A string that is a valid range expression, e.g.,
"[msb:lsb]"

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 135

9.7.2.4 delayed()

This Boolean attribute specifies whether propagation of a new port value assignment occurs immediately or
is delayed. When the delayed() attribute is TRUE (the default), propagation of external ports is delayed until
the next tick. Propagation of internal ports is delayed until the next tick when the sys.time value changes.
This behavior is consistent with the definition of delayed assignments in e and matches temporal e semantics
with regard to the multiple ticks occurring at the same simulator time.

To make assigned values on ports visible immediately, constrain this attribute to be FALSE.

Syntax example:

keep not u.p.delayed()

9.7.2.5 driver()

This Boolean attribute is meaningful only for external out ports. When this attribute is set to TRUE, an
additional resolved HDL driver is created for the corresponding simulator item and that driver is written to
instead of the port.

Every port instance associated with the same simulator can create a separate driver, thus allowing HDL
resolution to be applied for multiple e resources.

Syntax example:

keep u.p.driver()

Purpose Specify immediate or delayed propagation of new values

Category Simple port attribute

Syntax
exp.delayed()
not exp.delayed()
exp.delayed() == bool

Parameters
exp An expression of a simple port type.

bool Either TRUE or FALSE. The default is TRUE.

Purpose Create a resolved driver for an external object

Category External out port attribute

Syntax
exp.driver()
not exp.driver()
exp.driver() == bool

Parameters
exp An expression of a simple port type.

bool Either TRUE or FALSE. The default is FALSE.

IEEE
Std 1647-2015 IEEE STANDARD

136 Copyright © 2015 IEEE. All rights reserved.

9.7.2.6 driver_delay()

This attribute is meaningful only for external out ports. It specifies the delay time for all assignments from
e to the port. This attribute is silently ignored, unless the driver() attribute or the vhdl_driver() attribute is
set to TRUE.

Syntax example:

keep u.p.driver_delay() == 2

9.7.2.7 driver_initial_value()

This mvl-list type attribute applies an initial mvl value to an external Verilog or VHDL object. This attribute
is silently ignored, unless the driver() attribute or the vhdl_driver() attribute is set to TRUE.

The default value of this attribute is MVL_X.

Syntax example:

keep u.p.driver_initial_value() == {MVL_X; MVL_X; MVL_1; MVL_1}

Purpose Specify the delay for assignments to a port

Category External out simple port attribute

Syntax exp.driver_delay() == time

Parameters
exp An expression of a simple port type.

time A value of type time (64 bits). The default is 0.

Purpose Specify an initial value for an HDL object

Category HDL port attribute

Syntax exp.driver_initial_value() == mvl-list

Parameters
exp An expression that returns a port instance.

mvl-list A lists of mvl values. The default is {} (an empty list).

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 137

9.7.2.8 edge()

This attribute of type event_port_edge (for an external event port) specifies the edge on which an event is
generated. The possible values are as follows:

a) change, rise, fall—equivalent to the behavior of @sim TEs. This means that transitions between x
and 0, z, and 1 are not detected; x to 1 is considered a rise; z to 0 a fall, and so on.

b) any_change—any change within the supported MVL values is detected, including transitions from
x to 0 and 1 to z.

c) MVL_0_to_1—transitions from 0 to 1 only.

d) MVL_1_to_0—transitions from 1 to 0 only.

e) MVL_X_to_0—transitions from X to 0 only.

f) MVL_0_to_X—transitions from 0 to X only.

g) MVL_Z_to_1—transitions from Z to 1 only.

h) MVL_1_to_Z—transitions from 1 to Z only.

The default is change.

Syntax example:

keep e.edge() == any_change

9.7.2.9 hdl_path()

This attribute specifies a path for accessing an external, simulated object. The path is a concatenation of the
partial paths for the port itself and its enclosing units. The partial paths can use any supported separator. To
allow portability between simulators, use the e canonical path notation.

Syntax example:

clk : in event_port is instance;
 keep clk.hdl_path() == "clk"

Purpose Specify the edge on which an event is generated

Category Event port attribute

Syntax exp.edge() == edge-option

Parameters
exp An expression of a buffer_port type.

edge-option A value of type event_port_edge.

Purpose Map port instance to an external object

Category Generic port attribute

Syntax exp.hdl_path() == string

Parameters

exp An expression of a port type.

string A string specifying the path to the external object. The default is an empty
string.

IEEE
Std 1647-2015 IEEE STANDARD

138 Copyright © 2015 IEEE. All rights reserved.

9.7.2.10 pack_options()

This attribute can be used to specify the way that data element of external ports is implicitly packed and
unpacked. This attribute exists both for units and ports, and can be propagated downwards from an enclosing
unit instance to its ports and other unit instances.

Syntax example:

keep u.p.pack_options() == packing.low_big_endian

9.7.2.11 pass_by_pointer()

This Boolean attribute specifies how composite data (structs or lists) is transferred by internal simple ports
or buffer ports. By default, this attribute is FALSE and complex objects are deep-copied upon an internal
port access operation. To pass data by reference and speed up the test, set this attribute to TRUE (and verify
no test-correctness violations exist).

Syntax example:

keep u.p.pass_by_pointer();
keep not u.p.pass_by_pointer()

Purpose Specify how an external port’s data element is implicitly packed and unpacked

Category External simple port attribute

Syntax exp.pack_options() == pack-option

Parameters
exp An expression of a simple or buffer port type.

pack-option A predefined or user-defined pack option. The default is NULL.

Purpose Specify how composite data is transferred by internal ports

Category Internal port attribute

Syntax
exp.pass_by_pointer()
not exp.pass_by_pointer()
exp.pass_by_pointer() == bool

Parameters exp An expression of a simple or buffer port type.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 139

9.7.2.12 verilog_drive()

This string attribute tells an external output port to drive its data to a Verilog signal when the specified
timing occurs. This can be a Verilog TE, such as @(posedge top.clk), or a simple unit delay, e.g., #1.

Syntax example:

keep u.p.verilog_drive() == "@posedge clk2"

9.7.2.13 verilog_drive_hold()

On the first occurrence of the specified event after the port data is driven, the value of the corresponding
Verilog signal is set to Z. The event is a string specifying any legal Verilog timing control. The
verilog_drive() attribute (see 9.7.2.12) needs to be specified before using this attribute.

Syntax example:

keep u.p.verilog_drive_hold() == "@negedge clk2"

Purpose Specify timing control for data driven to a Verilog object

Category Verilog port attribute

Syntax exp.verilog_drive() == timing-control

Parameters
exp An expression of a simple port type.

timing-control A string specifying any legal Verilog timing control (event or delay).

Purpose Specify when to set the port to Z

Category Verilog port attribute

Syntax exp.verilog_drive_hold() == string

Parameters
exp An expression of a simple port type.

string A string specifying any legal Verilog timing control.

IEEE
Std 1647-2015 IEEE STANDARD

140 Copyright © 2015 IEEE. All rights reserved.

9.7.2.14 verilog_forcible()

By default, Verilog wires are not forcible. This Boolean attribute allows forcing of Verilog wires. The
verilog_wire() attribute (see 9.7.2.16) needs to be specified before using this attribute.

Syntax example:

keep u.p.verilog_forcible()

9.7.2.15 verilog_strobe()

This string attribute specifies the sampling event for the Verilog signal that is bound to an external input
port. This attribute is equivalent to the verilog variable ... using strobe declaration.

Syntax example:

keep u.p.verilog_strobe() == "@posedge clk1"

Purpose Specify a Verilog object can be forced

Category Verilog port attribute

Syntax
exp.verilog_forcible()
not exp.verilog_forcible()
exp.verilog_forcible() == bool

Parameters
exp An expression of a simple port type.

bool Either TRUE or FALSE. The default is FALSE.

Purpose Specify the sampling event for a Verilog object

Category Verilog port attribute

Syntax exp.verilog_strobe() == string

Parameters
exp An expression of a simple port type.

string A string specifying any legal Verilog timing control.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 141

9.7.2.16 verilog_wire()

This Boolean attribute allows an external out port to be bound to a Verilog wire. The main difference
between this attribute and the driver() attribute is the verilog_wire() attribute merges all of the ports
containing this attribute into a single Verilog driver, while the driver() attribute creates a separate driver for
each port.

Syntax example:

keep u.p.verilog_wire()

9.7.2.17 vhdl_delay_mode()

This attribute specifies whether pulses whose period is shorter than the delay specified by the
driver_delay() attribute are propagated through the driver. INERTIAL specifies such pulses are not
propagated, TRANSPORT that all pulses, regardless of length, are propagated.

This attribute also influences what happens if another driver (either VHDL or another unit) schedules a
signal change, and before that change occurs, this driver schedules a different change. With INERTIAL, the
first change never occurs.

This attribute is silently ignored, unless the driver_delay() attribute is also specified.

Syntax example:

keep u.p.vhdl_delay_mode() == INERTIAL

9.8 Buffer port methods

The following methods are used to read from or write to buffer ports, and to check whether a buffer port
queue is empty or full.

Purpose Create a single driver for a port (or multiple ports)

Category Verilog port attribute

Syntax
exp.verilog_wire()
not exp.verilog_wire()
exp.verilog_wire() == bool

Parameters
exp An expression of a simple port type.

bool Either TRUE or FALSE. The default is FALSE.

Purpose Specify whether short pulses are propagated through the driver

Category HDL port attribute

Syntax exp.vhdl_delay_mode() == mode-option

Parameters
exp An expression of a simple port type.

mode-option Either TRANSPORT (the default) or INERTIAL.

IEEE
Std 1647-2015 IEEE STANDARD

142 Copyright © 2015 IEEE. All rights reserved.

9.8.1 get()

Reads a data item from the buffer port queue and removes the item from the queue. Since buffer ports use a
FIFO queue, get() returns the first item that was written to the port.

The thread blocks upon get() when there are no more items in the queue. If the queue is empty, or if it has a
buffer size of 0 and no put() has been done on the port since the last get(), then the get() is blocked until a
put() is done on the port.

The number of consecutive get() actions that is possible is limited to the number of items inserted by put().

Syntax example:

rec_cell = in_port.get()

9.8.2 put()

Writes a data item to the output buffer port queue. The sampling event of this TCM is sys.any. The new data
item is placed in a FIFO queue in the output buffer port.

The thread blocks upon put() when there is no more room in the queue, i.e., when the number of consequent
put() operations exceeds the buffer_size() of the port instance. If the queue is full, or if it has a buffer size of
0 and no get() has been done on the port since the last put(), then the put() is blocked until a get() is done on
the port.

The number of consecutive put() actions that is possible is limited to the buffer size.

Syntax example:

out_port.put(trans_cell)

Purpose Read and remove data from an input buffer port queue

Category Predefined TCM for buffer ports

Syntax in-port-instance-name.get(): port element type

Parameters in-port-instance-
name

An expression that returns an input buffer port instance.

Purpose Write data to an output buffer port queue

Category Predefined TCM for buffer ports

Syntax out-port-instance-name.put()(data: port element type)

Parameters

out-port-
instance-name

An expression that returns an output buffer port instance.

data A data item of the port element type.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 143

9.8.3 is_empty()

Returns TRUE if the input port queue is empty. Returns FALSE if the input port queue is not empty.

Syntax example:

var readable : bool;

readable = not cell_in.is_empty()

9.8.4 is_full()

Returns TRUE if the output port queue is full. Returns FALSE if the output port queue is not full.

Syntax example:

var overflow : bool;

overflow = cell_out.is_full()

9.9 MVL methods for simple ports

The predefined port methods in this subclause are for reading and writing MVL data between ports, to
facilitate communication with objects where MVL values occur. These methods operate on data of type mvl,
which is defined as follows:

type mvl : [MVL_U, MVL_X, MVL_0, MVL_1, MVL_Z, MVL_W, MVL_L, MVL_H, MVL_N]

The enumeration literals are the same as those of VHDL, except for MVL_N, which corresponds to the
VHDL-(“don’t care”) literal.

The MVL methods are applicable according to the port direction. Methods that write a value to a port are
accessible for output and inout simple ports, while methods that read a value from a port are accessible for
input and inout simple ports.

Purpose Check if an output buffer port queue is empty

Category Pseudo-method for buffer ports

Syntax
in-port-instance-name.is_empty()
not in-port-instance-name.is_empty()
in-port-instance-name.is_empty() == bool

Parameters
in-port-instance-
name

An expression that returns an input buffer port instance.

Purpose Check if an output buffer port queue is full

Category Pseudo-method for buffer ports

Syntax
out-port-instance-name.is_full()
not out-port-instance-name.is_full()
out-port-instance-name.is_full() == bool

Parameters out-port-
instance-name

An expression that returns an output buffer port instance.

IEEE
Std 1647-2015 IEEE STANDARD

144 Copyright © 2015 IEEE. All rights reserved.

Accessing a port with MVL methods and accessing it through the $ operator is allowed (mixed access).

9.9.1 MVL four-value logic

Some MVL methods operate on a subset of the enumeration in 9.9, MVL_X, MVL_Z, MVL_0, and MVL_1,
which corresponds to the four-value logic of Verilog. To convert from nine-value logic to four-value logic,
the mapping shown in Table 23 is used.

9.9.2 MVL string

Several functions allow specifying the MVL value or returning an MVL value expressed as string. A format
of MVL string is the number of bits followed by the ' sign, the radix, and then the MVL literals. When an
MVL list is converted into a string, the mapping shown in Table 24 is used.

The mapping is done in the following way:

When a string is converted to a list of mvl, the mapping is case-insensitive.

Table 23—MVL logic mapping

Nine value Four value

MVL_U, MVL_W, MVL_X, MVL_N MVL_X

MVL_L, MVL_0 MVL_0

MVL_H, MVL_1 MVL_1

MVL_Z MVL_Z

Table 24—MVL string conversion

MVL value String

MVL_U u

MVL_X x

MVL_0 0

MVL_1 1

MVL_Z z

MVL_W w

MVL_L L

MVL_H h

MVL_N n

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 145

9.9.3 put_mvl()

Places an mvl value on an output or inout simple port, e.g., to initialize an object to a “disconnected” value.
Placing an mvl value on a port whose element type is wider than one bit places the value in the LSB of the
element.

Syntax example:

p.put_mvl(MVL_Z)

9.9.4 get_mvl()

Reads an mvl value from an input or inout simple port, e.g., to check that there are no undefined x bits.
Getting an mvl value on a port whose element type is wider than one bit returns the value in the LSB of the
element.

Syntax example:

check that pbi.get_mvl() != MVL_X else dut_error("Bad value")

9.9.5 put_mvl_list()

Writes a list of mvl values to an output or inout simple port. Putting a list of mvl values on a port whose
element type is a single bit writes only the LSB of the list.

Purpose Put an mvl data on a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.put_mvl(value: mvl)

Parameters
exp An expression that returns a simple port instance.

value An mvl value.

Purpose Read mvl data from a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.get_mvl(): mvl

Parameters exp An expression that returns a simple port instance.

Purpose Put a list of mvl values on a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.put_mvl_list(values: list of mvl)

Parameters
exp An expression that returns a simple port instance.

values A list of mvl values.

IEEE
Std 1647-2015 IEEE STANDARD

146 Copyright © 2015 IEEE. All rights reserved.

Syntax example:

pbo.put_mvl_list({MVL_H; MVL_0; MVL_L; MVL_0})

9.9.6 fill_mvl_list()

Reads a list of mvl values from an input or inout simple port and puts the values into mvl-list. If a non-empty
list is passed, its initial content is cleared and disregarded.

Purpose Get a list of mvl values from a port of a non-mvl type, and fill an existing buffer list with those
values.

Category Predefined method for simple ports

Syntax exp.fill_mvl_list(mvl-list: list of mvl)

Parameters
exp An expression that returns a simple port instance.

mvl-list A list of mvl values.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 147

Syntax example:

var mvll: list of MVL;
pbil.fill_mvl_list(mvll)

9.9.7 get_mvl_list()

Reads a list of mvl values from an input or inout simple port.

Syntax example:

check that not pbil.get_mvl_list().has(it == MVL_U)
else dut_error("Bad list")

9.9.8 put_mvl_string()

Writes a string representing a list of mvl values to a simple output or inout port. See also 9.9.2.

Syntax example:

pbol.put_mvl_string("32'hxxxxllll")

Purpose Get a list of mvl values from a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.get_mvl_list(): list of mvl

Parameters exp An expression that returns a simple port instance.

Purpose Put an mvl value on a port of a non-mvl type when a value is represented as a string

Category Predefined method for simple ports

Syntax exp.put_mvl_string(value: string)

Parameters

exp An expression that returns a simple port instance.

value An mvl value in the form of a base and one or more characters, entered as a
string. The mvl values in the string shall be lowercase. Use 1 for MVL_1, 0
for MVL_0, z for MVL_Z, and so on.

IEEE
Std 1647-2015 IEEE STANDARD

148 Copyright © 2015 IEEE. All rights reserved.

9.9.9 get_mvl_string()

Returns a string in which each character represents an mvl value. See also 9.9.2.

Syntax example:

print pbis.get_mvl_string(BIN)

9.9.10 get_mvl4()

Reads a nine-value mvl value from an input simple port and converts it to four-value subset mvl. See also
9.9.1.

Syntax example:

check that pbi.get_mvl4() != MVL_Z else dut_error("Bad value")

9.9.11 fill_mvl4_list()

Reads a list of 9-value mvl values from an input simple port, converts them to 4-value logic, and puts the
values into mvl-list. If a non-empty list is passed, its initial content is cleared and disregarded. See also 9.9.1.

Syntax example:

var mvll: list of MVL;
pbi4l.fill_mvl4_list(mvll)

Purpose Get a value in form of a string from a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.get_mvl_string(radix: radix): string

Parameters
exp An expression that returns a simple port instance.

radix One of BIN, OCT, or HEX.

Purpose Get an mvl value from a port, converting nine-value logic to four-value logic

Category Predefined method for simple ports

Syntax exp.get_mvl4(): mvl

Parameters exp An expression that returns a simple port instance.

Purpose Get a list of mvl values from a port, converting it from 9-value logic to 4-value logic, and fill an
existing buffer list with those values.

Category Predefined method for simple ports

Syntax exp.fill_mvl4_list(mvl-list: list of mvl)

Parameters
exp An expression that returns a simple port instance.

mvl-list A list of mvl valuesto be filled.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 149

9.9.12 get_mvl4_list()

Reads a list of nine-value mvl values from an input simple port and converts them to four-value mvl. See
also 9.9.1.

Syntax example:

check that not pbi4l.get_mvl4_list().has(it == MVL_X)
else dut_error("Bad list")

9.9.13 get_mvl4_string()

Returns a string representing a four-value logic value. The mvl are first converted into four-value logic (see
9.9.1) and then converted to a string (see 9.9.2).

The returned string always includes all the bits, with no implicit extensions. For example, a port of type int
returns a string of 32 characters, since an int is a 32-bit data type.

Syntax example:

print pbi4s.get_mvl4_string(BIN)

Purpose Get a list of mvl value from a port, converting nine-value logic to four-value logic

Category Predefined method for simple ports

Syntax exp.get_mvl4(): list of mvl

Parameters exp An expression that returns a simple port instance.

Purpose Get a four-state value in form of a string from a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.get_mvl4_string(radix: radix): string

Parameters
exp An expression that returns a simple port instance.

radix One of BIN, OCT, or HEX.

IEEE
Std 1647-2015 IEEE STANDARD

150 Copyright © 2015 IEEE. All rights reserved.

9.9.14 put_mvl_to_bit_slice()

This writes an mvl list to a specified bit slice of the port.

If the size of value is smaller than the slice size (1 + high - low), the value is padded with MVL_Us. If the
size of the value is larger than the slice size, then the MSBs of value are truncated.

See also 9.6.8

Syntax example:

p.put_mvl_to_bit_slice(7,0,8'hxx)

9.9.15 force_mvl()

Forces an mvl value to the specified simple port. The value held inside the port is updated immediately.
Until the port is released by a release action (see 9.6.11), any other non-force assignment to the port is
ignored. Any subsequent force assignment (see 9.6.9, 9.6.10) overrides the last one.

Syntax example:

p.force_mvl(MVL_Z)

Purpose Write mvl data to a bit slice of a port

Category Predefined method for simple ports

Syntax exp.put_mvl_to_bit_slice(high: int, low: int, value: list of mvl)

Parameters exp An expression that returns a simple port instance. The element type has to be
scalar, list of bit, or list of byte.

high An integer that specifies the high index of the bit slice.

low An integer that specifies the low index of the bit slice.

value list of mvl.

Purpose Force mvl data on a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.force_mvl(value: mvl)

Parameters
exp An expression that returns a simple port instance.

value An mvl value.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 151

9.9.16 force_mvl_list()

Forces a list of mvl values to the specified simple port. The value held inside the port is updated
immediately. Until the port is released by a release action (see 9.6.11), any other non-force assignment to
the port is ignored. Any subsequent force assignment (see 9.6.9, 9.6.10) overrides the last one.

Syntax example:

pbo.force_mvl_list({MVL_H; MVL_0; MVL_L; MVL_0})

9.9.17 force_mvl_string()

Forces a string representing a list of mvl values to the specified simple port. For both e2e and external ports,
updates the value held inside the port. The value held inside the port is updated immediately. Until the port
is released by a release action (see 9.6.11), any other non-force assignment to the port is ignored. Any
subsequent force assignment (see 9.6.9, 9.6.10) overrides the last one.

Syntax example:

pbol.force_mvl_string("32'hxxxxllll")

Purpose Force a list of mvl data on a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.force_mvl_list(values: list of mvl)

Parameters
exp An expression that returns a simple port instance.

values A list of mvl values.

Purpose Force an mvl value on a port of a non-mvl type when the value is represented as a string

Category Predefined method for simple ports

Syntax exp.force_mvl_string(value: string)

Parameters

exp An expression that returns a simple port instance.

value An mvl value in the form of a base and one or more characters, entered as a
string. The mvl values in the string are lowercase. Use 1 for MVL_1, 0 for
MVL_0, z for MVL_Z, and so on

IEEE
Std 1647-2015 IEEE STANDARD

152 Copyright © 2015 IEEE. All rights reserved.

9.9.18 force_mvl_to_bit_slice()

This forces an mvl list to the specified bits slice of the port. The value held inside the port is updated
immediately. Until the port is released by a release action (see 9.6.11), any other non-force assignment to
the port is ignored. Any subsequent force assignment overrides the last one. See also 9.6.10.

Syntax example:

p.force_mvl_to_bit_slice(7,0,8'hxx)

9.9.19 has_mvl_value()

Returns TRUE if at least one bit of the port equals the given value.

Syntax example:

print pbi4s.has_mvl_value(MVL_Z);

Purpose Forces mvl data to a bit slice of a port

Category Predefined method for simple ports

Syntax exp.force_mvl_to_bit_slice(high: int, low: int, value: list of mvl)

Parameters exp An expression that returns a simple port instance. The element type must be
scalar, list of bit or list of byte.

high An integer that specifies the high index of the bit slice.

low An integer that specifies the low index of the bit slice.

value A list of mvl.

Purpose Determine if port has a given MVL value

Category Predefined method for simple ports

Syntax exp.has_mvl_value(value: mvl): bool

Parameters
exp An expression that returns a simple port instance.

value An mvl value.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 153

9.9.20 has_x()

Returns TRUE if at least one bit of the port is MVL_X.

Syntax example:

print pbi4s.has_x()

9.9.21 has_z()

Returns TRUE if at least one bit of the port is MVL_Z.

Syntax example:

print pbi4s.has_z()

9.9.22 has_unknown()

Returns TRUE if at least one bit of the port is one of the following: MVL_U, MVL_X, MVL_Z, MVL_W, or
MVL_N.

Syntax example:

print pbi4s.has_unknown()

Purpose Determine if a port has X

Category Predefined method for simple ports

Syntax exp.has_x(): bool

Parameters exp An expression of a simple port type.

Purpose Determine if a port has Z

Category Predefined method for simple ports

Syntax exp.has_z(): bool

Parameters exp An expression of a simple port type.

Purpose Determine if a port has an unknown value

Category Predefined method for simple ports

Syntax exp.has_unknown(): bool

Parameters exp An expression of a simple port type.

IEEE
Std 1647-2015 IEEE STANDARD

154 Copyright © 2015 IEEE. All rights reserved.

9.9.23 set_default_value()

This sets the default value of a simple port or a bound set of simple ports. The default value is stored as the
value of the port or ports during the connect_ports() phase before simulation begins. If set_default_value()
is not called, the default value is the same as the default value of the element type (usually 0 or NULL).

The default value applies if an input port is read before it is written. The typical use of these methods is to set
the value read from a disconnected port.

When set_default_value() is applied to a port in a bound set, the default value is applied to the entire bound
set.

If set_default_value() is applied to a bound set several times, then each new operation overrides the
previous ones.

When two ports that belong to different bound sets are bound to form a new bound set:

— If both ports have default values defined and those values are different, the default value of the new
bound set is considered invalid. The default value must be set again or an elaboration time error
occurs

— If both ports have the same default value, it becomes the default value of the newly bound set.

Note: In the above two cases, if one default value was set using set_default_mvl_value(), and
another one was set using set_default_value(), the default values are always considered different.
The default value has to be set again after the binding to avoid elaboration time error.

— If only one port has a default value, then this becomes the default value of the new bound set.

— If no port has a default value, then the new bound set has no default value.

If set_default_value() is called at any time other than during connect_ports() phase, a run-time error shall
be issued.

Syntax example:

p.set_default_value(15)

Purpose Set the default value for a simple port or a bound set of simple port

Category Predefined method for simple ports

Syntax exp.set_default_value(value: port-element-type)

Parameters
exp An expression that returns a simple port instance.

value An expression of the same type as the port element.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 155

9.9.24 set_default_mvl_value()

This sets the default value of a simple port or a bound set of simple ports. The default value is stored as the
value of the port or ports during the connect_ports() phase before simulation begins. If set_default_value()
is not called, the default value is the same as the default value of the element type (usually 0 or NULL).

The default value applies if an input port is read before it is written. The typical use of these methods is to set
the value read from a disconnected port. (See 9.7.2.1.3)

When set_default_mvl_value() is applied to a port in a bound set, the default value is applied to the entire
bound set.

If set_default_mvl_value() is applied to a bound set several times, then each new operation overrides the
previous ones.

If set_default_value() is called at any time other than during connect_ports() phase, a run-time error shall
be issued.

Syntax example:

p.set_default_mvl_value(32'huuuuxxzz)

9.10 Global MVL routines

The subclause describes the global routines for manipulating MVL values.

9.10.1 string_to_mvl()

Converts a string into a list of mvl (see 9.9.2).

Syntax example:

mlist = string_to_mvl("8'bxz1")

Purpose Set the default value for a simple port or a bound set of simple port

Category Predefined method for simple ports

Syntax exp.set_default_mvl_value(mvl_list: list of mvl)

Parameters
exp An expression that returns a simple port instance.

mvl_list An expression of type list of mvl.

Purpose Convert a string to a list of mvl values

Category Predefined routine

Syntax string_to_mvl(value-string: string): list of mvl

Parameters value-string A string representing mvl values.

IEEE
Std 1647-2015 IEEE STANDARD

156 Copyright © 2015 IEEE. All rights reserved.

9.10.2 mvl_to_string()

Converts a list of mvl values to a string (see 9.9.2). A sized number shall always be returned as a string.

Syntax example:

mstring = mvl_to_string({MVL_Z; MVL_Z; MVL_Z; MVL_Z;
 MVL_X; MVL_X; MVL_X; MVL_X}, BIN)

9.10.3 mvl_to_int()

Converts each value in a list of mvl values into a bit (1 or 0), using a list of mvl mask values to determine
which mvl values are converted to 1.

When the list is less than 32 bits, it is padded with 0’s. When it is greater than 32 bits, it is truncated, leaving
the 32 least-significant bits.

Syntax example:

var ma : uint = mvl_to_int(l, {MVL_X})

Purpose Convert a list of mvl values to a string

Category Predefined routine

Syntax mvl_to_string(mvl-list: list of mvl, radix: radix): string

Parameters
mvl-list A list of mvl values.

radix One of BIN, OCT, or HEX.

Purpose Convert a list of mvl to an integer

Category Predefined routine

Syntax mvl_to_int(mvl-list: list of mvl, mask: list of mvl): uint

Parameters
mvl-list A list of mvl values to convert to an integer value.

mask A list of mvl values that are to be converted to 1.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 157

9.10.4 int_to_mvl()

Maps each bit that has the value 1 to the mask mvl value, retains the 0 bits as MVL_0, and returns a list of 32
mvl values. The returned list always has a size of 32.

Syntax example:

var mlist : list of mvl = int_to_mvl(12, MVL_X)

9.10.5 mvl_to_bits()

Converts a list of mvl values to a list of bits, using a mask of mvl values to indicate which mvl values are
converted to 1 in the list of bits.

Syntax example:

var bl : list of bit = mvl_to_bits({MVL_Z; MVL_Z; MVL_X; MVL_L},
 {MVL_Z; MVL_X})

Purpose Convert an integer value to a list of mvl values

Category Predefined routine

Syntax int_to_mvl(value: uint, mask: mvl): list of mvl

Parameters
value An integer value to convert to a list of mvl values.

mask An mvl value that replaces each bit in the integer that has the value 1.

Purpose Convert a list of mvl values to a list of bits

Category Predefined routine

Syntax mvl_to_bits(mvl-list: list of mvl, mask: list of mvl): list of bit

Parameters
mvl-list A list of mvl values to convert to bits.

mask A list of mvl values that specifies which mvl values are to be converted to 1.

IEEE
Std 1647-2015 IEEE STANDARD

158 Copyright © 2015 IEEE. All rights reserved.

9.10.6 bits_to_mvl()

Maps each bit with the value 1 to the mask mvl value, retains the 0 bits as MVL_0, and returns an mvl list
that has a size of bit-list.

Syntax example:

var ml : list of mvl = bits_to_mvl({1; 0; 1; 0}, MVL_Z)

9.10.7 mvl_to_mvl4()

Converts an mvl value to a subset of four-value logic (see 9.9.1).

Purpose Convert a list of bits to a list of mvl values

Category Predefined routine

Syntax bits_to_mvl(bit-list: list of bit, mask: mvl): list of mvl

Parameters
bit-list A list of bits to convert to mvl values.

mask An mvl value that replaces each bit in the list that has the value 1.

Purpose Convert an mvl value to a four-value logic value

Category Predefined routine

Syntax mvl_to_mvl4(value: mvl): mvl

Parameters value An mvl value to convert to a four-value logic value.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 159

Syntax example:

var m4 : mvl = mvl_to_mvl4(MVL_U)

9.10.8 convert_mvl_list_to_mvl4_list()

This converts a list of mvl values to a list of the four-value logic subset (see 9.9.1). The values in the original
list are replaced by the resulting values.

Purpose Convert a list of mvl values to a list of four-value logic subset values.

Category Predefined routine

Syntax convert_mvl_list_to_mvl4_list(mvl-list: list of mvl)

Parameters mvl-list A list of mvl values to convert to a list of four-value logic subset values.

IEEE
Std 1647-2015 IEEE STANDARD

160 Copyright © 2015 IEEE. All rights reserved.

Syntax example:

var m4l : list of mvl = {MVL_N; MVL_L; MVL_H; MVL_1};

convert_mvl_list_to_mvl4_list(m4l)

9.10.9 mvl_list_to_mvl4_list()

Converts a list of mvl values to a list of the four-value logic subset (see 9.9.1). A new resulting list is created.

Syntax example:

var m4l : list of mvl = mvl_list_to_mvl4_list({MVL_N; MVL_L; MVL_H; MVL_1})

9.10.10 string_to_mvl4()

Converts a string into a list of mvl, using the four-value logic subset. Logically, the string is converted to a
list of mvl (see 9.9.2), then converted into the four-logic value subset (see 9.9.1).

Syntax example:

mlist = string_to_mvl4("8'bxz")

9.11 Comparative analysis of ports and tick access

The e language supports both tick access (see 23.3) and ports in order to access external simulated objects.
Ports have the following advantages:

— They support modularity and encapsulation by explicitly declaring interfaces to e units.

— They are typed.

— They improve the performance of accessing DUT objects with configurable names.

— They can pass not only single values, but also other kinds of information, such as events and queues.

— They can be accompanied in e with generic or simulator-specific attributes that can be used to
specify information needed for enhanced access to DUT objects.

Purpose Convert a list of mvl values to a list of four-value logic subset values

Category Predefined routine

Syntax mvl_list_to_mvl4_list(mvl-list: list of mvl): list of mvl

Parameters mvl-list A list of mvl values to convert to a list of four-value logic subset values.

Purpose Convert a string to a list of four-value logic mvl subset values

Category Predefined routine

Syntax string_to_mvl4(value-string: string): list of mvl

Parameters
value-string A string representing mvl values, consisting of a width and base followed by

a series of characters corresponding to nine-value logic values.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 161

Example 1

This example shows how tick access notation translates to MVL methods, assuming the following numeric
port declaration:

data : inout simple_port of int is instance;
keep bind(data, external);
keep data.hdl_path() == "data";

d: int;

Example 2

This example shows how tick access notation translates to use of an MVL port, assuming the following
MVL port declaration:

data : inout simple_port of list of mvl is instance;
keep bind (data, external);
keep data.hdl_path() == "data";

9.12 e port binding

e ports can be bound imperatively by calling do_bind() as well as declaratively using the bind syntax defined
in bind() (9.7.2.1).

d = 'data'; d = data$;

'data' = 32'bz; data.put_mvl_list(32'bz);

check that 'data@x' == 0; check that not data.get_mvl_list().has
(it == MVL_X));

check that not data.has_x();

d = 'data[31:10]@z' d = mvl_to_int(data.get_mvl_list(),
{MVL_Z})[31:0]

check that 'data@x' == 0; check that not data$.has(it == MVL_X};
check that not data.has_x();

'data' = 32'bz; data$ = 32'bz

IEEE
Std 1647-2015 IEEE STANDARD

162 Copyright © 2015 IEEE. All rights reserved.

9.12.1 do_bind()

Calling the do_bind() routine procedurally connects a port to one or more e ports or to one or more external
simulated object. Ports can also be left explicitly disconnected with empty or undefined.

Syntax example:

do_bind(driver.bfm.data_in, bfm.driver.data_out)

NOTE 1—The do_bind() method can only be called during the connect_ports() sub-phase. Calling it at any other time
results in an error message.

NOTE 2—It is an error to declare a port disconnected in more than one way.

Purpose Connect ports

Category Predefined routine

Syntax
do_bind(port-exp1, port-exp2[,…]);
do_bind(port-exp1, external);
do_bind(port-exp1, empty | undefined);

Parameters

port-exp1, port-
exp2[,…]

One or more expressions of port type. If two expressions are given and the
port types are compatible, the two port instances are connected.

external Defines a port as connected to an external object.

empty Defines a disconnected port. Runtime accessing of a port with an empty
binding is allowed.

undefined Defines a disconnected port. Runtime accessing of a port with an undefined
binding causes an error

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 163

9.13 Transaction level modeling interface ports in e

This clause defines the support the e language provides for interface ports, used to implement transaction
level modeling (TLM) standard interfaces. These ports facilitate the transfer of transactions between
verification components, taking advantage of the standardized, high-level TLM communication mechanism.

9.13.1 interface_port

An e TLM interface port type is parameterized with a specific TLM interface type. For example, if an e
TLM interface port is defined with the syntax interface_port of tlm_nonblocking_put, then that port is tied to
the tlm_nonblocking_put interface. Then, the set of methods (functions) predefined can be used for that
interface to exchange transactions.

Syntax examples:

e_packet : in interface_port of tlm_put of packet is instance;

p1 : out interface_port of tlm_nonblocking_transport of
(packet, msg) is instance;

p2 : export interface_port of tlm_blocking_put is
instance; // export

Purpose Transfer transactions between e units or a combination of e units and external modules

Category Unit member

Syntax
port-instance-name : [list of] direction interface_port of tlm-intf-type [using prefix=prefix | using
suffix=suffix] [is instance]
port-instance-name : [list of] export interface_port of tlm-intf-type [is instance]

Parameters

port-instance-name A unique e identifier used to refer to the port or access its value.

direction in or out. There is no default.

tlm-intf-t ype One of the supported TLM interface types specified in Table 25 or Table 26.
The following restrictions apply to the “type” parameter of these interfaces.

For internal e TLM interface ports, the type (or types) specified for the
interface shall be any legal e type.

External e TLM interface ports support transactions of a struct (or class) type
only. Thus, for externally bound e TLM interface ports, the type (or types)
specified for the interface shall be legal e types that inherit from any_struct.

using prefix=prefix

using suffix=suffix

Applies for e TLM input ports only. Specifies a prefix or suffix string to be
attached to the predefined TLM methods for the given port.

Using a prefix or suffix ensures that there are no method name collisions if a
port contains more than instance of an e TLM interface port tied to the same
TLM interface.

(This syntax can be used only for the port instance members. It cannot be
used in other declarations, such as declarations for parameters or variables.)

IEEE
Std 1647-2015 IEEE STANDARD

164 Copyright © 2015 IEEE. All rights reserved.

9.13.1.1 Special port types

9.13.1.1.1 Export

An export interface port is a port whose enclosing unit does not implement the required interface methods.
The interface methods are delegated to the connected unit. An export TLM input port in e is functionally
equivalent to a SystemVerilog or SystemC export.

The following limitations apply to export interface ports:

— The port shall have an outbound connection.

— The port shall be connected (either directly or indirectly) to an input interface port or to an external
port providing suitable interface functions.

— The port shall have no inbound connection.

— The port must be connected using the connect() (see 9.13.3.2.1) method. The bind() constraints and
the do_bind() routine are not applicable for it.

9.13.1.2 Analysis port

Analysis ports are ports featuring the tlm_analysis interface—a restricted write-only interface intended to
share monitoring information for analysis purposes. They may have multiple outbound connections in
support of broadcast implementations.

9.13.2 Defining input e TLM interface ports

When a unit contains an instance member of an input TLM interface port, the unit must implement all
methods required by the TLM interface type of that input port. The list of methods is predefined according
to the standard TLM specification.

These methods must be defined before the port is defined. (If the methods and port are defined in the same
module, however, the order does not matter.) If any of the required methods is missing, a compile time error
shall be issued.

Syntax example:

struct packet {
…

};

unit server {
// The following four lines define the four methods required
// by the TLM interface tlm_put.
put(value : packet)@sys.any is {…};
try_put(value: packet) : bool is {…};
can_put() : bool is {…};
ok_to_put() : tlm_event is {…};
packet_in : in interface_port of tlm_put of

packet is instance;
}

In this example, the unit server implements the four methods/tasks that are required by the interface tlm_put
of packet.

See the following description of interface method semantics (see 9.13.4.5).

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 165

9.13.3 Binding e TLM interface ports

9.13.3.1 Binding rules for TLM interface ports

A TLM output port can be bound to a TLM input port if the interface type of the output port is either the
same as the interface type of the input port or subset of it (with exactly the same element type in the template
parameter). For example, the user can bind an output port of tlm_nonblocking_put to an input port of
tlm_put, because the tlm_nonblocking_put interface is a subset of the tlm_put interface. Additionally:

— Empty and undefined bindings are supported for e TLM interface ports.

— Multiple binding is not supported for e TLM interface ports, except for analysis ports.

— Unification of ports bound to the same external port is not supported for e TLM interface ports.

9.13.3.2 Declarative and procedural binding

e TLM interface ports have to be bound before usage, similar to any other port. Binding can be done
declaratively with keep bind() constraints or procedurally with do_bind() or do_bind_unit() pseudo-
routines. (See 9.7.2.1.)

Syntax examples for declarative binding:

keep bind(port1, port2);
keep bind(port3, external)

Syntax examples for procedural binding:

connect_ports() is also {
 do_bind(port1, port2);
 do_bind(port3, external)
}

9.13.3.2.1 connect()—language-neutral binding

External binding of TLM ports in a language-neutral way shall be supported by the simulation environment.
The port method connect() is provided for this purpose; connect() is used to bind two ports that are not both
defined in the same language. For example, this method can be used to bind a SystemC port to a
SystemVerilog port from e. For uniformity, connect() may be used to procedurally bind together e ports as
well.

The connect() method shall be called once during the connect_ports() phase. The effect of this method is
immediate—it shall issue an error in case of any mismatch (wrong external path, mismatching interface
types, unsupported multiple binding, and so on).

Syntax of connect():

<port1-exp>.connect(<port2-exp>);
<port1-exp>.connect(empty|undefined);
<port1-exp>.connect(“external path”)

Syntax examples for connect():

env.agent[1].my_port.connect(env.agent[2].my_export);
env.agent.monitor.port.connect(empty)

Description

The following restrictions shall apply to connections created by calling connect().

IEEE
Std 1647-2015 IEEE STANDARD

166 Copyright © 2015 IEEE. All rights reserved.

If port1 is an output port:

— It can be connected to another e output port, e export port, or e input port.

— It can be connected to empty. In this case, this must be the only outbound connection it has. In this
case, invoking a method on this port is like calling an empty method.

— It can be connected to undefined. In this case, this must be the only outbound connection it has. In
this case, invoking a method on this port will cause to runtime error.

— It can be connected to a specific external port by specifying the external port path. This external port
can be of any direction.

If port1 is an export port:

— It can be connected to another e export port or to other e input port.

— It can be connected to a specific external port by specifying the external port path. This external port
must be an input port or an export port.

Connecting to an external path:

— For SystemVerilog or SystemC, the external path must be quasi-static (full path from the top level
scope).

— For e, the external path is an e-path, beginning with “sys.”

9.13.4 Supported TLM interfaces

9.13.4.1 tlm_event predefined struct

The tlm_event predefined struct is used to synchronize a writer and a non-blocking reader on e-to-e TLM
ports.

The predefined struct tlm_event is defined as follows:

struct tlm_event {

 event trigger;

 notify() is {

 emit trigger

 }

}

Some TLM functions return this struct. User code for an input port shall call tlm_event.notify() when it is
ready to accept the next transaction. User code performing a non-blocking wait on that input shall be
sensitive to emission of the event tlm_event.trigger and shall write the next transaction when that event is
emitted.

9.13.4.2 Supported unidirectional TLM interfaces

NOTE—Non-blocking TLM interface calls are zero-delay calls. The blocking interface calls, which correspond to e
TCM methods, consume an additional tick and one cycle of simulation time.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 167

Table 25—Supported TLM interfaces and related methods

TLM interface Interface methods

Blocking unidirectional interfaces

tlm_blocking_put of type put(value:type)@sys.any

tlm_blocking_get of type get(value:*type)@sys.any

tlm_blocking_peek of type peek(value:*type)@sys.any

tlm_blocking_get_peek of type get(value:*type)@sys.any
peek(value:*type)@sys.any

Non-blocking unidirectional interfaces

tlm_nonblocking_put of type try_put(value:type) : bool
can_put() : bool
ok_to_put() : tlm_event

tlm_nonblocking_get of type try_get(value:*type) : bool
can_get() : bool
ok_to_get() : tlm_event

tlm_nonblocking_peek of type try_peek(value:*type) : bool
can_peek() : bool
ok_to_peek() : tlm_event

tlm_nonblocking_get_peek of type try_get(value:*type) : bool
can_get() : bool
ok_to_get() : tlm_event
try_peek(value:*type) : bool
can_peek() : bool
ok_to_peek() : tlm_event

Combined unidirectional interfaces (blocking and non-blocking)

tlm_put of type put(value:type)@sys.any
try_put(value:type) : bool
can_put() : bool
ok_to_put() : tlm_event

tlm_get of type get(value:*type)@sys.any
try_get(value:*type) : bool
can_get() : bool
ok_to_get() : tlm_event

tlm_peek of type peek(value:*type)@sys.any
try_peek(value:*type) : bool
can_peek() : bool
ok_to_peek() : tlm_event

IEEE
Std 1647-2015 IEEE STANDARD

168 Copyright © 2015 IEEE. All rights reserved.

9.13.4.3 Supported bidirectional TLM interfaces

NOTE—Non-blocking TLM interface calls are zero-delay calls. The blocking interface calls, which correspond to e
TCM methods, consume an additional tick and one cycle of simulation time.

Table 26—Supported bidirectional TLM interfaces and related methods

TLM interface Interface methods

Blocking bidirectional interfaces

tlm_blocking_master of (req-type, rsp-type) put(value: req-type)@sys.any
get(value: *rsp-type)@sys.any
peek(value: *rsp-type)@sys.any

tlm_blocking_slave of (req-type, rsp-type) put(value: rsp-type)@sys.any
get(value: *req-type)@sys.any
peek(value: *req-type)@sys.any

tlm_blocking_transport of (req-type, rsp-type) transport(request: req-type,
response: *rsp-type)@sys.any

Non-blocking bidirectional interfaces

tlm_nonblocking_master of (req-type, rsp-type) try_put(value: req-type) : bool
can_put() : bool
ok_to_put() : tlm_event
try_get(value: *rsp-type): bool
can_get(): bool
ok_to_get(): tlm_event
try_peek(value: *rsp-type): bool
can_peek(): bool
ok_to_peek(): tlm_event

tlm_nonblocking_slave of (req-type, rsp-type) try_put(value: rsp-type) : bool
can_put() : bool
ok_to_put() : tlm_event
try_get(value: *req-type): bool
can_get(): bool
ok_to_get(): tlm_event
try_peek(value: *req-type): bool
can_peek(): bool
ok_to_peek(): tlm_event

tlm_nonblocking_transport of (req-type, rsp-type) nb_transport(request: req-type,
response: *rsp-type): bool

Combined bidirectional interfaces (blocking and non-blocking)

tlm_master of (req-type, rsp-type) put(value: req-type)@sys.any
get(value: *rsp-type)@sys.any
peek(value: *rsp-type)@sys.any
try_put(value: req-type): bool
can_put(): bool
ok_to_put(): tlm_event
try_get(value: *rsp-type): bool
can_get(): bool
ok_to_get(): tlm_event
try_peek(value: *rsp-type): bool
can_peek(): bool
ok_to_peek(): tlm_event

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 169

9.13.4.4 Supported analysis TLM interface

9.13.4.5 Required semantics of TLM interface methods

TLM interface methods need to be implemented for each interface type. These methods are activated in
response to a port interface call. As users of the e language define new interface types, they will have to
provide implementations to the interface methods. The following subclauses define the expected semantics
of the various interface methods.

9.13.4.5.1 put(value:type)

The put() method passes on a value into the port, making it available for connected ports to read. This call
shall block if the port is not ready to handle the transfer of the value.

9.13.4.5.2 try_put(value:type) : bool

The try_put() method is non-blocking. If the port is ready to handle a put operation, the value is passed on
and the method returns TRUE. Otherwise the method returns FALSE, and the value is not passed on.

9.13.4.5.3 can_put() : bool

The can_put() method returns TRUE if the port is ready to handle a put operation [a call to put() will not
block]. FALSE is returned if the port is not ready to handle a put operation [a call to put() would block].

tlm_slave of (req-type, rsp-type) put(value: rsp-type)@sys.any
get(value: *req-type)@sys.any
peek(value: *req-type)@sys.any
try_put(value: rsp-type): bool
can_put(): bool
ok_to_put(): tlm_event
try_get(value: *req-type): bool
can_get(): bool
ok_to_get(): tlm_event

lm_transport of (req-type, rsp-type) transport(request: req-type,
response: *rsp-type)@sys.any
nb_transport(request: req-type,
response: *rsp-type): bool

Table 27—Supported analysis TLM interface and related methods

TLM interface Interface methods

tlm_analysis of type write(value : type)

Table 26—Supported bidirectional TLM interfaces and related methods (continued)

TLM interface Interface methods

IEEE
Std 1647-2015 IEEE STANDARD

170 Copyright © 2015 IEEE. All rights reserved.

9.13.4.5.4 ok_to_put() : tlm_event

The method ok_to_put() returns an event that will trigger each time the port is ready to handle a put
operation. The returned event may be used to invoke the user code producing the next put operation.

9.13.4.5.5 get(value:*type)

The get() method returns the value that is read from the port (the value is passed by reference in the
parameter). This call blocks if no value is available to be read.

9.13.4.5.6 try_get(value:*type) : bool

The try_get() non-blocking method returns TRUE and the read value if the port can be read. FALSE is
returned if the port is not ready to be read [the get() operation would block].

9.13.4.5.7 can_get() : bool

The method can_get() returns TRUE if a get operation can be performed without blocking. FALSE is
returned otherwise.

9.13.4.5.8 ok_to_get() : tlm_event

The method ok_to_get() returns an event that will trigger each time the port is ready for a get operation (data
is available for reading). The returned event can be used to trigger user code performing a get operation.

9.13.4.5.9 peek(value:*type)

The peek() method returns the next value ready to be read from a port. The peek() method does not consume
the value—a subsequent get() call will return the same value. The peek() method shall block if no value is
ready to be read, and return only when the next value is available.

9.13.4.5.10 try_peek(value:*type) : bool

The try_peek() non-blocking method returns TRUE and the read value if the port can be read. FALSE is
returned if the port is not ready to be read [the peek() operation would block]. This method does not
consume the read value.

9.13.4.5.11 can_peek() : bool

The method can_peek() returns TRUE if a peek operation can be performed without blocking. FALSE is
returned otherwise.

9.13.4.5.12 ok_to_peek() : tlm_event

The ok_to_peek() method returns an event that triggers each time the port is ready for a peek operation (data
is available to be read). The returned event can be used to trigger user code that monitors (performs a non-
destructive inspection) the ports output.

9.13.4.5.13 transport(request: req-type, response: *rsp-type)

The transport() method implements the equivalent of a procedure call, or a bidirectional atomic transfer.
The first parameter contains the input to the procedure. The second parameter passes back the output (by
reference). The method may consume time, depending on the user-level implementation of this method for a
particular interface.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 171

9.13.4.5.14 write(value : type)

The write() method passes on a value into an analysis port. The method is non-blocking, because analysis
ports should always be ready to be written.

9.14 TLM Sockets in e

This clause defines the support the e language provides for TLM sockets, used to implement transaction
level modeling and communication based on the IEEE Standard for Standard SystemC® Language Reference
Manual (IEEE1666-2011). These sockets facilitate the transfer of transactions between verification
components, taking advantage of the standardized, high-level TLM 2.0 communication mechanism.

9.14.1 tlm_initiator_socket/tlm_target_socket

The tlm_initiator_socket/tlm_target_socket declaration defines and instantiates e TLM sockets. TLM socket
based communication relies on a pair of sockets (one initiator and one target) being connected/bound.

When a unit contains an instance member of a TLM socket, the unit must implement all methods required by
the TLM socket type. The list of methods is predefined according to the standard TLM specification.

These methods must be defined before the socket is defined. (If the methods and socket are defined in the
same module, however, the order does not matter.) If any of the required methods is missing, a compile time
error will be issued.

The phase and time parameters in some of the methods are reference parameters, as designated by the
asterisk (*). This enables the method, when called, to update the values of those parameters.

Purpose Provide the interface for accessing external and internal TLM 2.0 sockets.

Category Unit member

Syntax tlm-socket-instance : [list of] tlm_socket_type [of type] [using prefix=prefix | using suf-
fix=suffix] [is instance]

Parameters

tlm-socket-instance A unique e identifier used to refer to the socket or call any of its access meth-
ods/TCMs.

tlm-socket-type Defines the socket as an initiator or target socket. Legal values:
tlm_initiator_socket
tlm_target_socket

type Type of transfer to be used with this socket. Default: tlm_generic_payload

using prefix=prefix
using suffix=suffix

By default, instantiation of multiple TLM 2.0 sockets in the same unit type
results in all sockets using the same predefined methods-because the method
names are the same for each socket.
To implement a different set of method names for each socket instance, you
define a prefix or suffix with using prefix or using suffix. The prefix or suffix
you define is attached to all the method names for the current socket instanti-
ation, thus creating a unique set of methods.
The prefix or suffix must be a string type, and the text for strings is always
enclosed in double quotation marks.
(This syntax can be used only for the socket instance members. It cannot be
used in other declarations, such as socket reference declarations.)

IEEE
Std 1647-2015 IEEE STANDARD

172 Copyright © 2015 IEEE. All rights reserved.

e TLM sockets are derived from the any_port base type and thus have the basic facilities of e ports.

Syntax example:

 initiator: tlm_initiator_socket of tlm_generic_payload using prefix=
my is instance;

9.14.1.1 nb_transport_bw(trans:tlm_generic_payload,
p:*tlm_phase_enum,t:*time):tlm_syn_enum

The nb_transport_bw() method is non-blocking and transports a transfer of type tlm_generic_payload (or a
type derived from tlm_generic_payload) from the target socket to the initiator socket. nb_transport_bw()
returns the status of the transaction as a tlm_sync_enum type.

9.14.1.2 nb_transport_fw(trans:tlm_generic_payload,
p:*tlm_phase_enum,t:*time):tlm_syn_enum

The nb_transport_bw() method is non-blocking and transports a transfer of type tlm_generic_payload (or a
type derived from tlm_generic_payload) from the initiator socket to the target socket. nb_transport_fw()
returns the status of the transaction as a tlm_sync_enum type.

9.14.1.3 b_transport(trans:tlm_generic_payload, ,t:*time)@sys.any

The b_transport() TCM is blocking and transports a transfer of type tlm_generic_payload (or a type
derived from tlm_generic_payload) from the initiator socket to the target socket.

9.14.1.4 transport_dbg(trans:tlm_generic_payload):uint

The transport_dbg() method is non-blocking and gives the initiator socket the ability to read from or write
to memory in the target socket. The intent is to provide access to the data for debug purposes.

9.14.1.5 set_bus_width (num:uint)

Predefined method of TLM sockets to set the current bus width. The default is 32 bits.

9.14.1.6 get_bus_width ():uint

Predefined method of TLM sockets to return the current bus width.

Table 28—TLM socket related methods

Required interface methods/TCMs

Unit with initiator socket nb_transport_bw(trans:tlm_generic_payload,phase:*tlm_p
hase_enum, t:*time):tlm_sync_enum

Unit with target socket b_transport(trans:tlm_generic_payload, t:*time)@sys.any

nb_transport_fw(trans:tlm_generic_payload,phase:*tlm_p
hase_enum, t:*time):tlm_sync_enum

transport_dbg(trans:tlm_generic_payload):uint

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 173

9.14.2 Predefined types related to TLM socket based transactions

In accordance with the TLM 2.0 standard there are additional predefined types available in the e language
for handling TLM socket transactions. Details are explained in the following sections.

9.14.2.1 tlm_command

Predefined enumerated type that identifies the basic operation to be performed with the e TLM 2.0 payload.
The possible values are TLM_READ_COMMAND, TLM_WRITE_COMMAND and TLM_IGNORE_COMMAND:

— TLM_READ_COMMAND – The target socket copies data from the specified address to the
transac-tion payload before passing it back to the initiator socket. (In other words, the initiator socket
reads data from the target socket.)

— TLM_WRITE_COMMAND – The target socket copies data from the current transaction payload
to the specified address. (In other words, the initiator socket writes data to the target socket.)

— TLM_IGNORE_COMMAND – The target socket does not perform a read or write. It can, how-
ever, make use of the value of any attribute in the transaction payload, including extensions. The
intent is to allow the payload to act as a vehicle for transporting payload extension values.

9.14.2.2 tlm_endianness

Predefined enumerated type that identifies the endianness of a payload for a TLM transaction. The possible
values are TLM_UNKNOWN, TLM_LITTLE_ENDIAN and TLM_BIG_ENDIAN.

9.14.2.3 tlm_extension

Predefined struct type for defining extensions to the tlm_generic_payload struct. The tlm_extension struct is
used to define TLM 2.0 data transaction fields that are missing from tlm_generic_payload but that are
required to follow a given protocol (or for any other reason). The tlm_extension base struct does not have
any public members.

9.14.2.4 tlm_generic_payload

Predefined struct for transferring transaction attributes (like address and data) between TLM sockets.
Tlm_generic_payload is inherited of any_sequence_item and can be used in sequence statements. The
member field characteristics (e.g. names, sizes) are aligned with the TLM 2.0 standard.

Note on Table 29— For information about how the attributes in this table are used, see the description of the attributes
in the IEEE Standard for Standard SystemC® Language Reference Manual (IEEE1666-2011).

Table 29—tlm_generic_payload struct fields

Field Name

%m_address: uint(bits:64) Address for the operation.

%m_command: tlm_command Operation type. See 9.14.2.1.

%m_data: list of byte Data read or to be written.

IEEE
Std 1647-2015 IEEE STANDARD

174 Copyright © 2015 IEEE. All rights reserved.

%m_length: uint The number of bytes to be copied to or from the m_data array.
This field is initialized to zero, which is an invalid value. Thus, this field
must be set explicitly when defining the tlm_generic_payload struct.
To transfer zero data bytes, set m_command to
TLM_IGNORE_COMMAND. For more information, see the descrip-
tion of TLM_IGNORE_COMMAND in 9.14.2.1.

%m_response_status:
tlm_response_status

Status of the operation. See 9.14.2.6.

%m_dmi: bool DMI stands for direct memory interface. When enabled, it allows the
initiator to get direct access to a target memory, bypassing the usual
transport interfaces. The default is FALSE.

%m_byte_enable: list of byte Indicates valid m_data array elements. The default value is zero (null
pointer).

%m_byte_enable_length: uint Indicates the number of elements in the byte enable array. The default
value is zero. Note that this attribute is ignored if the value of
m_byte_enable is zero.

%m_streaming_width: uint The number of bytes transferred on each beat. The default value is zero.
Streaming affects the way a component interprets the data array. A
stream consists of a sequence of data transfers occurring on successive
notional beats, each beat having the same start address as given by the
generic payload address attribute.

%m_extensions: list of
tlm_extension

Note This list is empty by default. To add extensions to this list, see the
descriptions of set_extension() and get_extension() in Table 30.

Field Name

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 175

9.14.2.5 tlm_phase_enum

Predefined enumerated type to identify the current phase of the communication protocol for non-blocking
transport transactions. Possible values are UNINITIALIZED_PHASE=0, BEGIN_REQ=1,END_REQ,
BEGIN_RESP and END_RESP. The values are described below.

UNINITIALIZED_PHASE – No phase has started.

BEGIN_REQ – The request has started.

END_REQ – The request has completed.

BEGIN_RESP – The response has started.

END_RESP – The response has completed.

Table 30— tlm_generic_payload Predefined Struct Methods

Method Name Method Description

set_extension(ext: tlm_extension) Adds the specified extension to the generic payload’s extension
list. Returns the previous value of this extension type, if one
existed; otherwise, returns NULL.
The following example illustrates the use of set_extension():
struct extension1 like tlm_extension {

%m_uint : uint;
%m_int: int;
…

};

struct extension2 like tlm_extension {
%m_struct : a_struct;
…

unit initiator_unit {
i: tlm_initiator_socket is instance;

…
drive()@sys.any is {
var gp : tlm_generic_payload;
gp = new;
var ext1: extension1 = new;
…
gp.set_extension(ext1);
var ext2: extension2 = new;
…
gp.set_extension(ext2);

var status :=
i$.nb_transport_fw(gp,phase,t);

…

get_extension(extension-type-name) :
tlm_extension

Returns the current value of the specified extension type if
such an extension was previously added to the list; otherwise,
returns NULL.

get_extensions() : list of tlm_extension Returns the list of extensions.

IEEE
Std 1647-2015 IEEE STANDARD

176 Copyright © 2015 IEEE. All rights reserved.

9.14.2.6 tlm_response_status

Predefined enumerated type to indicate the current response status of a TLM transaction. Possible values
and numeric values are TLM_INCOMPLETE_RESPONSE=0, TLM_OKAY_RESPONSE=1,
TLM_GENERIC_ERROR_RESPONSE=-1, TLM_ADDRESS_ERROR_RESPONSE=-2,
TLM_COMMAND_ERROR_RESPONSE=-3, TLM_BURST_ERROR_RESPONSE=-4 and
TLM_BYTE_ENABLE_ERROR_RESPONSE=-5. These values are described below.

— TLM_INCOMPLETE_RESPONSE – The transaction has not yet been delivered to the target or
the transaction operation has not yet been executed by the target.

— TLM_OKAY_RESPONSE – The transaction operation completed successfully (both read and
write operations).

— TLM_GENERIC_ERROR_RESPONSE – The operation had an error (can be used by the target to
indicate any sort of error).

— TLM_ADDRESS_ERROR_RESPONSE – The transaction address is out of range or the operation
failed because of the value of the address given in the transaction.

— TLM_BURST_ERROR_RESPONSE – An invalid burst was specified. (the target is unable to
execute the operation with the given data length).

— TLM_BYTE_ENABLE_ERROR_RESPONSE – Either the target does not support byte enables
or the value of the byte_enable attribute or the byte_enable_length attribute of the generic payload
caused an error.

9.14.2.7 tlm_sync_enum

Predefined enumerated type to identify the synchronization status of non-blocking transactions. Possible
values are TLM_ACCEPTED, TLM_UPDATED and TLM_COMPLETED. These values are described below.

— TLM_ACCEPTED – The transaction has been accepted. Neither the transaction object, the phase,
nor the delay arguments have been modified.

— TLM_UPDATED – The transaction has been modified. The transaction object, the phase, or the
delay arguments may have been modified.

— TLM_COMPLETED – The transaction execution has completed. The transaction object, the phase,
or the delay arguments may have been modified. There will be no further transport calls associated
with this transaction.

9.14.3 Binding e TLM sockets

9.14.3.1 Binding rules for TLM sockets

TLM initiator sockets need to be bound to TLM target sockets. Additionally:

— Multiple binding is not supported for e TLM sockets.

— Connection of TLM 2.0 sockets is unidirectional: An initiator socket can connect to its target sock-et,
but the target socket cannot connect to the initiator socket.

— The connect() method can be called only during the connect_ports() or connect_pointers() phase.

— Declarative connection using keep bind() and procedural connection using do_bind() are not sup-
ported for sockets.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015

Copyright © 2015 IEEE. All rights reserved. 177

9.14.3.1.1 connect()-language-neutral binding

Internal and external binding of TLM sockets in a language-neutral way shall be supported by the simulation
environment. The port method connect() is provided for this purpose; connect() is used to bind two sockets.

The connect() method shall be called once during the connect_ports() phase. The effect of this method is
immediate-it shall issue an error in case of any mismatch (wrong external path, mismatching interface types,
unsupported multiple binding, and so on).

Syntax of connect():

<socket1-exp>.connect(<socket2-exp>);
<socket1-exp>.connect(empty|undefined);
<socket1-exp>.connect("external path")

Syntax examples for connect():

env.agent[1].i_socket.connect(env.agent[2].t_socket);
env.agent.monitor.i_socket.connect(empty)

IEEE
Std 1647-2015 IEEE STANDARD

178 Copyright © 2015 IEEE. All rights reserved.

