
IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 317

25. Messages

25.1 Overview

The messaging feature is a centralized and flexible mechanism used to send messages to various
destinations, such as log files, display, waveforms or databases. It lets a developer easily insert formatted
messages into code and provides the user with powerful and flexible controls to selectively enable or disable
groups of messages.

The three most typical uses for messages are the following:

a) Summaries—Writing summary information at the beginning or end of significant chunks of activity.

b) Tracing—Writing detailed trace messages during the simulation upon interesting events.

c) Debugging—Writing detailed debug messages during the run to help the user or developer debug
unexplained behaviors.

Messages are different from plain out() and outf() calls (see 29.7); they have an optional standard-format
prefix and their actions can be disabled or redirected. Messages are also different from dut_error() calls
(see 17.2.2); they do not signify failure, increment error counters, or increment warning counters.

25.2 Message model

There are two kinds of message actions in the e language: structured debug messages (SDM) and regular
messages.

Structured debug messages have a standard pre-defined structure, arguments, and attributes. Each kind of
SDM has a specific purpose and is used for reporting specific kind of events, such as the beginning or the
end of a transaction spanning over time. Some kinds of SDMs sample data objects given as arguments which
can further be used for data flow analysis (e.g. using a waveform viewer). The sampling of the arguments of
SDM actions is related to transaction recording.

Regular messages are used to report “general” events. They do not have specific structure, but define a text
string to be printed or recorded.

Upon execution, the message action (SDM or regular) creates a message and sends it to the context unit for
further handling. Each unit can be configured to filter messages in various ways, format the enabled
messages in various ways (adding the time, name of the unit, etc.), and send them to various destinations
(such as files and the screen).

25.3 Message execution

When a message action (SDM or regular) is executed, the following happens:

— For SDM messages, if an action-block exists, it gets executed. This typically contains assignments to
message instance optional parameters. The specific parameters differ between the various SDM
kinds (see 25.4).

— The message body is created as follows:

— For a SDM, the message body consists of the body text, appended to a predefined prefix that con-
tains information on the SDM kind and id. The body text is determined by the body_text parameter
assigned in the action block, if any. If no body_text is assigned, the default text specific to each
SDM kind is used.

IEEE
Std 1647-2011 IEEE STANDARD

318 Copyright © 2011 IEEE. All rights reserved.

— For regular messages, the message body is created by appending expressions, similarly to out()
or outf().

Then, if an action-block exists, it gets executed. It typically contains further output-producing
actions, calls to reporting methods, etc. The output of all of those is added, as a list of string, to the
message body.

For message(), the message body is created by appending all of the expressions, like out() does.

For messagef(), the message body is created using the format-exp, similar to outf().

— messagef() does not automatically add a newline (\n) to the message string. Therefore, if
the optional action-block requires a newline to be written before it is executed, terminate the
format-exp using \n.

— If the fully composed message string – including that portion written by the optional action-
block – is not terminated by a newline, a newline is appended. messagef() also allows append-
ing of the action-block output to the messagef() header output.

The context unit of the message is the unit instance in the context of which the message action is being
executed. If the message action resides in the context of a unit type, that is the context unit. If it resides in the
context of a struct type, the context unit is the parent unit of the struct instance (see 7.5.1).

According to the current message selection settings of the context unit, and according to the message tag, the
list of destinations to which the message has to be sent is determined. If there are no destinations, the
processing of the message ends here.

The message is sent for each destination as follows:

— For a text destination, the message is formatted by calling create_formatted_message(). The body
text created above is passed to the buffer parameter of that method. The current message format set-
tings of the context unit are used. If there are no extensions of create_formatted_message(), the
default formatting is used according to the format settings of the context unit.

The resulting message text is sent to the destination accordingly.

— For a non-text destination, such as a wave form or a database, the message is sent or handled accord-
ing to the nature of that destination. This behavior is implementation-dependent, and various tools
may handle it differently. For example, a wave form can display matching pairs of msg_started and
msg_ended messages (with the same message id and data item) as a transaction.

Some messages may not be handled at all by some destinations. For example, regular (non-SDM)
messages may not be handled by a transaction database.

Message code shall not modify the flow of the simulation in any way. Time-consuming operations in
message headers or action blocks are strictly disallowed.

25.4 Structured debug messages

The e language provides the following methods for defining structured debug message actions:

— msg_started() — Marks the beginning of a sequence of events that can be logged as a transaction.

— msg_ended() — Marks the end of a sequence of events that can be logged as a transaction.

— msg_transformed() — Marks a data transformation. It can be used to link transactions that have
been indicated by structured debug messages.

— msg_changed() — Marks a change to an object, such as a state variable changing from transmit to
idle. This message action marks a one-time event. It is logged as a transaction with a single attribute,
the result of the state expression.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 319

— msg_info() — Reports any other kind of significant event in the environment. Events reported by
msg_info() cannot be logged as transactions.

SDM actions have the generic format described in Table 39. The specifics for each of the SDMs are
described in separate/dedicated sections.

Table 39—SDM Action Generic Format

Purpose Reports the start of a transaction

Syntax msg_<sdm specifier>([tag,]verbosity, msg-id, <sdm-specific-arguments>) [{action-block}].
Note: sdm specifier can be any of the following: started (see 25.4.1), ended (see 25.4.2), trans-
formed (see 25.4.3), changed (see 25.4.4), info (see 25.4.5). It determine two aspects:

— List of arguments
— Message instance parameters that can be accessed within the action block scope

Parameters

tag A constant of type message_tag, either NORMAL or a user-defined tag
(see 25.6). If no tag is specified, NORMAL is assumed by default.

verbosity A constant of type message_verbosity, one of the following: NONE,
LOW, MEDIUM, HIGH, or FULL (see 25.7).

msg_id Message ID. A string expression that identifies the specific occurrence
reported by the message (i.e., message ID uniquely identifies a transaction
stream).
When a literal string is provided (as opposed to a string expression that is
computed at runtime), the text can be used for static message filtering.

SDM specific
arguments

These are determined by each SDM action and they are described in the sec-
tions 25.4.1 through 25.4.5, for each of the SDM actions.
Usually these are objects that will be sampled for later analysis purposes.

action_block A list of zero or more actions separated by semicolons and enclosed in curly
braces. Syntax: {action;...}
The action block may be or not executed depending on the configuration and
this aspect is implementation dependent.
In the scope of this action-block, the pseudo-variable it refers to an object of
type sdm_handler (see 25.8) and specifically to its concrete subclass
according to the SDM kind (for example, sdm_started_handler in case of
msg_started(), and so on).
The primary use of this action-block is to initialize configurable message
instance parameters (described below) to be stored in the fields of it.
Example:
msg_started(HIGH," monitoring transfer",cur_trans) {

it.parent = cur_burst;
};
The following sdm_handler fields that can be set in the action block are
common to all SDM actions; the ones specific to each SDM kind (fields of
subclasses of sdm_handler) are described in the specific sections:

scope Identifies the unit context where the action occurs. This can
be used, for example, to hide the actual unit and use an
enclosing unit as the message scope.
If scope is not assigned, the default is used. If the message
action resides in the context of a unit type, that is the context
unit. If it resides in the context of a struct type, the context
unit is the parent unit of the struct instance (see 7.5.1).

body_text Defines a text string to be displayed with the message. Used
to override the message’s default text, which depends on the
specific SDM kind.

IEEE
Std 1647-2011 IEEE STANDARD

320 Copyright © 2011 IEEE. All rights reserved.

The developer can configure transaction recording process and specify what to sample from a transaction
object and when to sample it. For more information see 25.9.2.1, 25.9.2.2 and 25.9.2.3.

25.4.1 msg_started()

Syntax example:

on burst_started {
msg_started(LOW,"monitoring burst", driven_burst);

};

Purpose Reports the start of a transaction

Category Action

Syntax msg_started([tag,]verbosity, msg-id, data-item) [{action-block}]

Parameters

tag, verbosity,
msg_id

See Table 39, “SDM Action Generic Format”.

data_item Struct that contains the data that is being processed

action_block See the action-block description in Table 39, “SDM Action Generic
Format”. For msg_started(), the following fields of
sdm_started_handler can also be set, besides the ones presented in
Table 39:

parent Identifies the higher-level (parent) transaction containing
the current transaction.
If specified, the struct assigned to the .parent field
becomes the parent transaction, and the data item of the
current transaction becomes the child transaction.
This can be useful, for example, for showing to which
burst a set of packets belongs. (Transactions are usually
used to model “packets,” and bursts are the children of
“transfers”; thus, the parent attribute for each packet points
to the “burst” message, and parent of the burst points to a
transfer.)
If both matching msg_started and msg_ended actions
assign a parent, which is not the same, the behavior is
undefined.

body_text The default contains a hyperlink to the transaction data
item

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 321

25.4.2 msg_ended()

It reports the end of each transaction that you want to track. Unless the sample points are specified with the
recording configuration API, data is sampled as follows:

— When a msg_ended() action has a corresponding msg_started() action, data is sampled at both the
beginning and end of the transaction.

— When a msg_ended() action has no corresponding msg_started() action, the start time can be
specified in the body of the msg_ended() action. In this case, data is sampled at the end of the
transaction.

— When a msg_ended() action has no corresponding msg_started() action, and no start time is set in
the action body, a 0-time transaction is created, and data is sampled at the end of the transaction.

Syntax example:

on burst_ended {
msg_ended(LOW,"monitoring burst", driven_burst);
burst_ended_o$.write(driven_burst);

Purpose Reports the end of a transaction

Category Action

Syntax msg_ended([tag,]verbosity, msg-id, data-item) [{action-block}]

Parameters

tag, verbosity,
msg_id

See Table 39, “SDM Action Generic Format”.

data_item Struct that contains the data that is being processed

action_block See the action-block description in Table 39, “SDM Action Generic
Format”. For msg_ended(), the following fields of
sdm_started_handler can also be set, besides the ones presented in
Table 39:

parent Identifies the higher-level (parent) transaction containing
the current transaction.
If specified, the struct assigned to the .parent field
becomes the parent transaction, and the data item of the
current transaction becomes the child transaction.
This can be useful, for example, for showing to which
burst a set of packets belongs. (Transactions are usually
used to model “packets,” and bursts are the children of
“transfers”; thus, the parent attribute for each packet points
to the “burst” message, and parent of the burst points to a
transfer.)
If both matching msg_started and msg_ended actions
assign a parent, which is not the same, the behavior is
undefined.

start_time The time at which this transaction started (by default
UNDEF, which indicates that the starting of the transac-
tion was already reported by a msg_started() action).
Must be a value of type time. If assigned, no corresponding
msg_started action is considered to indicate the transac-
tion start.

body_text The default contains a hyperlink to the transaction data
item

IEEE
Std 1647-2011 IEEE STANDARD

322 Copyright © 2011 IEEE. All rights reserved.

};

25.4.3 msg_transformed()

Syntax example:

match_write(m:burst) is {
if not exp_items.is_empty() {

var exp_i:=exp_items.pop0();
msg_transformed(MEDIUM, "Matching bursts", exp_i, m);

};
};

25.4.4 msg_changed()

Purpose Reports the transformation of an existing data item or items, or the outcome of a relationship
between data items

Category Action

Syntax msg_transformed([tag,]verbosity, msg-id, from-item, to-item) [{action-block}]

Parameters

tag, verbosity,
msg_id

See Table 39, “SDM Action Generic Format”.

from_item Struct that contains the data that is being processed.

to_item Struct that contains the data after transformation.

action_block See the action-block description in Table 39, “SDM Action Generic
Format”. For msg_transformed(), the following field of
sdm_started_handler can also be set, besides the ones presented in
Table 39:

body_text The default contains a hyperlink to both transaction data
items.

Purpose Reports a significant state change taking place in this scope

Category Action

Syntax msg_changed([tag,]verbosity, msg-id, new_state_exp) [{action-block}]

Parameters

tag, verbosity,
msg_id

See Table 39, “SDM Action Generic Format”.

new_state_exp Text string describing the new state this unit assumes.

action_block See the action-block description in Table 39, “SDM Action Generic
Format”. For msg_changed(), the following field of
sdm_started_handler can also be set, besides the ones presented in
Table 39:

body_text The default contains the new state string.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 323

Syntax example:

drive_burst(new_burst:burst)@clk is {
driven_burst = new_burst;
emit burst_started;
msg_changed(MY_TAG, HIGH, "burst state", "started");

};

25.4.5 msg_info()

Syntax example:

body()@driver.clock is only {
do s1;
wait [10]; driv-er.drop_objection(TEST_DONE);
msg_info(LOW,"end of test ", s2);

};

25.5 message and messagef

Purpose Reports a significant event in the environment, that occurs at a certain point in time, possibly
related to the provided data items or items, and which is not applicable to the other kinds of
structured debug messages.

Category Action

Syntax msg_info([tag,]verbosity, msg-id, [data-item1, [data-item2]]) [{action-block}]

Parameters

tag, verbosity,
msg_id

See Table 39, “SDM Action Generic Format”.

data_item1,
data_item2

References to data items involved in the reported event. Up to two data
items can be specified (both are optional).

to_item Struct that contains the data after transformation.

action_block See the action-block description in Table 39, “SDM Action Generic
Format”. For msg_info(), the following field of sdm_started_handler
can also be set, besides the ones presented in Table 39:

body_text The default contains a hyperlink to the data items, if any.

Purpose Create a text message and send it to the one or more destinations

Category Action

Syntax message ([tag], verbosity, exp, ...) [action_block]
messagef ([tag], verbosity, format_exp, [exp, ...]) [action_block]

IEEE
Std 1647-2011 IEEE STANDARD

324 Copyright © 2011 IEEE. All rights reserved.

Syntax examples:

message(HIGH, "Master ", me, " has received ", the_packet) {
 write the_packet
};
 -- Output this message and write the packet, at verbosity HIGH.

message(VR_XBUS_FILE, MEDIUM, "Packet ", num, " sent: ", data)
 -- Output this message at verbosity MEDIUM.
 -- Use VR_XBUS_FILE as the message-tag.

25.6 Tag

All kinds of messages have an optional first parameter of type message_tag, which is initially defined as:

type message_tag : [NORMAL]

This can be extended, e.g.,

extend message_tag : [VR_XBUS_PACKET]

If a tag is not specified [i.e., the first parameter of a message is a legal value for verbosity], then the value
NORMAL is prepended. Thus, the following two lines are the same:

message(MEDIUM, "Packet done: ", packet);
message(NORMAL, MEDIUM, "Packet done: ", packet)

Message tags are used for associating specific message actions with a class of actions or an aspect. This
gives you more flexibility when it comes to determine the behavior of the message actions.

25.7 Verbosity

The verbosity parameter can be set to NONE, LOW, MEDIUM, HIGH, or FULL (from lowest to highest).
Since a lower verbosity setting means fewer messages are shown, important messages should be assigned a
lower verbosity parameter value.

Table 46 shows the recommended usage of verbosity. Each level can assume that all lower levels are also
writing (thus, there is no need to repeat them).

Parameters

tag A constant of type message_tag, either NORMAL or a user-defined tag
(see 25.6). If no tag is specified, NORMAL is assumed by default.

verbosity A constant of type message_verbosity: one of NONE, LOW,
MEDIUM, HIGH, or FULL (see 25.7).

exp Value(s) to write.

action_block A block of actions to perform, the output of which is appended to the message
body.
Note: If the action block has any side effects, other than text output, the
behavior is undefined and implementation dependent. Depending on whether
or not there are text destinations to which the message is being sent, and
whether there are more than one such destinations, the action block may not
be actually executed (if there are no text destinations), or it may be executed
more than once.

format_exp For messagef(), an outf()-style format string for the output.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 325

25.8 Predefined type sdm_handler

The predefined type sdm_handler is used to represent the specific properties of a given SDM at run time. It
provides API that can be used to query specific information about a given SDM, in the context of an
extension of create_formatted_message() hook method (see 25.9.2.14.1). In addition, some of its fields can
be assigned in the context of an SDM optional action-block (Table 39).

sdm_handler has several subclasses, used to represent the different SDM kinds.

25.8.1 sdm_handler

This struct provides API fields and methods common to all SDM kinds.

— sdm_handler.scope: any_unit

Holds a reference to the unit instance to which the message belongs. This can be assigned in the
SDM action-block. If not assigned, it holds a reference to the context unit, or to the owing unit of the
context struct.

— sdm_handler.id_str: string

Holds the msg-id string, as specified in the SDM action.

— sdm_handler.body_text: string

Holds a text string to be displayed with the message. This can be assigned in the SDM action-block.
If not assigned, it holds an empty string.

— sdm_handler.get_kind_string(): string

Returns a string that represents the SDM kind: “started” for msg_started, “changed” for
msg_changed, and so on.

— sdm_handler.get_attribute_string(inst: any_struct): string

Returns the string that displays the registered text attributes for the specified data object inst, or an
empty string if there are no text attributes. Text attributes are those for which set_text_attribute() or
(in case of msg_changed()) set_text_state_var() was called after registering them (see 25.9.2.1.13
and 25.9.2.1.14).

— sdm_handler.collect_text_attributes(inst: any_struct, names: list of string, values: list of string)

Table 46—Verbosity Levels

Level Recommended use Examples

NONE Critical messages. "WARNING: Running in reduced mode"

LOW Messages that happen once per run or once
per reset.

"Master M3 was instantiated"
"Device D6 got out of reset"

MEDIUM Short messages that happen once per data
item or sequence.

"Packet-@36 was sent to port 7"
"A write request to pci bus 2 with
address=0xf2223, data=0x48883"

HIGH More detailed per-data-item information,
including:

— Actual value of the packet

— Sub-transaction details

"Full details for packet-@36:
len=5 kind=small ..."

FULL Anything else, including writing by using
specific methods (just to follow the algo-
rithm of that method).

IEEE
Std 1647-2011 IEEE STANDARD

326 Copyright © 2011 IEEE. All rights reserved.

Collects the names and printed string values of the registered text attributes for the specified data
object inst, and adds them to the two provided lists, names and values respectively. Both lists are
cleaned before collecting attributes, and any items present in them prior to calling this method are
removed. Text attributes are those for which set_text_attribute() or (in case of msg_changed())
set_text_state_var() was called after registering them (see 25.9.2.1.13 and 25.9.2.1.14).

25.8.2 sdm_started_handler

This struct like-inherits from sdm_handler (see 25.8.1). It provides API fields specific to msg_started() (see
25.4.1).

— sdm_started_handler.data_item: any_struct

Holds a reference to the data-item struct, as specified in the msg_started() action.

— sdm_started_handler.parent: any_struct

Holds a reference to a struct that represents the parent transaction of the current transaction. This can
be assigned in the action-block of the msg_started. If not assigned, it holds NULL.

25.8.3 sdm_ended_handler

This struct like-inherits from sdm_handler (see 25.8.1). It provides API fields specific to msg_ended() (see
25.4.2).

— sdm_ended_handler.data_item: any_struct

Holds a reference to the data-item struct, as specified in the msg_ended() action.

— sdm_ended_handler.parent: any_struct

Holds a reference to a struct that represents the parent transaction of the current transaction. This can
be assigned in the action-block of the msg_ended. If not assigned, it holds NULL.

— sdm_ended_handler.start_time: time

Holds the time at which this transaction started. This can be assigned in the action-block of the
msg_ended. If not assigned, it holds UNDEF.

25.8.4 sdm_transformed_handler

This struct like-inherits from sdm_handler (see 25.8.1). It provides API fields specific to
msg_transformed() (see 25.4.3).

— sdm_transformed_handler.from_item: any_struct

Holds a reference to the from-item struct, as specified in the msg_transformed() action.

— sdm_transformed_handler.to_item: any_struct

Holds a reference to the to-item struct, as specified in the msg_transformed() action.

25.8.5 sdm_changed_handler

This struct like-inherits from sdm_handler (see 25.8.1). It provides API fields specific to msg_changed()
(see 25.4.4).

— sdm_changed_handler.new_state: string

Holds the string value of new-state-exp, as specified in the msg_changed() action.

25.8.6 sdm_info_handler

This struct like-inherits from sdm_handler (see 25.8.1). It provides API fields specific to msg_info() (see
25.4.5).

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 327

— sdm_info_handler.item1: any_struct

Holds a reference to the data-item-1 struct, as specified in the msg_info() action. If none specified,
holds NULL.

— sdm_info_handler.item2: any_struct

Holds a reference to the data-item-2 struct, as specified in the msg_info() action. If none specified,
holds NULL.

25.9 Messages Interface

25.9.1 Message configuration and customization

25.9.1.1 Initial pre-supplied Default Message Settings

Every message is assigned a verbosity level and a tag. By default, every unit instance is configured to send
to the screen those messages that have both a NORMAL tag and a verbosity that is at or below the LOW
level. Furthermore, by default:

— no destinations other than screen are initially set.

— no handling of messages with a tag other than NORMAL is defined.

— the default format used for all messages is short.

25.9.1.2 Modifying Initial Default Message Settings

To modify the defaults from these initial settings, the set_..._messages() and/or set_message_format()
methods (see 25.9.2.5 and 25.9.2.5.7) are used. Normally these methods are used within extensions of
post_generate().

Example

extend my_env {
post_generate() is also {

message_manager.set_screen_messages(me, NORMAL, MEDIUM);
message_manager.set_screen_messages(me.agent.monitor, NORMAL, HIGH);

};
};

25.9.2 Predefined Types and methods

25.9.2.1 recording_config

The recording configuration API allows to control the attributes and state variables that are reported by
messages.

The recording_config predefined struct encapsulates transaction recording configuration for a unit or for
numerous units at once. The configuration is determined procedurally through API calls.

Predefined methods of recording_config are described in the following subsections.

IEEE
Std 1647-2011 IEEE STANDARD

328 Copyright © 2011 IEEE. All rights reserved.

25.9.2.1.1 register_all_field_attributes()

25.9.2.1.2 register_callback_attribute()

Whenever a transaction of the given type needs to be sampled, the hook method is called on the data-item,
with the scope unit passed as parameter. If this call returns an empty string, the same method is called on the
scope unit, with the data-item passed as parameter. The value returned from either of the calls becomes the
value of the attribute.

The callback method default implementation returns an empty string.

Example

In this example, the attribute destination is calculated by the monitor when the message is recorded.

extend frame_monitor {
connect_pointers() is also {

var tr_cfg:recording_config = new;
tr_cfg.register_field_attributes("frame",{"addr";});
tr_cfg.register_callback_attribute("frame","destination");
assign_recording_config(tr_cfg)

}

tr_get_attribute_value(inst:any_struct,name:string):string is also {
if inst is a frame (f) and name == "destination" then {

result = append(me.base_addr + f.addr)
}

}
}

Purpose Defines all user-defined public fields to be recorded as transaction attributes for data-items of the
specified type

Category Predefined method

Syntax register_all_field_attributes(type-name: string)

Parameters type-name Any struct type name, including “when” subtypes and template instances

Purpose
Defines an attribute for transactions of the specified type, the value of which is determined
dynamically by the hook method tr_get_attribute_value() (see 25.9.2.3.1).

Category Predefined method

Syntax register_callback_attribute(type-name: string, attr-name: string)

Parameters
type-name Any struct type name, including “when” subtypes and template instances

attr-name Attribute name to be associated with the struct

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 329

25.9.2.1.3 register_callback_attributes()

25.9.2.1.4 register_callback_state_var()

25.9.2.1.5 register_field_attribute()

Example

This example specifies that the field addr of the frame should be recorded, in all messages issued by the
xbus_monitor.

extend xbus_monitor {
connect_pointers() is also {

var tr_cfg : recording_config = new;
tr_cfg.register_field_attribute("frame", "addr");
assign_recording_config(tr_cfg)

}
}

Purpose Defines a set of callback attributes for transactions of the specified type. Calling this method is
equivalent to calling “register_callback_attribute()” for each of the given names.

Category Predefined method

Syntax register_callback_attributes(type-name: string, attr-names: list of string)

Parameters
type-name Any struct type name, including “when” subtypes and template instances

attr-names List of attribute names to be associated with the struct

Purpose
Defines a state variable, the value of which is determined dynamically by the unit hook method
tr_get_state_var_value() (see 25.9.2.2.3). The value is sampled by calling the hook method
upon the execution of msg_changed() when the scope unit is of the specified type.

Category Predefined method

Syntax register_callback_state_var(unt-name: string, var-name: string)

Parameters
unit-name Name of a unit type (including “when” subtypes and template instances)

var-name State variable name to be associated with the unit

Purpose
Defines the specified data item field to be recorded as a transaction attribute. The field is sampled
upon the execution of structured messages of certain kinds with given data-items of the specified
type as parameters.

Category Predefined method

Syntax register_field_attribute(type-name: string, field-name: string)

Parameters
type-name Any struct type name, including “when” subtypes and template instances

field-name Name of a field declared for the struct

IEEE
Std 1647-2011 IEEE STANDARD

330 Copyright © 2011 IEEE. All rights reserved.

25.9.2.1.6 register_field_attributes()

Example

This example specifies that the field addr and data of the frame should be recorded, in all messages issued by
the xbus_monitor.

extend xbus_monitor {
connect_pointers() is also {

var tr_cfg : recording_config = new;
tr_cfg.register_field_attributes("frame", {"addr"; "data"});
assign_recording_config(tr_cfg)

}
}

25.9.2.1.7 register_field_state_var()

25.9.2.1.8 register_method_attribute()

Purpose Defines a set of field attributes for transactions of the specified type. Calling this method is equiv-
alent to calling “register_field_attribute()” for each of the given field names.

Category Predefined method

Syntax register_field_attributes(type-name: string, field-names: list of string)

Parameters
type-name Any struct type name, including “when” subtypes and template instances

field-names List of field names declared for the struct

Purpose Defines the specified field to be recorded as a state variable. The field is sampled on the execution
of msg_changed() when the scope unit is of the specified type.

Category Predefined method

Syntax register_field_state_var(unt-name: string, field-name: string)

Parameters
unit-name Name of a unit type (including “when” subtypes and template instances)

field-name Name of a field declared for the unit

Purpose
Defines an attribute for transactions of the specified type, the value of which is determined
dynamically by calling the specified hook method of the specified type.

Category Predefined method

Syntax register_method_attribute(type-name: string, method-name: string)

Parameters
type-name Any struct type name, including “when” subtypes and template instances

method-name Name of a method declared for the struct

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 331

Notes

— Whenever a transaction of the given type needs to be sampled, the hook method by the specified
name is called on the data-item, possibly with the scope unit passed as parameter. The value
returned from the call becomes the value of the attribute.

— If the struct does not have a declared method by the specified name, the behavior is undefined.

— The callback method must meet the following conditions:

— It must not be a time-consuming method.

— It must have a return type.

— It must either have no parameters, or have exactly one parameter of type any_unit which is
not passed by reference.

If any of these conditions is not met, the behavior is undefined

Example

In this example, the attribute destination is calculated by a hook method

extend frame_monitor {
connect_pointers() is also {

var tr_cfg:recording_config = new;
tr_cfg.register_field_attributes("frame",{"addr";});
tr_cfg.register_method_attribute("frame","destination");
assign_recording_config(tr_cfg)

}
}

extend frame {
destination(scope: any_unit): uint is {

if scope is a frame_monitor (m) then {
result = append(m.base_addr + me.addr)

}
}

}

25.9.2.1.9 register_method_state_var()

Notes

— Upon the execution of msg_changed(), the hook method by the specified name is called on the
scope unit. The value returned from the call becomes the value of the state variable.

— If the unit does not have a declared method by the specified name, the behavior is undefined.

— The callback method must meet the following conditions:

Purpose
Defines a state variable, the value of which is determined dynamically by the specified unit hook
method. The value is sampled by calling the hook method upon the execution of
msg_changed() when the scope unit is of the specified type.

Category Predefined method

Syntax register_method_state_var(unit-name: string, method-name: string)

Parameters
unit-name Name of a unit type, including “when” subtypes and template instances

method-name Name of a method declared for the unit

IEEE
Std 1647-2011 IEEE STANDARD

332 Copyright © 2011 IEEE. All rights reserved.

— It must not be a time-consuming method.

— It must have a return type.

— It must have no parameters.

If any of these conditions is not met, the behavior is undefined.

25.9.2.1.10 set_attribute_format()

Notes

— When an attribute format is set using this method, the attribute value is formatted using the specified
format string prior to being displayed at destinations.

— The string specified by format must be a valid format string that contains exactly one “%...”
parameter applicable to the attribute type (see 29.7.3). If this condition is not met, the behavior is
undefined.

Example

In this example, the attribute addr is set to be displayed in the hexadecimal format.

extend frame_monitor {
connect_pointers() is also {

var tr_cfg:recording_config = new;
tr_cfg.register_field_attribute("frame","addr");
tr_cfg.set_attribute_format("frame","addr","%#x");
assign_recording_config(tr_cfg)

}
}

25.9.2.1.11 set_attribute_sampling()

Purpose Determines the textual format in which an already registered attribute is to be displayed.

Category Predefined method

Syntax set_attribute_format(type-name: string, attr-name: string, format: string)

Parameters

type-name Any struct type name, including “when” subtypes and template instances

attr-name Registered attribute name for the given struct type. The behavior is not
defined for the case that attribute attr-name is not registered within this
recording_config object.

format Format string to be used.

Purpose Determines that an already registered attribute is to be sampled and recorded at the specified sam-
pling points.

Category Predefined method

Syntax set_attribute_sampling(type-name: string, attr-name: string, points: list of tr_sampling_point_t)

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 333

25.9.2.1.12 set_label_attribute()

Note: The actual effect of this setting is implementation dependent. Typically it only affects the
implementation-specific transaction database (see 25.9.2.5.3).

25.9.2.1.13 set_text_attribute()

Note: This setting does not affect destinations other than screen and log files.

Parameters

type-name Any struct type name, including “when” subtypes and template instances

attr-name Registered attribute name for the given struct type. The behavior is not
defined for the case that attribute attr-name is not registered within this
recording_config object.

points A list of zero or more values representing structured message sampling
points.
The sampling points correspond to different roles of the data item within
structured messages. The setting for the specified attribute overrides the pre-
vious setting.
The possible sampling points are item of predefined type
tr_sampling_point_t (see 25.9.2.4).
The default setting for all attributes is the element list {STARTED;
ENDED}.

Purpose Sets an already registered attribute as the transaction label for transaction of the given type.

Category Predefined method

Syntax set_label_attribute(type-name: string, attr-name: string)

Parameters

type-name Any struct type name, including “when” subtypes and template instances

attr-name Registered attribute name for the given struct type. The behavior is not
defined for the case that attribute attr-name is not registered within this
recording_config object.

Purpose Determines that an already registered attribute is to be written to text destinations (screen and log
files).

Category Predefined method

Syntax set_text_attribute(type-name: string, attr-name: string)

Parameters

type-name Any struct type name, including “when” subtypes and template instances

attr-name Registered attribute name for the given struct type. The behavior is not
defined for the case that attribute attr-name is not registered within this
recording_config object.

IEEE
Std 1647-2011 IEEE STANDARD

334 Copyright © 2011 IEEE. All rights reserved.

25.9.2.1.14 set_text_state_var()

Note: This setting does not affect destinations other than screen and log files.

25.9.2.2 any_unit Recording Configuration API extensions

This section contains the Recording Configuration methods belonging to any_unit.

25.9.2.2.1 assign_recording_config()

25.9.2.2.2 get_recording_config()

Purpose Determines that an already registered state variable is written to text destinations (screen and log
files).

Category Predefined method

Syntax set_text_state_var(unit-name: string, var-name: string)

Parameters

unit-name Name of a unit type (including “when” subtypes and template instances)

var-name Registered state variable name for the given unit type. The behavior is not
defined for the case that state variable var-name is not registered within this
recording_config object.

Purpose
Assigns the given recording_config object to this unit instance. This also affects the configura-
tion of all descendant units that have not been assigned a recording_config object explicitly, or
associated with one through a closer parent.

Category Predefined method

Syntax assign_recording_config(rec: recording_config)

Parameters rec The recording_config object to be assigned to the unit instance tree under and
including the current unit.

Purpose

Returns the recording_config object that is associated with this unit instance. A unit is associ-
ated with a recording_config object either by explicit assignment using
assign_recording_config() (see 25.9.2.2.1), or otherwise inherits the association from its
parent unit (recursively). Units with no parent unit(e.g., sys) are associated by default with an
empty recording_config object.

Category Predefined method

Syntax get_recording_config(): recording_config

Return value The recording_config object that is associated with this unit instance.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 335

25.9.2.2.3 tr_get_state_var_value()

Note: The default value returned by this method is "" (an empty string).

25.9.2.3 any_struct Recording Configuration API extensions

This section contains the Recording Configuration methods belonging to any_struct.

25.9.2.3.1 tr_get_attribute_value()

Note: The default value returned by this method is "" (an empty string).

Example 1

In this example, the tr_get_attribute_value() callback method is extended to calculate and return the frame
address when the message is emitted by the monitor:

Purpose

Callback method that returns the value of a registered callback state variable for this unit instance.
It is invoked on scope units for which the state variable was registered upon execution of
msg_changed(). (see “register_callback_state_var()”). The value returned by it is written to
the message destination.

Category Predefined method

Syntax tr_get_state_var_value(attr-name: string): string

Parameters attr-name Name of the registered attribute

Return value Value of a registered state variable.

Purpose

Callback method that returns the value of a registered callback attribute. When called on a non-
unit struct with a unit parameter, it returns the value of the callback attribute for this data-item
instance in the given scope unit. When called on a unit with a non-unit struct parameter, it returns
the value of the callback attribute for the given data-item instance in this scope unit. (It is never
called on a non-unit struct with a non-unit struct parameter.)
It is invoked on data-item instances for which the attribute was registered at the appropriate sam-
pling points by calling register_callback_attribute() (see
“register_callback_attribute()”).

Category Predefined method

Syntax tr_get_attribute_value(inst: any_struct, attr-name: string): string

Parameters

inst Depending on usage, either of the following:
— Reference to the data item instance that is being considered (when

called on a scope unit)

— Reference to the unit in the scope where the attribute should be eval-
uated (when called on a data item instance).

attr-name Name of the registered attribute.

Return value String value of a registered attribute specified by attr-name.

IEEE
Std 1647-2011 IEEE STANDARD

336 Copyright © 2011 IEEE. All rights reserved.

extend frame {
tr_get_attribute_value(scope: any_struct, attr_name: string): string is also
{
if scope is a monitor (m) {

if attr_name == "address" then {
result = append(m.base_addr + header.addr);

};
if attr_name == "direction" then {

result = append(header.dir);
};

};
};

};

Example 2

In this example, the attribute destination is calculated by the monitor when the message is recorded.

extend frame_monitor {
tr_get_attribute_value(inst: any_struct, name: string): string is also {

if inst is a frame (f) and name == "destination" then {
result = append(me.base_addr + f.addr);

};
};

};

25.9.2.4 tr_sampling_point_t

This enumerated type is used by set_attribute_sampling() (see 25.9.2.1.11) to define sampling points for
data item attributes. Possible sampling points are:

— STARTED – The data-item argument of msg_started()

— ENDED – The data-item argument of msg_ended()

— TRANSFORMED – The from-item (first) or to-item (second) argument of msg_transformed()

— CHANGED – State variables of the scope unit, used with msg_changed()

— INFO – The data-item arguments of msg_info()

25.9.2.5 message_manager API

All methods presented in this section belong to the message_manager predefined type. There is a singleton
object of this type, the instance of which is under global.

25.9.2.5.1 set_screen_messages

Purpose
Selects which messages from the unit and its subtree with the specified tag will be sent to the
screen destination. The selection is done according to the verbosity, modules, and text-pattern
parameters

Category Predefined method

Syntax set_screen_messages(root-unit: any_unit, tag: message_tag, verbosity: message_verbosity [,
modules: string [, text_pattern: string [, rec: bool]]])

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 337

Example

extend my_env {
post_generate() is also {

message_manager.set_screen_messages(me.the_agent.the_monitor, NORMAL,
HIGH);

};
};

25.9.2.5.2 set_screen_messages_off

Example

Parameters

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

verbosity Highest verbosity level for messages. A given message is issued to the screen
only if its verbosity is equal to or lower than the specified verbosity.
Valid values are: NONE, LOW, MEDIUM, HIGH, and FULL.

modules String pattern used for matching module names (wild cards permitted). A
given message is issued to the screen only if it is defined in the specified mod-
ule(s). Default value is “*” which matches any module name.

text_pattern String pattern used for matching the message text (default = “...” which
matches any string). A given message is issued to the screen only if its mes-
sage string matches the specified text-pattern string (see 4.11). For SDMs, the
ID string is considered as the message string for this purpose.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

Purpose Disables the sending of messages with the specified tag to the screen destination

Category Predefined method

Syntax set_screen_messages_off(root-unit: any_unit, tag: message_tag [, rec: bool])

Parameters

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

IEEE
Std 1647-2011 IEEE STANDARD

338 Copyright © 2011 IEEE. All rights reserved.

extend my_env {
post_generate() is also {

message_manager.set_screen_messages_off(me, NORMAL);
};

};

25.9.2.5.3 set_transaction_messages

Example

extend my_env {
post_generate() is also {

message_manager.set_transaction_messages(me.the_agent.the_monitor,
NORMAL, HIGH);

};
};

25.9.2.5.4 set_transaction_messages_off

Purpose
Selects which SDM transaction messages from the unit and its subtree with the specified tag will
be sent to an implementation specific transaction database. The selection is done according to the
verbosity, modules, and text-pattern parameters

Category Predefined method

Syntax set_transaction_messages(root-unit: any_unit, tag: message_tag, verbosity: message_verbosity
[, modules: string [, text_pattern: string [, rec: bool]]])

Parameters

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

verbosity Highest verbosity level for messages. A given message is issued to the trans-
action database only if its verbosity is equal to or lower than the specified ver-
bosity.
Valid values are: NONE, LOW, MEDIUM, HIGH, and FULL.

modules String pattern used for matching module names (wild cards permitted). A
given message is issued to the transaction database only if it is defined in the
specified module(s). Default value is “*” which matches any module name.

text_pattern String pattern used for matching the message text (default = “...” which
matches any string). A given message is issued to the transaction database
only if its message string matches the specified text-pattern string (see 4.11).
For SDMs, the ID string is considered as the message string for this purpose.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

Purpose Disables the sending of messages with the specified tag to an implementation specific transaction
database.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 339

Example

extend my_env {
post_generate() is also {

message_manager.set_transaction_messages_off(me, NORMAL);
};

};

25.9.2.5.5 set_file_messages

Category Predefined method

Syntax set_transaction_messages(root-unit: any_unit, tag: message_tag [, rec: bool])

Parameters

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

Purpose
Selects which messages from the unit and its subtree with the specified tag will be sent to the
specified log file. The selection is done according to the verbosity, modules, and text-pattern
parameters.

Category Predefined method

Syntax set_file_messages(file-name: string, root-unit: any_unit, tag: message_tag, verbosity:
message_verbosity [, modules: string [, text_pattern: string [, rec: bool]]])

IEEE
Std 1647-2011 IEEE STANDARD

340 Copyright © 2011 IEEE. All rights reserved.

25.9.2.5.6 set_file_messages_off

25.9.2.5.7 set_message_format

Parameters

file-name Log file to which the new setting will be applied.

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

verbosity Highest verbosity level for messages. A given message is issued to the screen
only if its verbosity is equal to or lower than the specified verbosity.
Valid values are: NONE, LOW, MEDIUM, HIGH, and FULL.

modules String pattern used for matching module names (wild cards permitted). A
given message is issued to the file only if it is defined in the specified mod-
ule(s). Default value is “*” which matches any module name.

text_pattern String pattern used for matching the message text (default = “...” which
matches any string). A given message is issued to the file only if its message
string matches the specified text-pattern string (see 4.11). For SDMs, the ID
string is considered as the message string for this purpose.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

Purpose Disables the sending of messages with the specified tag to the log file.

Category Predefined method

Syntax set_file_messages_off(file-name: string, root-unit: any_unit, tag: message_tag [, rec: bool])

Parameters

file-name Log file to which the new setting will be applied.

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

Purpose Modifies the format of messages that are issued by the specified unit or unit subtree with the spec-
ified tag when sending them to the specified text destination(s).

Category Predefined method

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 341

Example

unit my_env {
post_generate() is also {

message_manager.set_message_format(me, NORMAL, {}, long);
};

};

25.9.2.6 message_format

This enumerated type defines possible message formats, used when messages are sent to text destinations. It
is used in set_message_format() to set the format to be used by messages from a given unit or unit tree with
a given tag. It is also used in create_formatted_message() hook method to identify which formatting option
should be applied to the current message.

Predefined values are short, long and none. One can extend this type to include specific user-defined
formatting.

25.9.2.7 message_action

The predefined struct type message_action represents a specific actual message that occurs during a run. It
is used in create_formatted_message() and provides information about the current message.

Predefined methods of message_action are described in the following subsections.

25.9.2.7.1 get_id()

Syntax
set_message_format(root-unit: any_unit, tag: message_tag, file-names: list of string, format:
message_format [, rec: bool])

Parameters

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

file-names List of file names to which the new format settings will be applied. An empty
string in the list denotes the screen. If the entire list is empty, the new settings
will be applied to all text destinations.

format Format to be used for messages. Valid predefined values: none, short, and
long. Other values can be added by extending the message_format type (see
25.9.2.6).
none specifies no additions to the bare message text. Any styles implied by
the other formats are implementation-dependent.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

Description Get the message's unique id

Category Predefined method

IEEE
Std 1647-2011 IEEE STANDARD

342 Copyright © 2011 IEEE. All rights reserved.

25.9.2.7.2 get_tag()

25.9.2.7.3 get_verbosity()

25.9.2.7.4 get_source_method_layer()

25.9.2.7.5 get_source_line_num()

25.9.2.7.6 get_source_struct()

Syntax get_id(): int

Return value Unique id of this message action.

Description Get the message tag.

Category Predefined method

Syntax get_tag(): message_tag

Return value Tag of this message.

Description Get the message verbosity.

Category Predefined method

Syntax get_verbosity(): message_verbosity

Return value Verbosity of this message.

Description Get the source method layer of a message.

Category Predefined method

Syntax get_source_method_layer(): rf_ method_layer

Return value Method layer in which this message action resides.

Description Get the source line number of a message.

Category Predefined method

Syntax get_source_line_num(): int

Return value Source line number in which this message action resides.

Description Get the actual struct instance that issued the message.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 343

25.9.2.7.7 get_time()

25.9.2.7.8 get_format()

25.9.2.7.9 get_sdm_handler()

25.9.2.8 sdm_handler

The predefined struct type sdm_handler represents SDM-specific data on messages. It is used in
create_formatted_message() and provides additional information about the current message.

sdm_handler is an abstract class, and each SDM kind is represented by its subtype. Predefined fields and
methods of sdm_handler, common to all SDM kinds, are described in the following subsections.

25.9.2.8.1 Predefined fields

— scope: any_unit

The unit instance to which the message belongs. By default, it is the unit in the context of which the
message is executed; this can be modified in the message's optional action block (see Table 39).

Category Predefined method

Syntax get_source_struct(): any_struct

Return value Struct instance that issued the message.

Description Get the message time.

Category Predefined method

Syntax get_time(): string

Return value Properly formatted string for the current value of sys.time.

Description Get the message format.

Category Predefined method

Syntax get_format(): message_format

Return value Format being used for this message.

Description Get the SDM handler.

Category Predefined method

Syntax get_sdm_handler(): sdm_handler

Return value The sdm_handler object for this message, or NULL if this message is not SDM (see 25.9.2.8).

IEEE
Std 1647-2011 IEEE STANDARD

344 Copyright © 2011 IEEE. All rights reserved.

— id_str: string

The msg-id string, as specified in the SDM action.

— body_text: string

The text assigned in the optional action block (see Table 39), or an empty string if none.

25.9.2.8.2 get_kind_string()

25.9.2.8.3 get_attribute_string()

25.9.2.8.4 collect_text_attributes()

This method collects the names and printed string values of the text attributes for the specified data object
inst, and adds them to the two provided lists, names and values respectively. Both lists are cleaned before
collecting attributes, and any items present in them prior to calling this method are removed.

Note: Text attributes are those for which set_text_attribute() was called (see 25.9.2.1.13); or in case of
msg_changed those for which set_text_state_var() was called (see 25.9.2.1.14).

25.9.2.9 sdm_started_handler

This inherits from sdm_handler (see 25.9.2.8) and represents msg_started actions.

25.9.2.9.1 Predefined fields

— data_item: any_struct

Description Get the SDM handler.

Category Predefined method

Syntax get_kind_string(): string

Return value
String representing the SDM kind. For example, “started” for msg_started, “changed” for
msg_changed.

Description Get string representation for text attributes.

Category Predefined method

Syntax get_attribute_string(inst: any_struct): string

Return value

The string to display the registered text attributes for the specified data object (or an empty string
if there are no text attributes) after registering them. Text attributes are those for which
set_text_attribute() was called (see 25.9.2.1.13); or in case of msg_changed those for which
set_text_state_var() was called (see 25.9.2.1.14).

Description Collect text attributes and their values.

Category Predefined method

Syntax collect_text_attributes(inst: any_struct, names: list of string, values: list of string)

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 345

Data item object specified in the msg_started action.

— parent: any_struct

Parent transaction object specified in the optional action block, or NULL if none.

25.9.2.10 sdm_ended_handler

This inherits from sdm_handler (see 25.9.2.8) and represents msg_ended actions.

25.9.2.10.1 Predefined fields

— data_item: any_struct

Data item object specified in the msg_ended action.

— parent: any_struct

Parent transaction object specified in the optional action block, or NULL if none.

— start_time: time

Start time specified in the optional action block, or UNDEF if none.

25.9.2.11 sdm_transformed_handler

This inherits from sdm_handler (see 25.9.2.8) and represents msg_transformed actions.

25.9.2.11.1 Predefined fields

— from_item: any_struct

First data item object specified in the msg_transformed action.

— to_item: any_struct

Second data item object specified in the msg_transformed action.

25.9.2.12 sdm_changed_handler

This inherits from sdm_handler (see 25.9.2.8) and represents msg_changed actions.

25.9.2.12.1 Predefined fields

— new_state: string

State string specified in the msg_changed action.

25.9.2.13 sdm_info_handler

This inherits from sdm_handler (see 25.9.2.8) and represents msg_transformed actions.

25.9.2.13.1 Predefined fields

— item1: any_struct

First data item object specified in the msg_info action, or NULL if none.

— item2: any_struct

Second data item object specified in the msg_info action, or NULL if none.

IEEE
Std 1647-2011 IEEE STANDARD

346 Copyright © 2011 IEEE. All rights reserved.

25.9.2.14 any_unit message API

25.9.2.14.1 create_formatted_messsage()

Notes:

— By default this method does not modify the original content of buffer, when get_format() of mes-
sage is none or a user-defined value. When get_format() of message is short or long, the result is
implementation-dependent.

— There are no guarantees on the number of times this method is actually called for a given message.
Thus, if an extension of this method produces any side effects (other than the actual message format-
ting), the behavior is undefined.

— If a user extension of create_formatted_message() uses is also, the content of buffer at the begin-
ning of the user's extension contains the default formatting. If it uses is only, the default formatting is
not performed, and the content of buffer is just the base text of the message.

Example

extend message_format: [MY_FORMAT};
unit env_u {

post_generate() is also {
message_manager.set_message_format(me, MY_TAG, {},MY_FORMAT);

};
};

extend any_unit {
create_formatted_message(message: message_action, buffer: list of string)
is also {

if message.get_format() == MY_FORMAT {
var src_module: rf_module =
message.get_source_method_layer().get_module();
var src: string = append("at line ",
message.get_source_line_num(),
" in @",
src_module.get_name()); outf("sys.time is %s\n", get_time());
buffer.add0(src); buffer.add0(append("sys.time is %s\n",
message.get_time()));

};
};

};

Description This method is a hook (callback) predefined method used for implementing user-defined format-
ting on message output to text destinations.

Category Predefined method

Syntax create_formatted_message(message: message_action, buffer: list of string)

Parameters

message Object that represents that current message being issued. (see 25.9.2.7)

buffer Buffer for the formatted message. At the start of this method, buffer contains
the base text of the message before formatting.

