
IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 347

27. List pseudo-methods library

This clause describes the pseudo-methods used to work with lists.

27.1 Pseudo-methods overview

A pseudo-method is a type of method unique to the e language. Pseudo-methods are e macros that look like
methods. They have the following characteristics:

— Unlike methods, pseudo-methods are not restricted to structs.

— They can be applied to any expression, including literal values, scalars, and compound arithmetic
expressions.

— Pseudo-methods cannot be extended.

— Pseudo-methods are defined by using define as (see 16.2).

— List pseudo-methods are associated with list data types, as opposed to being within the scope of a
struct.

If a method is added that uses the same name as one of the pseudo-methods for a built-in struct, that user-
defined method shall take precedence over the built-in struct.

See also 4.10.5, 4.15, 5.1, and Clause 28.

27.2 Using list pseudo-methods

A list pseudo-method can be used to operate on a (previously declared) list field or variable by attaching the
pseudo-method name, preceded by a period (.), to the list name. Any parameters required by the pseudo-
method go in parentheses [()] after the pseudo-method name.

Example

The following calls the apply() pseudo-method for the list named p_list, with the expression .length
+ 2 as a parameter. The pseudo-method returns a list of numbers found by adding 2 to the length field
value in each item in the list.

n_list = p_list.apply(.length + 2)

Many list pseudo-methods take expressions as parameters and operate on every item in the list. In those
pseudo-methods, the it variable can be used in an expression to refer to the current list item, and the index
variable can be used to refer to the current item’s list index number.

Pseudo-methods that return values can only be used in expressions.

27.3 Pseudo-methods to modify lists

This subclause describes the pseudo-methods that change one or more items in a list.

See also 4.16.2, 10.5.1, 20.1.2, 28.4.1, and 29.1.1.

IEEE
Std 1647-2011 IEEE STANDARD

348 Copyright © 2011 IEEE. All rights reserved.

27.3.1 add(item)

This adds the item to the end of the list. If the item is a struct, no new struct instance is generated; a pointer
to the existing instance of the struct is simply added to the list.

Syntax example:

var i_list : list of int;
i_list.add(5)

27.3.2 add(list)

This adds a copy of list_2 to the end of list_1.

Syntax example:

i_list.add(l_list)

Purpose Add an item to the end of a list

Category Pseudo-method

Syntax list.add(item: list-item-type)

Parameters

list A list.

item An item of list-item type, which is to be added to the list. The item is added at
index list.size(), e.g., if the list contains five items, the last item is at
index list.size()-1 or 4. Adding an item to this list places it at index 5.

Return value None

Purpose Add a list to the end of another list

Category Pseudo-method

Syntax list_1.add(list_2: list)

Parameters

list_1 A list.

list_2 An item of the same type as list_1, which is to be added to the end of list_1.
The list is added at index list.size(), e.g., if the list contains five items,
the last item is at index list.size()-1 or 4. Adding an item to this list
places it at index 5.

Return value None

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 349

27.3.3 add0(item)

This adds a new item to an existing list. The item is placed at the head of the existing list, as the first position
(that is, at index 0). All subsequent items are then reindexed by incrementing their old index by 1.

If the item is a struct, no new struct instance is generated: a pointer to the existing instance of the struct is
simply added to the list.

Syntax example:

var l_list : list of int = {4; 6; 8};

l_list.add0(2)

27.3.4 add0(list)

This adds a new list to an existing list. A copy of the list_2 list is placed at the head of the existing list_1 list,
starting at the first list_1 index. All subsequent items are then reindexed by incrementing their old index by
the size of the new list being added.

Syntax example:

var i_list : list of int = {1; 3; 5};

var l_list : list of int = {2; 4; 6};

i_list.add0(l_list)

Purpose Add an item to the head of a list

Category Pseudo-method

Syntax list.add0(item: list-type)

Parameters

list A list.

item An item of the same type as the list items, which is to be added to the head of
the list.

Return value None

Purpose Add a list to the head of another list

Category Pseudo-method

Syntax list_1.add0(list_2: list)

Parameters

list_1 A list.

list_2 An item of the same type as list_1, which is to be added to the end of list_1 (at
list_1 index 0).

Return value None

IEEE
Std 1647-2011 IEEE STANDARD

350 Copyright © 2011 IEEE. All rights reserved.

27.3.5 clear()

This deletes all items in the list.

27.3.6 delete()

This removes item number index from list (indexes start counting from 0). The indexes of the remaining
items are adjusted to keep the numbering sequential. If the index does not exist in the list, an error shall be
issued.

NOTE—list.delete() cannot be used to delete a range of items (in a single call).

Syntax example:

var i_list : list of int = {2; 4; 6; 8};
i_list.delete(2)

Purpose Delete all items from a list

Category Pseudo-method

Syntax list.clear()

Parameters list A list.

Return value None

Purpose Delete an item from a list

Category Pseudo-method

Syntax list.delete(index: int)

Parameters
list A list.

index The index of the item to delete from the list.

Return value None

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 351

27.3.7 fast_delete()

This removes item number index from list (indexes start counting from 0). The index of the last item in the
list is changed to the index of the item that was deleted, so all items following the deleted item keep their
original indexes, except the original last index is removed. If the index does not exist in the list, an error
shall be issued.

Syntax example:

var l_list : list of int = {2; 4; 6; 8};

l_list.fast_delete(2)

27.3.8 insert(index, item)

This inserts the item at the index location in the list. If index is the size of the list, then the item is simply
added at the end of the list. All indexes in the list are adjusted to keep the numbering correct. If the number
of items in the list is smaller than index, an error shall be issued.

If the item is a struct, no new struct instance is generated: a pointer to the existing instance of the struct is
simply added to the list.

Syntax example:

var l_list := {10; 20; 30; 40; 50};

l_list.insert(3, 99)

Purpose Delete an item without adjusting all indexes

Category Pseudo-method

Syntax list.fast_delete(index: int)

Parameters
list A list.

index The index of the item to delete from the list.

Return value None

Purpose Insert an item in a list at a specified index

Category Pseudo-method

Syntax list.insert(index: int, item: list-type)

Parameters

list A list.

index The index in the list where the item is to be inserted.

item An item of the same type as the list.

Return value None

IEEE
Std 1647-2011 IEEE STANDARD

352 Copyright © 2011 IEEE. All rights reserved.

27.3.9 insert(index, list)

This inserts all items of list_2 into list_1 starting at index. The index shall be a positive integer. The size of
the new list size is equal to the sum of the sizes of list_1 and list_2. If the number of items in list_1 is smaller
than index, an error shall be issued.

Syntax example:

var l_list := {10; 20; 30; 40; 50};

var m_list := {11; 12; 13};

l_list.insert(1, m_list)

27.3.10 pop()

This removes the last item [the item at index list.size() - 1] in the list and returns it. If the list is
empty, an error shall be issued.

NOTE—list.top() can be used to return the last item in list without removing it from the list (see 27.4.26).

Syntax example:

var i_list := {10; 20; 30};

var i_item : int;

i_item = i_list.pop()

Purpose Insert a list in another list starting at a specified index

Category Pseudo-method

Syntax list_1.insert(index: int, list_2: list)

Parameters

list_1 A list.

index The index of the position in list_1 where list_2 is to be inserted.

list_2 The list to insert into list_1.

Return value None

Purpose Remove and return the last list item

Category Pseudo-method

Syntax list.pop(): list-type

Parameters list A list.

Return value The last item

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 353

27.3.11 pop0()

If the list is empty, this method shall issue an error. Otherwise, it removes the first item (the item at index 0)
from the list and returns that item. It then subtracts 1 from the index of each item remaining in the list.

NOTE—list.top0() can be used to return the first item in list without removing it from the list (see 27.4.27).

Syntax example:

var i_list := {10; 20; 30};
var i_item : int;
i_item = i_list.pop0()

27.3.12 push()

This pseudo-method performs the same function as add(item) (see 27.3.1). If the item is a struct, no new
struct instance is generated; a pointer to the existing instance of the struct is simply added to the list.

Syntax example:

var i_list : list of int;
i_list.push(5)

Purpose Remove and return the first list item

Category Pseudo-method

Syntax list.pop0(): list-type

Parameters list A list.

Return value The first item

Purpose Add an item to the end of a list [same as add(item)]

Category Pseudo-method

Syntax list.push(item: list-type)

Parameters

list A list.

item An item of the same type as the list type, which is to be added to the list. The
item is added at index list.size(), e.g., if the list contains five items, the
last item is at index list.size()-1 or 4. Adding an item to this list
places it at index 5.

Return value None

IEEE
Std 1647-2011 IEEE STANDARD

354 Copyright © 2011 IEEE. All rights reserved.

27.3.13 push0()

This pseudo-method performs the same function as add0(item) (see 27.3.3). If the item is a struct, no new
struct instance is generated; a pointer to the existing instance of the struct is simply added to the list.

Syntax example:

var l_list : list of int = {4; 6; 8};
l_list.push0(2)

27.3.14 push(list)

This pseudo-method performs the same function as add(list) (see 27.3.2); it adds list_2 to the end of list_1.

Syntax example:

i_list.push(l_list)

Purpose Add an item to the head of a list [same as add0(item)]

Category Pseudo-method

Syntax list.push0(item: list-type)

Parameters

list A list.

item An item of the same type as the list items, which is to be added to the head of
the list.

Return value None

Purpose Add a list to the end of another list [same as add(item)]

Category Pseudo-method

Syntax list_1.push(list_2: list)

Parameters

list_1 A list.

list_2 An item of the same type as list_1, which is to be added to the end of list_1.
The list is added at index list.size(), e.g., if the list contains five items,
the last item is at index list.size()-1 or 4. Adding an item to this list
places it at index 5.

Return value None

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 355

27.3.15 push0(list)

This pseudo-method performs the same function as add0(list) (see 27.3.4); it adds a new list to an existing
list. The list_2 list is placed at the head of the existing list_1 list, starting at the first list_1 index. All
subsequent items are then reindexed by incrementing their old index by the size of the new list being added.

Syntax example:

var i_list : list of int = {1; 3; 5};

var l_list : list of int = {2; 4; 6};

i_list.push0(l_list)

27.3.16 resize()

This clears the list and increases or decreases the list size according to the new size.

— If only the second parameter, size, is used, this method allocates a new list of the given size and all
items are initialized to the default value for the list type.

— If any of the three parameters after size are used, all three of them shall be used.

— If full is TRUE, this method sets all new items to have filler as their value.

Purpose Add a list to the head of another list [same as add0(list)]

Category Pseudo-method

Syntax list_1.push0(list_2: list)

Parameters

list_1 A list.

list_2 An item of the same type as list_1, which is to be added to the end of list_1 (at
list_1 index 0).

Return value None

Purpose Change the size of a list

Category Pseudo-method

Syntax list.resize(size: int [, full: bool, filler: exp, keep_old: bool])

Parameters

list A list.

size A positive integer specifying the desired size.

full A Boolean value specifying all items are to be filled with filler (defaults to
TRUE).

filler An item of the same type of the list items; used as a filler when full is TRUE.

keep_old A Boolean value specifying whether to keep existing items already in the list
(defaults to FALSE).

Return value None

IEEE
Std 1647-2011 IEEE STANDARD

356 Copyright © 2011 IEEE. All rights reserved.

To resize a list and keep its old values, set both full and keep_old to TRUE. If the list is made longer,
additional items with the value of filler are appended to the list. The following details the behavior of this
method for all combinations of full and keep_old:

a) full is FALSE, keep_old is FALSE

An empty list (that is, a list of zero size) is created and memory is allocated for a list of the given
size.

b) full is TRUE, keep_old is FALSE

The list is resized to size and filled completely with filler.

c) full is FALSE, keep_old is TRUE

1) If size is greater than the size of the existing list, the list is enlarged to the new size, and the new
positions are filled with the default value of the list type.

2) If size is less than or equal to the size of the existing list, the list is shortened to the new size,
and all of the existing values up to that size are retained.

d) full is TRUE, keep_old is TRUE

1) If size is greater than the size of the existing list, the list is enlarged to the new size and the new
positions are filled with filler.

2) If size is less than or equal to the size of the existing list, the list is shortened to the new size and
all of the existing values up to that size are retained.

Syntax example:

var r_list := {2; 3; 5; 6; 8; 9};
r_list.resize(10, TRUE, 1, TRUE)

27.4 General list pseudo-methods

This subclause describes the syntax for pseudo-methods that perform various operations on lists.

27.4.1 all_different()

Returns TRUE if, and only if, evaluation of the expression returns a unique value for each of the list
elements, except (if bool_exp is specified) those elements for which bool_exp evaluates to FALSE. In other
words, no two items (or expressions) in the list for which the bool_exp is TRUE (which is the default if no
bool_exp is specified) have the same value.

Purpose Returns TRUE if evaluation of the expression returns a unique value for each of the list elements

Category Pseudo-method

Syntax list.all_different(item: exp [, bool_exp: bool]): bool

Parameters

list A list.

item Any expression. The it variable can be used to refer to the current list item,
and the index variable can be used to refer to its index number.

bool_exp Any Boolean expression. Optional. The it variable can be used to refer to the
current list item, and the index variable can be used to refer to its index num-
ber. If not given in the method call, defaults to TRUE

Return value A Boolean value

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 357

Syntax example:

struct packet {

x: byte;

y: byte;

};

extend sys {

packets: list of packet;

keep packets.all_different(.x+.y);

L:list of uint;

keep L.all_different(it);

};

var l: list of int = {UNDEF,3,2,1,UNDEF,4,UNDEF,6};

print l.all_different(it , it != UNDEF);

Prints TRUE because all the elements that are different from UNDEF are also different from each other.

27.4.2 apply()

This applies the expr to each item in the list and returns the changed list. The expression list.apply(it.field) is
the same as list.field when field is a scalar type. The two expressions are different, however, if the field is not
a scalar.

Example

Assuming data is a list of byte, the first expression returns a list containing the first byte of data of each
packet item. The second expression is a single item, which is the first item in the concatenated list of all
data fields in all packet items.

packets.apply(it.data[0]);

packets.data[0]

Syntax example:

var p_list := {1; 3; 5};

var n_list : list of int;

n_list = p_list.apply(it * 2)

Purpose Perform a computation on each item in a list

Category Pseudo-method

Syntax list.apply(expr: exp): list

Parameters

list A list.

expr Any expression. The it variable can be used to refer to the current list item,
and the index variable can be used to refer to its index number.

Return value The changed list

IEEE
Std 1647-2011 IEEE STANDARD

358 Copyright © 2011 IEEE. All rights reserved.

27.4.3 copy()

This is a specific case of exp.copy() (see 28.4.1), where exp is the name of a list.

Syntax example:

var strlist_1 : list of string = {"A"; "B"; "C"};
var strlist_2 : list of string;
strlist_2 = strlist_1.copy()

27.4.4 count()

This returns the number of items for which the exp is TRUE.

Purpose Make a shallow copy of a list

Category Predefined method of any struct or unit

Syntax list.copy(): list

Parameters list A list.

Return value None

Purpose Return the number of items that satisfy a given condition

Category Pseudo-method

Syntax list.count(exp: bool): int

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The number of items

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 359

Syntax example:

var ct : int;

ct = instr_list.count(it.op1 > 200)

27.4.5 exists()

This returns TRUE if an item with the index number exists in the list or returns FALSE if the index does not
exist.

Syntax example:

var i_chk : bool;

i_chk = packets.exists(5)

27.4.6 first()

This returns the first item for which exp is TRUE and stops executing.

If there is no such item, the default for the item’s type is returned (see 5.1). For a list of scalars, a value of
zero (0) is returned if there is no such item. Since zero (0) might be confused with a value found, it is safer
to use list.first_index() for lists of scalars.

Syntax example:

var i_item : instr;

i_item = instr_list.first(it.op1 > 15)

Purpose Check if an index exists in a list

Category Pseudo-method

Syntax list.exists(index: int): bool

Parameters
list A list.

index An integer expression representing an index to the list.

Return value A Boolean value

Purpose Get the first item that satisfies a given condition

Category Pseudo-method

Syntax list.first(exp: bool): list-type

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The first matching item

IEEE
Std 1647-2011 IEEE STANDARD

360 Copyright © 2011 IEEE. All rights reserved.

27.4.7 first_index()

This returns the index of the first item for which exp is TRUE and stops executing. Otherwise, it returns
UNDEF (if there is no such item).

Syntax example:

var i_item : int;
i_item = instr_list.first_index(it.op1 > 15)

27.4.8 flatten()

Returns a regular (one-dimensional) list that contains all the base elements that are contained in the list. If
the multidimensional list is a keyed list, a regular list is still returned.

Syntax example:

Generates a list containing the numbers 1 to 6, with the number 4 twice:

var matrix: list of list of int = {{1;2;3;4};{4;5;6}};
var l: list of int = matrix.flatten();

Purpose Get the index of the first item that satisfies a given condition

Category Pseudo-method

Syntax list.first_index(exp: bool): int

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The index of the first matching item

Purpose Get a list of the base elements that make up the sub-lists in a multi-dimensional list

Category Pseudo-method

Syntax list.flatten(): list

Parameters list A list.

Return value A list

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 361

27.4.9 get_indices()

This copies the items in list that have the indexes specified in index-list and returns a new list containing
those items. If the index-list is empty, an empty list is returned.

Syntax example:

var i_list : list of packet;
i_list = packets.get_indices({0; 1; 2})

27.4.10 has()

This returns TRUE if the list contains at least one item for which the exp is TRUE. Otherwise, it returns
FALSE (if the exp is not TRUE for any item).

Syntax example:

var i_ck : bool;
i_ck = sys.instr_list.has(it.op1 > 31)

Purpose Return a sublist of the targeted list

Category Pseudo-method

Syntax list.get_indices(index-list: list of int): list-type

Parameters
list A list.

index-list A list of indexes within the list. Each index needs to exist in the list.

Return value A new list

Purpose Check that a list has at least one item that satisfies a given condition

Category Pseudo-method

Syntax list.has(exp: bool): bool

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value A Boolean value

IEEE
Std 1647-2011 IEEE STANDARD

362 Copyright © 2011 IEEE. All rights reserved.

27.4.11 is_a_permutation()

This returns TRUE if list_2 contains the same items as list_1; otherwise, it returns FALSE (if any items in
one list are not in the other list).

— The order of the items in the two lists does not need to be the same, but the number of items shall be
the same for both lists, i.e., items that are repeated in one list shall appear the same number of times
in the other list.

— If the lists are lists of structs, list_1.is_a_permutation(list_2) compares the addresses of the struct
items, not their contents.

— A convertible type is one that automatically converts to match the relevant type.

NOTE—This pseudo-method can be used in a keep constraint to fill list_1 with the same items contained in the list_2,
although not necessarily in the same order.

Syntax example:

var lc : bool;

lc = packets_1a.is_a_permutation(packets_1b)

27.4.12 is_empty()

This returns TRUE if list is empty; otherwise, it returns FALSE (if the list is not empty).

Syntax example:

var no_l : bool;

no_l = packets.is_empty()

Purpose Check that two lists contain exactly the same items

Category Pseudo-method

Syntax list_1.is_a_permutation(list_2: list): bool

Parameters
list_1 A list.

list_2 An list to compare to list_1. This shall be a convertible type of list_1.

Return value A Boolean value

Purpose Check if a list is empty

Category Pseudo-method

Syntax list.is_empty(): bool

Parameters list A list.

Return value A Boolean value

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 363

27.4.13 last()

This returns the first item for which exp is TRUE and stops executing.

If there is no such item, the default for the item’s type is returned (see 5.1). For a list of scalars, a value of
zero (0) is returned if there is no such item. Since zero (0) might be confused with a value found, it is safer
to use list.last_index() for lists of scalars.

Syntax example:

var i_item : instr;
i_item = sys.instr_list.last(it.op1 > 15)

27.4.14 last_index()

This returns the index of the last item for which exp is TRUE and stops executing; otherwise, it returns
UNDEF (if there is no such item).

Syntax example:

var i_item : int;
i_item = instr_list.last_index(it.op1 > 15)

Purpose Get the last item that satisfies a given condition

Category Pseudo-method

Syntax list.last(exp: bool): list-type

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The last matching item

Purpose Get the index of the last item that satisfies a given condition

Category Pseudo-method

Syntax list.last_index(exp: bool): int

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The index of the last matching item

IEEE
Std 1647-2011 IEEE STANDARD

364 Copyright © 2011 IEEE. All rights reserved.

27.4.15 max()

This returns the item for which the exp evaluates to the largest value. If more than one item results in the
same maximum value, the item latest in the list is returned. If the list is empty, an error shall be issued.

Syntax example:

var high_item : item_instance;
high_item = item_list.max(it.f_1 + it.f_2)

27.4.16 max_index()

This returns the index of the item for which the exp evaluates to the largest value. If more than one item
results in the same maximum value, the index of item latest in the list is returned. If the list is empty, an error
shall be issued.

Syntax example:

var item_index : index;
item_index = sys.item_list.max_index(it.f_1 + it.f_2)

Purpose Get the item with the maximum value of a given expression

Category Pseudo-method

Syntax list.max(exp: numeric-type): list-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The matching item

Purpose Get the index of the item with the maximum value of a given expression

Category Pseudo-method

Syntax list.max_index(exp: numeric-type): int

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The index of the matching item

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 365

27.4.17 max_value()

This returns the largest integer value found by evaluating the exp for every item in the list.

For lists of integer types, Table 39 shows what is returned when the list is empty.

Syntax example:

var item_val : int;

item_val = sys.item_list.max_value(it.f_1 + it.f_2)

27.4.18 min()

This returns the item for which the exp evaluates to the smallest value. If more than one item results in the
same minimum value, the item latest in the list is returned. If the list is empty, an error shall be issued.

Purpose Return the maximum value found by evaluating a given expression for all items

Category Pseudo-method

Syntax list.max_value(exp: numeric-type): exp-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The matching value

Table 39—Empty list max_value() return values

List item type Value returned

Signed integer MIN_INT (see 4.1.4.4)

Unsigned integer zero (0)

Long integer error

Purpose Get the item with the minimum value of a given expression

Category Pseudo-method

Syntax list.min(exp: numeric-type): list-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The matching item

IEEE
Std 1647-2011 IEEE STANDARD

366 Copyright © 2011 IEEE. All rights reserved.

Syntax example:

var low_item : item_instance;

low_item = sys.item_list.min(it.f_1 + it.f_2)

27.4.19 min_index()

This returns the index of the item for which the specified exp gives the minimal value. If more than one item
results in the same minimum value, the index of the item latest in the list is returned. If the list is empty, an
error shall be issued.

Syntax example:

var item_index : index;

item_index = sys.item_list.min_index(it.f_1 + it.f_2)

27.4.20 min_value()

This returns the smallest integer value found by evaluating the exp for every item in the list.

For lists of integer types, Table 39 shows what is returned when the list is empty.

Syntax example:

var item_val : int;

item_val = sys.item_list.min_value(it.f_1 + it.f_2)

Purpose Get the index of the item with the minimum value of a given expression

Category Pseudo-method

Syntax list.min_index(exp: numeric-type): int

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The index of the matching item

Purpose Return the minimum value found by evaluating a given expression for all items

Category Pseudo-method

Syntax list.min_value(exp: numeric-type): exp-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The matching value

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 367

27.4.21 reverse()

This returns a new list of all the items in list in reverse order.

Syntax example:

var s_list := {"A"; "B"; "C"; "D"};
var r_list := s_list.reverse()

27.4.22 size()

This returns an integer equal to the number of items in the list. See 10.2.7.3 for more information about
constraining the size of lists. See also 4.12.1 and 10.4.1.

NOTE—To control the list size, use a construct like keep list.size() == n, where n is an integer expression. Another way
to specify an exact size of a list is by using the list[n] index syntax in the list declaration, such as p_list[n]: list
of p.

Syntax example:

print packets.size()

Purpose Reverse the order of a list

Category Pseudo-method

Syntax list.reverse(): list

Parameters list A list.

Return value The changed list

Purpose Return the size of a list

Category Pseudo-method

Syntax list.size(): int

Parameters list A list.

Return value The list size

IEEE
Std 1647-2011 IEEE STANDARD

368 Copyright © 2011 IEEE. All rights reserved.

27.4.23 sort()

This returns a new list of all the items in list, sorted in increasing order of the values of the sort-exp. If the
sort-exp is a scalar (or string) value, the list is sorted by value. If the sort-exp is a nonscalar, the list is sorted
by address.

Syntax example:

var s_list : list of packet;
s_list = packets.sort(it.f_1 + it.f_2)

27.4.24 sort_by_field()

This returns a new list of all the items in struct-list, sorted in increasing order of their field values.

NOTE—The list.sort() pseudo-method returns the same value as the list.sort_by_field() pseudo-method, but
list.sort_by_field() is more efficient.

Syntax example:

var s_list : list of packet;
s_list = sys.packets.sort_by_field(length)

Purpose Sort a list

Category Pseudo-method

Syntax list.sort(sort-exp: exp): list

Parameters

list A list of integers, strings, enumerated items, or Boolean values to sort.

sort-exp A scalar or nonscalar expression. The expression can contain references to
fields or structs. The it variable can be used to refer to the current list item.

Return value The changed list

Purpose Sort a list of structs by a selected field

Category Pseudo-method

Syntax struct-list.sort_by_field(field: field-name): list

Parameters

list A list of structs.

field The name of a field of the list’s struct type. Enter the name of the field only,
without a preceding period (.) or the term it.

Return value The changed list

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 369

27.4.25 split()

Since e does not support lists of lists, this pseudo-method returns a list of type struct-list-holder.

— The struct-list-holder type is a struct with a single field, value: list of any-struct.

— A struct-list-holder is a list of structs, with each struct containing a list of items of the original list
type.

— Each struct-list-holder in the returned list contains consecutive items from the list that have the same
split-exp value.

Any fields used in the expression shall be defined in the base type definition, not in when subtypes.

Syntax example:

var sl_hold := s_list.split(it.f_1 == 16)

27.4.26 top()

This returns the last item in the list without removing it from the list. If the list is empty, an error shall be
issued.

Syntax example:

var pk : packet;

pk = sys.packets.top()

Purpose Splits a list at each point where an expression is TRUE

Category Pseudo-method

Syntax list.split(split-exp: exp): list of struct-list-holder

Parameters

list A list (of any type).

split-exp An expression. The it variable can be used to refer to the current list item, and
the index variable can be used to refer to its index number.

Return value The list of struct-list-holder

Purpose Return the last item in a list

Category Pseudo-method

Syntax list.top(): list-item

Parameters list A list.

Return value The last item

IEEE
Std 1647-2011 IEEE STANDARD

370 Copyright © 2011 IEEE. All rights reserved.

27.4.27 top0()

This returns the first item in the list without removing it from the list. If the list is empty, an error shall be
issued.

NOTE—This pseudo-method can be used with pop0() to emulate queues.

Syntax example:

var pk : packet;
pk = sys.packets.top0()

27.4.28 unique()

This returns a new list of all the distinct values in list. In the new list, all consecutive occurrences of items
for which the value of exp are the same are collapsed into one item.

Syntax example:

var u_list : list of l_item;
u_list = sys.l_list.unique(it.f_1)

Purpose Return the first item in a list

Category Pseudo-method

Syntax list.top0(): list-item

Parameters list A list.

Return value The first item

Purpose Collapse consecutive items that have the same value into one item

Category Pseudo-method

Syntax list.unique(select-exp: exp): list

Parameters

list A list of type struct-list-holder.

split-exp An expression. The it variable can be used to refer to the current list item, and
the index variable can be used to refer to its index number.

Return value The changed list

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 371

27.4.29 all()

This returns a list of all the items in list for which exp is TRUE. If no items satisfy the Boolean expression, an
empty list is returned. See also 4.16.1.

Syntax example:

var l_2 : list of packet;

l_2 = sys.packets.all(it.length > 64)

27.4.30 all_indices()

Returns a list of all indexes of items in list for which exp is TRUE. If no items satisfy the Boolean
expression, an empty list is returned.

NOTE—Using all_indices() on an empty list produces another empty list. Trying to use this result in a gen keeping
constraint can cause a generation contradiction error.

Syntax example:

var l_2 : list of int;

l_2 = sys.packets.all_indices(it.length > 5)

27.5 Math and logic pseudo-methods

This subclause describes the syntax for pseudo-methods that perform arithmetic or logical operations to
compute a value using all items in a list.

Purpose Get all items that satisfy a condition

Category Pseudo-method

Syntax list.all(exp: bool): list

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value A list of the matching items

Purpose Get indexes of all items that satisfy a condition

Category Pseudo-method

Syntax list.all_indices(exp: bool): list of int

Parameters
list A list.

exp A Boolean expression.

Return value A list of the indexes for all the matching items

IEEE
Std 1647-2011 IEEE STANDARD

372 Copyright © 2011 IEEE. All rights reserved.

27.5.1 and_all()

Returns TRUE if all values of the exp are true; otherwise, it returns FALSE (if the exp is false for any item in
the list). It stops computation once a FALSE is established. If the list is empty, this returns TRUE.

Syntax example:

var bool_val : bool;
bool_val = m_list.and_all(it >= 1)

27.5.2 or_all()

This returns a TRUE if any value of the exp is true; otherwise, it returns FALSE (if the exp is false for every
item in the list or the list is empty). It stops computation once a TRUE is established.

Syntax example:

var bool_val : bool;
bool_val = m_list.or_all(it >= 100)

Purpose Compute the logical AND of all items

Category Pseudo-method

Syntax list.and_all(exp: bool): bool

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value A Boolean value

Purpose Compute the logical OR of all items

Category Pseudo-method

Syntax list.or_all(exp: bool): bool

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value A Boolean value

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 373

27.5.3 average()

This returns the integer average of the exp computed for all the items in the list. It returns UNDEF if the list
is empty.

Syntax example:

var list_ave : int;
list_ave = sys.item_list.average(it.f_1 * it.f_2)

27.5.4 product()

This returns the integer product of the exp computed over all the items in the list. It returns 1 if the list is
empty.

Syntax example:

var list_prod : int;
list_prod = sys.item_list.product(it.f_1)

Purpose Compute the average of an expression for all items

Category Pseudo-method

Syntax list.average(exp: numeric-type): numeric-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The integer average

Purpose Compute the product of an expression for all items

Category Pseudo-method

Syntax list.product(exp: numeric-type): numeric-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The integer product

IEEE
Std 1647-2011 IEEE STANDARD

374 Copyright © 2011 IEEE. All rights reserved.

27.5.5 sum()

This returns the integer sum of the exp computed over all the items in the list. It returns 0 if the list is empty.

Syntax example:

var op_sum : int;
op_sum = sys.instr_list.sum(.op1)

27.6 List CRC pseudo-methods

This subclause describes the syntax for pseudo-methods that perform cyclic redundancy check (CRC)
functions on lists. See also 20.1.1 and 20.1.2.

27.6.1 crc_8()

This reads the list byte-by-byte and returns the integer value of the CRC8 function of a list of bits or bytes.
Only the least significant byte is used in the result.

The CRC is computed starting with the from-byte, for num-bytes. If from-byte or from-byte+num-bytes is not
in the range of the list, an error shall be issued.

NOTE—The algorithm for computing CRC8 is specific for the ATM HEC (header error control) computation. The code
used for HEC is a cyclic code with the following generating polynomial:

x**8 + x**2 + x + 1

Purpose Compute the sum of all items

Category Pseudo-method

Syntax list.sum(exp: numeric-type): numeric-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The integer sum

Purpose Compute the CRC8 of a list of bits or a list of bytes

Category Pseudo-method

Syntax list.crc_8(from-byte: int, num-bytes: int): int

Parameters

list A list of bits or bytes.

from-byte The index number of the starting byte.

num-bytes The number of bytes to use.

Return value The integer value

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 375

Syntax example:

print b_data.crc_8(2, 4)

27.6.2 crc_32()

This reads the list byte-by-byte and returns the integer value of the CRC32 function of a list of bits or bytes.
Only the least significant word is used in the result.

The CRC is computed starting with the from-byte, for num-bytes. If from-byte or from-byte+num-bytes is not
in the range of the list, an error shall be issued.

Purpose Compute the CRC32 of a list of bits or a list of bytes

Category Pseudo-method

Syntax list.crc_32(from-byte: int, num-bytes: int): int

Parameters

list A list of bits or bytes.

from-byte The index number of the starting byte.

num-bytes The number of bytes to use.

Return value The integer value

IEEE
Std 1647-2011 IEEE STANDARD

376 Copyright © 2011 IEEE. All rights reserved.

NOTE—The algorithm for computing CRC32 generates a 32-bit CRC that is used for messages up to 64 kB in length.
Such a CRC can detect 99.999999977% of all errors. The generator polynomial for the 32-bit CRC used for both
Ethernet and token ring is:

x**32 + x**26 + x**23 + x**22 + x**16 + x**12 + x**11 + x**10 + x**8 + x**7
+ x**5 + x**4 +x**2 + x + 1

Syntax example:

print b_data.crc_32(2, 4)

27.6.3 crc_32_flip()

This reads the list byte-by-byte and returns the integer value of the CRC32 function of a list of bits or bytes,
with the bits flipped. Only the least significant word is used in the result. The bits are flipped as follows:

a) The bits inside each byte of the input are flipped.

b) The bits in the result are flipped.

The CRC is computed starting with the from-byte, for num-bytes. If from-byte or from-byte+num-bytes is not
in the range of the list, an error shall be issued.

Syntax example:

print b_data.crc_32_flip(2, 4)

27.7 Keyed list pseudo-methods

This subclause describes the syntax for pseudo-methods that can be used only on keyed lists. Using one of
these methods on a regular list shall result in an error.

Keyed lists are list in which each item has a key associated with it. For a list of structs, the key typically is
the name of a particular field in each struct. Each unique value for that field can be used as a key.

— For a list of scalars, the key can be the it variable, referring to each item.

— When creating a keyed list, the key shall have a unique value for each item.

— Keyed lists can be searched quickly, by searching on a key value.

Purpose Compute the CRC32 of a list of bits or a list of bytes, flipping the bits

Category Pseudo-method

Syntax list.crc_32_flip(from-byte: int, num-bytes: int): int

Parameters

list A list of bits or bytes.

from-byte The index number of the starting byte.

num-bytes The number of bytes to use.

Return value The integer value

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 377

27.7.1 key()

This returns the list item that has the specified key. If there is no such item, the default for the item’s type is
returned (see 5.1). For a list of scalars, a value of zero (0) is returned if there is no such item. Since zero (0)
might be confused with a value found, do not use zero (0) as a key for scalar lists.

Syntax example:

var loc_list_item : location;
var i_key : uint;
i_key = 5;
loc_list_item = locations.key(i_key)

27.7.2 key_index()

This returns the integer index of the item that has the specified key; otherwise, it returns UNDEF (if no item
with that key exists in the list).

Syntax example:

var loc_list_ix : int;
loc_list_ix = locations.key_index(i)

Purpose Get the item that has a particular key

Category Pseudo-method

Syntax list.key(key-exp: exp): list-item

Parameters
list A keyed list.

key-exp The key of the item to return.

Return value The matching list item

Purpose Get the index of an item that has a particular key

Category Pseudo-method

Syntax list.key_index(key-exp: exp): int

Parameters
list A keyed list.

key-exp The key of the item for which the index is to be returned.

Return value The index of the matching list item

IEEE
Std 1647-2011 IEEE STANDARD

378 Copyright © 2011 IEEE. All rights reserved.

27.7.3 key_exists()

This returns TRUE if the key exists in the list; otherwise, it returns FALSE.

Syntax example:

var loc_list_k : bool;
var i := 5;
loc_list_k = locations.key_exists(i)

27.7.4 Restrictions on keyed lists

a) list.resize() cannot be used on keyed lists.

b) Keyed lists and regular (unkeyed) lists are different types. Assignment is not allowed between a
keyed list and a regular list.

c) Keyed lists cannot be generated. Trying to generate a keyed list shall result in an error. Therefore,
keyed lists need to be defined with the do-not-generate sign (!).

Purpose Check that a particular key is in a list

Category Pseudo-method

Syntax list.key_exists(key-exp: exp): bool

Parameters
list A keyed list.

key-exp The key for which to search.

Return value A Boolean value

