
IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 59

5. Data types

The e language has a number of predefined data types, including the integer and Boolean scalar types
common to most programming languages. In addition, new scalar data types (enumerated types) that are
appropriate for programming, modeling hardware, and interfacing with hardware simulators can be created.
The e language also provides a powerful mechanism for defining OO hierarchical data structures (structs)
and ordered collections of elements of the same type (lists). The following subclauses provide a basic
explanation of e data types.

5.1 e data types

Most e expressions have an explicit data type, as follows:

— Scalar types

— Scalar subtypes

— Enumerated scalar types

— Casting of enumerated types in comparisons

— Struct types

— Struct subtypes

— Referencing fields in when constructs

— List types

— The set type

— The string type

— The real type

— The external_pointer type

— The “untyped” pseudo type

Certain expressions, such as HDL objects, have no explicit data type. See 5.2 for information on how these
expressions are handled.

5.1.1 Scalar types

Scalar types in e are one of the following: numeric, Boolean, or enumerated. Table 17 shows the predefined
numeric and Boolean types.

Both signed and unsigned integers can be of any size and, thus, of any range. See 5.1.2 for information on
how to specify the size and range of a scalar field or variable explicitly. See also Clause 4.

5.1.2 Scalar subtypes

A scalar subtype can be named and created by using a scalar modifier to specify the range or bit width of a
scalar type. Unbounded integers are a predefined scalar subtype. The following subclauses describe scalar
modifiers, named scalar subtypes, and unbounded integers in more detail.

5.1.2.1 Scalar modifiers

There are two types of scalar modifiers that can be used to modify predefined scalar types:

— Range modifiers

— Width modifiers

IEEE
Std 1647-2011 IEEE STANDARD

60 Copyright © 2011 IEEE. All rights reserved.

Range modifiers define the range of values that are valid. For example, the range modifier in the following
expression restricts valid values to those between 0 and 100, inclusive.

int [0..100]

Width modifiers define the width in bits or bytes. For example, the width modifiers in the following
expressions restrict the bit width to 8.

int (bits:8);
int (bytes:1)

Width and range modifiers can also be used in combination, e.g.,

int [0..100] (bits: 7)

5.1.2.2 Named scalar subtypes

Named scalar subtypes are useful in a context where it is desirable to declare a counter variable, such as the
variable count, in several places in the program, e.g.,

var count : int [0..100] (bits:7);

The type name can then be used to introduce new variables with this type, e.g.,

type int_count : int [0..99] (bits:7);
var count : int_count

See also 5.7.1.

5.1.2.3 Unbounded integers

Unbounded integers represent arbitrarily large positive or negative numbers. Unbounded integers are
specified as:

Table 17—Predefined scalar types

Type name Function Default size for
packing Default value

int Represents numeric data, both negative and non-
negative integers.

32 bits 0

uint Represents unsigned numeric data, non-negative
integers only.

32 bits 0

bit An unsigned integer in the range 0–1. 1 bit 0

byte An unsigned integer in the range 0–255. 8 bits 0

time An integer in the range 0–(263–1). 64 bits 0

bool Represents truth (logical) values, TRUE (1), and
FALSE (0).

1 bit FALSE (0)

real Represents double-precision floating-point numbers,
identical to the precision of a C type double.

64 bits 0

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 61

int (bits:*)

Use an unbounded integer variable when the exact size of the data is unknown. Unbounded integers can be
used in expressions just as signed or unsigned integers are, with the following exceptions:

— Fields or variables declared as unbounded integers shall not be generated, packed, or unpacked.

— Unbounded unsigned integers are not allowed, so a declaration of a type such as uint (bits:*)
shall generate a compile-time error.

5.1.3 Enumerated scalar types

The valid values for a variable or field can be defined as a list of symbolic constants, e.g., the following
declaration defines the variable kind as having two legal values:

var kind : [immediate, register]

These symbolic constants have associated unsigned integer values. By default, the first name in the list is
assigned the value zero (0). Subsequent names are assigned values based upon the maximum value of the
previously defined enumerated items +1. Explicit unsigned integer values can also be assigned to the
symbolic constants.

var kind : [immediate = 1, register = 2]

The associated unsigned integer value of a symbolic constant in an enumerated type can be obtained by
using the as_a() type casting operator (see 5.8.1). Similarly, an unsigned integer value that is within the
range of the values of the symbolic constants can be cast as the corresponding symbolic constant.

Value assignments can also be mixed; some can explicitly be assigned to symbolic constants and others can
be automatically assigned. The following declaration assigns the value 3 to immediate; the value 4 is
automatically assigned to register.

var kind : [immediate = 3, register]

NOTE—Explicitly assigning values to all enumerators aids in avoiding unexpected values.

An enumerated type can be named to facilitate its reuse throughout a program. In the following example, the
first statement defines a new enumerated type named instr_kind. The variable i_kind has the two
legal values defined by the instr_kind type.

type instr_kind : [immediate, register];
var i_kind : instr_kind

Enumerated types can also be sized.

type instr_kind : [immediate, register] (bits: 2)

Variables or fields with an enumerated type can also be restricted to a range. The following variable
declaration excludes foreign from its legal values:

type packet_protocol : [Ethernet, IEEE, foreign];
var p : packet_protocol [Ethernet..IEEE]

The default value for an enumerated type is zero (0), even if zero (0) is not a legal value for that type. For
example, the variable i_kind has the value zero (0) until it is explicitly initialized or generated.

IEEE
Std 1647-2011 IEEE STANDARD

62 Copyright © 2011 IEEE. All rights reserved.

type instr_kind : [immediate = 1, register = 2];
var i_kind : instr_kind

5.1.4 Casting of enumerated types in comparisons

Enumerated scalar types, like Boolean types, are not automatically converted to or from integers or unsigned
integers in comparison operations (i.e., comparisons using the <, <=, >, >=, ==, or != operators). This is
consistent with the strong typing in e and helps avoid the introduction of bugs if the order of symbolic names
in an enumerated type declaration is changed. To perform such comparisons, explicit casting or tick notation
(’) needs to be used to specify the type.

5.1.5 Struct types

Structs are the basis for constructing compound data structures (see also Clause 6). The default value for a
struct is NULL. A struct type can also be used to define a variable (var). For more information on vars, see
19.2.

The following statement creates a struct type called packet with a field protocol of type
packet_protocol.

struct packet {
protocol : packet_protocol

}

The struct type packet can then be used in any context where a type is required. For example, in this
statement, packet defines the type of a field in another struct.

struct port {
data_in : packet

}

5.1.6 Struct subtypes

When a struct field has a Boolean type or an enumerated type, a struct subtype can be defined for one or
more of the possible values for that field.

Example

The struct packet defined as follows has three possible subtypes based on its protocol field. The
gen_eth_packet method generates an instance of the legal Ethernet packet subtype, where
legal == TRUE and protocol == Ethernet.

type packet_protocol : [Ethernet, IEEE, foreign];

struct packet {
protocol : packet_protocol;
size : int [0..1k];
data[size] : list of byte;
legal : bool

};

extend sys {
gen_eth_packet () is {

var packet : legal Ethernet packet;
gen packet keeping {it.size < 10};
print packet

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 63

}
}

To refer to a Boolean struct subtype, in this case, legal packet, use this syntax:

field_name struct_type

To refer to an enumerated struct subtype in a struct where no values are shared between the enumerated
types, use this syntax:

value_name struct_type

In structs where more than one enumerated field can have the same value, use the following syntax instead
to refer to the struct subtype:

value'field_name struct_type

The extend, when, or like constructs can also be used to add fields, methods, or method extensions that are
required for a particular subtype. Use the when or extend construct (see Clause 6) to define struct subtypes
with very similar results. These constructs are appropriate for most modeling purposes (see also Annex C).

5.1.7 Referencing fields in when constructs

To refer to a field of a struct subtype outside of a when, like, or extend construct, assign a temporary name
to the struct subtype and then use that name. To reference a field in a when construct, first specify the
appropriate value for the when determinant (see Annex C).

5.1.8 List types

List types hold ordered collections of data elements, where each data element conforms to the same type.
Items in a list can be indexed with the subscript operator [], by placing a non-negative integer expression in
the brackets. List indexes start at zero (0). To select an item from a list, specify its index, e.g.,
my_list[0] refers to the first item in the list named my_list.

Lists are defined by using the list of keyword in a variable or a field definition. The following example
defines a list of bytes named lob and explicitly assigns five literal values to it. The print statement displays
the first three elements of lob: 15, 31, and 63.

var lob : list of byte = {15; 31; 63; 127; 255};
print lob[0..2]

The following considerations also apply:

— The default value of a list is an empty list.

— To set a size for lists that have variable sizes, use a keep constraint or the resize() list pseudo-
method.

5.1.9 Keyed lists

A keyed list data type is similar to hash tables or association lists found in other programming languages. If
the element type of the list is a scalar type or a string type, then the hash key shall be the predefined implicit
variable it. The only restriction on the type of the list elements is they shall not be lists or sets. However,
they can be struct types containing fields that are lists or sets.

IEEE
Std 1647-2011 IEEE STANDARD

64 Copyright © 2011 IEEE. All rights reserved.

See also 20.4.2 and Clause 27.

Syntax example:

struct location {
 address : uint;
 data : uint
};

struct holder {
 !locations : list(key:address) of location
}

5.1.10 The set type

The predefined type set is used to represent unordered sets of unbounded integer values.

Values of type set can be expressed using a set literal, which is specified by a range construct with numeric
value ranges (see 4.4). The actual values in the set shall be evaluated using the unbounded integer semantics,
regardless of the actual types of the expressions used inside the set type literal, and regardless of the context.
For example, this expression:

MAX_UINT in [-5..-1]

shall return FALSE, even though -1 would be the result of casting MAX_UINT to int.

An empty set can be expressed using an empty set type literal: []

The inclusion relation between a numeric value and a set, and the containment relation between two sets,
shall be determined by using the in operator (see 4.10.5). Operations between sets, such as union, intersect
and diff, and queries on sets, such as size, min and max, shall be performed by set pseudo-methods (see
28.4).

Fields or variables of type set shall not be generated, packed, or unpacked.

The canonical form representation of a value of type set shows it as a set literal, as follows:

— The minimum number of intervals is shown, meaning that there are no overlapping or neighboring
intervals. For example, the canonical form of both [1..5, 3..15] and [1..5, 6..15] is
[1..15].

— Single value intervals are shown with the single value. For example, the canonical form of [1..5,
10..10] is [1..5,10].

— The intervals are shown in ascending order. For example, the canonical form of [10..15, 1..5]
is [1..5,10..15].

5.1.11 The string type

The predefined type string is the same as the C NULL terminated (zero-terminated) string type. A series of
ASCII characters enclosed by quotes (" ") can be assigned to a variable or field of type string, for example:

var message : string;
message = "Beginning initialization sequence..."

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 65

Bits or bit ranges of a string cannot be accessed, but the string can be converted to a list of bytes and that list
can be used to access a portion of the string, e.g., the following print statement displays /test1:

var dir : string = "/tmp/test1";
var tmp := dir.as_a(list of byte);

tmp = tmp[4..9];
print tmp.as_a(string)

The default value of a variable of type string is NULL.

See also 20.4.4 and Clause 29.

5.1.12 The real type

The real type in e is used to handle and manipulate non-integer numeric values. Real values are physically
represented as double-precision floating-point numbers, equivalent to the representation of double values in
C.

See 5.4.

5.1.13 The external_pointer type

The external_pointer type is used to hold a pointer into an external (non-e) entity, such as a C struct. Unlike
pointers to structs in e, external pointers are not changed during garbage collection.

Syntax example:

var c_handle : external_pointer // holds a foreign pointer

5.1.14 The “untyped” pseudo type

This is a type placeholder for untyped values that can be used when runtime values of different types need to
be manipulated in a generic way. For example, when objects are manipulated with the reflection API, their
types are typically unknown at compile-time; thus, untyped expressions need to be used (see 31.4). Values
of any type may be assigned to variables of the “untyped” pseudo type using the unsafe() operator (see
5.8.2). Similarly, “untyped” expressions may be used in typed contexts by using unsafe().

NOTE—Untyped variables are left unchanged during garbage collection, which allows struct references to be corrupted.

5.2 Untyped expressions

All e expressions have an explicit type, except for the following types:

— HDL objects, such as top.w_en

— pack() expressions, such as pack(packing.low, 5)

— bit concatenations, such as %{slb1, slb2}

The default type of HDL objects is a 32-bit uint, while pack() expressions and bit concatenations have a
default type of list of bit. However, due to implicit packing and unpacking, these expressions can be
converted to the required data type and bit-size in certain contexts, as follows:

IEEE
Std 1647-2011 IEEE STANDARD

66 Copyright © 2011 IEEE. All rights reserved.

a) When an untyped expression is assigned to a scalar or list of scalars, it is implicitly unpacked and
converted to the same type and bit-size as the expression on the LHS. Implicit unpacking is not sup-
ported for strings, structs, or lists of non-scalar types.

b) When a scalar or list of scalars is assigned to an untyped expression, it is implicitly packed before it
is assigned. Implicit packing is not supported for strings, structs, or lists of non-scalar types.

c) When the untyped expression is the operand of any binary operator (+, –, *, /, or %), the expression
is assumed to be a numeric type. The precision of the operation is determined by the expected type
and the type of the operands (see 5.5).

d) When a pack() expression includes the parameter or the return value of a method call, the expres-
sion takes the type and size as specified in the method declaration. The method parameter or return
value in the pack expression shall be a scalar type or a list of scalar type.

e) When an untyped expression appears in one of the following contexts, it is treated as a Boolean
expression:

if (untyped_exp) then {..}
while (untyped_exp) do {..}
check that (untyped_exp)
not untyped_exp
rise(untyped_exp), fall(untyped_exp), true(untyped_exp)

When the type and bit-size cannot be determined from the context, the expression is automatically cast
according to the following rules:

— The default type of an HDL signal is an unsigned integer; the default bit-size is 32.

— The default type of a pack expression and a bit concatenation expression is a list of bit.

When expressions are untyped, an implicit pack/unpack is performed according to the expected type. See
also 20.5.

5.3 Assignment rules

Assignment rules define what is a legal assignment and how values are assigned to entities. The following
subclauses describe various aspects of assignments.

5.3.1 What is an assignment?

There are several legal ways to assign values, as follows:

— Assignment actions

— Return actions

— Parameter passing

— Variable declaration

Here is an example of an assignment action, where a value is explicitly assigned to a variable x and to a field
sys.x.

extend sys {
 x : int;
 m() is {
 var x: int;
 sys.x = ’~/top/address’;
 x = sys.x + 1

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 67

 }
}

Here is an example of a return action, which implicitly assigns a value to the result variable:

extend sys {
 n(): int (bits:64) is {
 return 1
 }
}

Here is an example of assigning a value (6) to a method parameter (i):

extend sys {
 k(i: int) @sys.any is {
 wait [i] * cycle
 };

 run() is also {
 start k(6)
 }
}

Here is an example of how variables are assigned during declaration:

extend sys {
 b() is {
 var x : int = 5;
 var y := "ABC"
 }
}

Values shall not be assigned to fields during declaration, however.

5.3.2 Assignments create identical references

Assigning one struct, list, or value to another object of the same type results in two references pointing to the
same memory location, so that changes to one of the objects also occur in the other object immediately.

Example

data1 : list of byte;
data2 : list of byte;

run() is also {
 data2 = data1;
 data1[0] = 0
}

After generation, the two lists data1 and data2 are different lists. However, after the data2 = data1
assignment, both lists refer to the same memory location; therefore, changing the data1[0] value also
changes the data2[0] value immediately.

5.3.3 Assignment to different (but compatible) types

This subclause describes the assignment between different, yet compatible, types.

IEEE
Std 1647-2011 IEEE STANDARD

68 Copyright © 2011 IEEE. All rights reserved.

5.3.3.1 Assignment of numeric types

Any numeric type (e.g., uint, int, or one of their subtypes) can be assigned with any other numeric type.
Untyped expressions, such as HDL objects, can also appear in assignments of numeric types (see 5.2).

Automatic casting is performed when a numeric type is assigned to a different numeric type, and automatic
extension or truncation is performed if the types have a different bit-size (see 5.6; see also 5.5.)

5.3.3.2 Assignment of Boolean types

A Boolean type can only be assigned to another Boolean type.

var x : bool;
x = 'top.a' >= 16

5.3.3.3 Assignment of enumerated types

An enumerated type can be assigned with that same type or its scalar subtype. (The scalar subtype differs
only in range or bit-size from the base type.) The following example shows:

— An assignment of the same type

var x : color = blue

— An assignment of a scalar subtype

var y : color2 = x

To assign any scalar type (numeric, enumerated, or Boolean type) to any different scalar type, use the as_a()
operator (see 5.8.1).

5.3.3.4 Assignment of structs

An entity of type struct can be assigned with a struct of that same type or with one of its subtypes. The
following example shows:

— A same type assignment

p2 = p1

— An assignment of a subtype (Ether_8023 packet)

var p : Ether_8023 packet;
set_cell(p)

— An assignment of a derived struct (cell_8023)

set_cell(p:packet) is {
p.cell = new cell_8023;
...

Although a subtype can be assigned to its parent struct without any explicit casting, to perform the reverse
assignment (assign a parent struct to one of its subtypes), the as_a() method needs to be used (see 5.8.1).

5.3.3.5 Assignment of strings

A string can be assigned only with strings, as follows:

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 69

extend sys {
 m(): string is {
 return "aaa" // assignment of a string
 }
}

5.3.3.6 Assignment of lists

An entity of a type list can be assigned only with a list of the same type. In the following example, the
assignment of list1 to x is legal because both lists are lists of integers:

extend sys {
list1 : list of int;
m() is {

var x : list of int = list1;
}

}

However, an assignment such as var y: list of int (bits: 16) = list1; is not legal,
because list1 is not the same list type as y. y has a size modifier, so it is a subtype of list1.

Use the as_a() method to cast between lists and their subtypes (see 5.8.1).

5.3.3.7 Assignment of sets

A set can be assigned only with sets, ase follows:

extend sys {
m(): set is {

return [1..10] // assignment of a set
}

}

5.4 Real data type

Objects of type real are double-precision floating-point numbers, the same as C type double. The
representation of real values and the semantics of arithmetic and cast operators uses the double-precision
floating-point implementation on the underlying machine, which should be compliant with IEEE Std 754™.

5.4.1 Real data type usage

A real object may be used (or is legal) in any context except in the following cases:

— Both operands of the shift operators (<<, >>)

— Bitwise operators (|, &, ^)

— Bitwise routines

— Modulo (%)

— odd()

— even()

IEEE
Std 1647-2011 IEEE STANDARD

70 Copyright © 2011 IEEE. All rights reserved.

5.4.2 Real literals

Real literals are numbers that have a decimal point or an exponential part or both. If a decimal point exists,
there must be digits on both sides of the decimal point. Underscores can be added for readability and are
ignored. See Table 18.

5.4.3 Real constants

The real constants in Table 19 and Table 20 are defined in both e code and in C code that includes a suitable
header file:

Table 18—Examples of real literals

Real constant Value

5.3876e4 53 876

4e–11 0.00000000004

1e+5 100 000

7.321E–3 0.007321

3.2E+4 32 000

0.5e–6 0.0000005

0.45 0.45

6.e10 60 000 000 000

Table 19—Mathematical constants

Constant Value

IEEE_1647_M_E e

IEEE_1647_M_LOG2E Logarithm base 2 of e

IEEE_1647_M_LOG10E Logarithm base 10 of e

IEEE_1647_M_LN2 Natural logarithm of 2

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 71

NOTE 1—All mathematical constants are prefixed by IEEE_1647_M_.

NOTE 2—All physical constants are prefixed by IEEE_1647_P_.

5.4.4 Real type limitations

— The key of a keyed list shall not be of type real.

IEEE_1647_M_LN10 Natural logarithm of 10

IEEE_1647_M_PI PI

IEEE_1647_M_TWO_PI 2*PI

IEEE_1647_M_PI_2 PI/2

IEEE_1647_M_PI_4 PI/4

IEEE_1647_M_1_PI 1/PI

IEEE_1647_M_2_PI 2/PI

IEEE_1647_M_2_SQRTPI 2/sqrt(PI)

IEEE_1647_M_SQRT2 sqrt(2)

IEEE_1647_M_SQRT1_2 sqrt(1/2)

Table 20—Physical constants

Constant Value

IEEE_1647_P_Q Charge of electron in coulombs

IEEE_1647_P_C Speed of light in vacuum in meters/second

IEEE_1647_P_K Boltzmann’s constant in joules/kelvin

IEEE_1647_P_H Planck’s constant in joules*second

IEEE_1647_P_EPS0 Permittivity of vacuum in farads/meter

IEEE_1647_P_U0 Permeability of vacuum in henrys/meter

IEEE_1647_P_CELSIUS0 Zero Celsius in kelvin

Table 19—Mathematical constants (continued)

Constant Value

IEEE
Std 1647-2011 IEEE STANDARD

72 Copyright © 2011 IEEE. All rights reserved.

5.5 Precision rules for numeric operations

For precision rules, there are two types of numeric expressions in e, as follows:

— context-independent expressions, where the precision of the operation (bit width) and numeric type
(signed or unsigned) depend only on the types of the operands

— context-dependent expressions, where the precision of the operation and the numeric type depend on
the precision and numeric type of other expressions involved in the operation (the context), as well as
the types of the operands

A numeric operation in e is performed in one of three possible combinations of precision and numeric type:

a) Unsigned 32-bit integer (uint)

b) Signed 32-bit integer (int)

c) Infinite signed integer (int (bits: *)

The e language has rules for determining the context of an expression or deciding the precision, and
performing data conversion and sign extension.

5.5.1 Determining the context of an expression

The rules for defining the context of an expression are applied in the following order:

a) In an assignment (lhs = rhs), the right-hand side (rhs) expression inherits the context of the left-hand
side (lhs) expression.

b) A sub-expression inherits the context of its enclosing expression.

c) In a binary-operator expression (lho OP rho), the right-hand operand (rho) inherits context from the
left-hand operand (lho), as well as from the enclosing expression.

Table 21 summarizes context inheritance for each type of operator that can be used in numeric expressions.

Table 21—Summary of context inheritance in numeric operations

Operator Function Context

* / % + –
< <= > >=
== !=
=== !==
& | ^

Arithmetic,
comparison, equality,
and bit-wise Boolean

The right-hand operand (rho) inherits context from the left-hand operand
(lho), as well as from the enclosing expression. lho inherits only from the
enclosing expression.

~ !
unary + –

Bit-wise not, Boolean
not, unary plus, minus

The operand inherits context from the enclosing expression.

[] List indexing The list index is context-independent.

[..] List slicing The indices of the slice are context-independent.

[:] Bit slicing The indices of the slice are context-independent.

f(...) Method or routine
call

The context of a parameter to a method is the type and bit width of the
formal parameter.

{...; ...} List concatenation Context is passed from the lhs of the assignment, but not from left-to-right
between the list members.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 73

5.5.2 Deciding precision and performing data conversion and sign extension

The rules for deciding precision, and performing data conversion and sign extension are as follows:

Determine the context of the expression, which can be comprised of a maximum of two types:

a) If all types involved in an expression and its context are 32 bits in width or less:

1) The operation is performed in 32 bits.

2) If any of the types is unsigned, the operation is performed with unsigned integers.

Decimal constants are treated as signed integers, whether they are negative or not. All other
constants are treated as unsigned integers, unless preceded by a hyphen (−).

3) Each operand is automatically cast, if necessary, to the required type.

Casting of small negative numbers (signed integers) to unsigned integers produces large
positive numbers.

b) If any of the types is greater than 32 bits:

1) The operation is performed in infinite precision [int (bits:*)].

2) Each operand is zero-extended (if it is unsigned) or sign-extended (if it is signed) to infinite
precision.

%{..., ...} Bit concatenation The elements of the concatenation are context-independent.

>>, << Shift Context is passed from the enclosing expression to the left operand. The
context of the right operand is always a 32-bit uint.

in Inclusion and
containment operator

Both operands are context-independent.

 [i..j, ...] Set literal The elements are context-independent.

&&, || Boolean All operands are context-independent.

a ? b : c Conditional operator a is context-independent, b inherits the context from the enclosing
expression, c inherits context from b, as well as from the enclosing
expression.

as_a() Casting The operand is context-independent.

abs(), odd(),
even()

Arithmetic routine The parameter is context-independent.

min(), max() Arithmetic routine The right parameter inherits context from the left parameter (lp), as well
as from the enclosing expression. lp inherits only from the enclosing
expression.

ilog2(),
ilog10(),
isqrt()

Arithmetic routine The context of the parameter is always a 32-bit uint.

ipow() Arithmetic routine Both parameters inherit the context of the enclosing expression, but the
right parameter does not inherit context from the left.

Table 21—Summary of context inheritance in numeric operations (continued)

Operator Function Context

IEEE
Std 1647-2011 IEEE STANDARD

74 Copyright © 2011 IEEE. All rights reserved.

5.6 Automatic type casting

During assignment of a type to a different but compatible type, automatic type casting is performed in the
following contexts:

— Numeric expressions (unsigned and signed integers) of any size are automatically type cast upon
assignment to different numeric types. For example:

var x : uint;
var y : int;
x = y

— Untyped expressions are automatically cast on assignment. See 5.2 for more information.

— Sized scalars are automatically type cast to differently sized scalars of the same type.

— Struct subtypes are automatically cast to their base struct type.

There are three important ramifications to automatic type casting.

a) If the two types differ in bit-size, the assigned value is extended or truncated to the required bit-size.

b) Casting of small negative numbers (signed integers) to unsigned integers produces large positive
numbers.

c) There is no automatic casting to a reference parameter (see 18.3).

5.6.1 Conversion between real and integer data types

Automatic casting is performed between the real type and the other numeric types.

Converting a real type object to an integer type object uses the following process:

a) The object is first converted to type int (bits:*) with the value of the largest integer whose absolute
value is less than or equal to the absolute value of the real object.

b) The object is then converted to the expected integer type.

Additional rules apply to converting real objects to integer objects:

— If the object’s floating-point value is infinity (inf), negative infinity (−inf), or Not-a-Number (NaN),
an error will be emitted when trying to convert to an integer value.

— When converting an integer object to the real type, the object is converted to the value closest to the
integer value that can be represented in the double-precision format.

When converting from an integer data type to a real, the integer value is simply converted to its identical
value represented as a real.

Automatic casting of reals to integers or integers to reals is not performed in the context of constraints.
Explicit casting is required within constraints that involve both integer and real expressions so that all
resulting terms are of the same kind.

5.6.2 Real data type precision, data conversion, and sign extension

The rules for deciding precision, performing data conversion, and sign extension are as follows:

a) Determine the context of the expression. The context may be comprised of up to three types.

b) If all types involved in an expression, and its context is integer values of 32 bits in width or less:

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 75

1) The operation is performed in 32 bits.

2) If any of the types are unsigned, the operation is performed with unsigned integers.

NOTE—Decimal constants are treated as signed integers, whether they are negative or not. All other constants
are treated as unsigned integers unless preceded by a hyphen.

3) Each operand is automatically cast, if necessary, to the required type.

NOTE—Casting of small negative numbers (signed integers) to unsigned integers produces large positive
numbers.

c) If all types are integer types, and any of the types is greater than 32 bits:

1) The operation is performed in infinite precision [int(bits:*)].

2) Each operand is zero-extended if it is unsigned, or sign-extended if it is signed, to infinite
precision.

d) If any of the types is a real type, then the operation is done in double precision, and all objects
should first be converted according to the rules described above.

5.7 Defining and extending scalar types

The following constructs can be used to define and extend scalar types.

5.7.1 type enumerated scalar

This defines an enumerated scalar type consisting of a set of names or name-value pairs. If no values are
specified, the names get corresponding numerical values starting with 0 for the first name, and casting can
be done between the names and the numerical values.

Syntax example:

type PacketType : [rx=1, tx, ctrl]

Purpose Define an enumerated scalar type

Category Statement

Syntax type enum-type-name: [[name[=exp], ...]] [(bits | bytes: width-exp)]

Parameters

enum-type-name A legal e name. The name shall be unique in the global type-name space.

name A legal e name. Each name shall be unique within the same type.

exp A unique 32-bit constant expression. Names or name-value pairs can appear
in any order. By default, the first name in the list is assigned the integer value
zero (0). Subsequent names are assigned values based upon the maximum
value of the previously defined enumerated items +1.

width-exp A positive constant expression. The valid range of values for sized
enumerated scalar types is limited to the range 1 to 2n–1, where n is the
number of bits.

IEEE
Std 1647-2011 IEEE STANDARD

76 Copyright © 2011 IEEE. All rights reserved.

5.7.2 type scalar subtype

This defines a subtype of a scalar type by restricting the legal values that can be generated for this subtype to
the specified range. The default value for variables or fields of this type “size” is zero (0), which is the
default for all integers. The range only affects any generated values.

Syntax example:

type size : int [8, 16]

5.7.3 type sized scalar

This defines a scalar type with a specified bit width. The actual bit width is exp * 1 for bits and exp * 8 for
bytes.

When assigning any expression into a sized scalar variable or field, the expression’s value is truncated or
extended automatically to fit into the variable. An expression with more bits than the variable is chopped
down to the size of the variable. An expression with fewer bits is extended to the length of the variable. The
added upper bits are filled with zeros (0) if the expression is unsigned or with the appropriate sign bit (0 or
1) if the expression is signed.

Purpose Define a scalar subtype

Category Statement

Syntax type scalar-subtype-name: scalar-type [range, ...]

Parameters

scalar-subtype-
name

A unique e name. The name shall be unique in the global type-name space.

scalar-type Any previously defined enumerated scalar type, any of the predefined scalar
types, including int, uint, bool, bit, byte, or time, or any previously defined
scalar subtype.

range A constant expression or two constant expressions separated by two dots
(..). All constant expressions shall resolve to legal values of the named type.

Purpose Define a sized scalar

Category Statement

Syntax type sized-scalar-name: type (bits | bytes: exp)

Parameters

sized-scalar-
name

A unique e name. The name shall be unique in the global type-name space.

type Any previously defined enumerated type or any of the predefined scalar
types, including int, uint, bool, or time.

exp A positive constant expression. The valid range of values for sized scalars is
limited to the range 1 to 2n–1, where n is the number of bits.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 77

Syntax example:

type word : uint(bits:16);
type address : uint(bytes: 2)

5.7.4 extend type

This extends the specified enumerated scalar type to include the specified names or name-value pairs.

Syntax example:

type PacketType : [rx, tx, ctrl];
extend PacketType : [status]

5.8 Type-related constructs

The as_a() expression is used to convert an expression from one data type to another. The unsafe()
expression casts the expression to the type that is required by the context. The all_values() pseudo-routine
returns a list of all of the legal values of a specified scalar type. Information about how different types are
converted, such as strings to scalars or lists of scalars, is contained in Table 22 and Table 23.

5.8.1 as_a()

This returns the expression converted into the specified type. Although some casting is done automatically
(see 5.6), explicit casting is required to make assignments between different but compatible types.

Following are assignment compatible types requiring explicit casting:

Purpose Extend an enumerated scalar type

Category Statement

Syntax extend enum-type: [name[= exp], ...]

Parameters

enum-type Any previously defined enumerated type.

name A legal e name. Each name shall be unique within the type.

exp A unique 32-bit constant expression. Names or name-value pairs can appear
in any order. By default, the first name in the list is assigned the integer value
zero (0). Subsequent names are assigned values based upon the maximum
value of the previously defined enumerated items +1.

Purpose Casting operator

Category Expression

Syntax exp.as_a(type: type name): type

Parameters
exp Any e expression.

type Any legal e type.

IEEE
Std 1647-2011 IEEE STANDARD

78 Copyright © 2011 IEEE. All rights reserved.

— Scalars and lists of scalars

— Strings and scalars or lists of scalars

— Structs and list of structs

— Simple lists and keyed lists

Syntax example:

print (b).as_a(uint)

5.8.2 unsafe()

This casts the expression to the type that is required by the context, regardless of any static or dynamic type
rules. This operator may be used only in contexts where the required type is explicit, such as assignment and
parameter passing to methods.

Syntax example:

var value : int = param.unsafe()

5.8.2.1 Type conversion between scalars and lists of scalars

Numeric expressions (unsigned and signed integers) of any size are automatically type cast upon assignment
to different numeric types.

For other scalars and lists of scalars, there are a number of ways to perform type conversion, including the
as_a() method, the pack() method, the %{} bit concatenation operator, and various string routines. Table 22
shows how to convert between scalars and lists of scalars.

In Table 22, int represents int/uint of any size, including bit, byte, and any user-created size. If a solution is
specific to bit or byte, then bit or byte is explicitly stated. int(bits:x) means x as any constant; variables shall
not be used as the integer width.

The solutions presume variables are declared as follows:

var int : int;
var bool : bool;
var enum : enum;
var list_of_bit : list of bit;
var list_of_byte : list of byte;
var list_of_int : list of int

Any conversions not explicitly shown might have to be accomplished in two stages.

Purpose Force casting

Category Expression

Syntax exp.unsafe()

Parameters exp Any e expression.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 79

5.8.2.2 Type conversion between strings and scalars or lists of scalars

There are a number of ways to perform type conversion between strings and scalars or lists of scalars,
including the as_a() method, the pack() method, the %{} bit concatenation operator, and various string
routines. Table 23 shows how to convert between strings and scalars or lists of scalars.

Table 22—Type conversion between scalars and lists of scalars

From To Solutions

int list of bit list_of_bit = int[..]

int list of
int(bits:x)

list_of_int = %{int}
list_of_int = pack(packing.low, int)
(LSB of int goes to list[0] for either choice)

list of bit
list of byte

int int = list_of_bit[:]

list of
int(bits:x)

int int = pack(packing.low, list_of_int)
(use packing.high for list in the other order)

int(bits:x) int(bits:y) intx = inty
(truncation or extension is automatic)
intx.as_a(int(bits:y))

bool int int = bool.as_a(int)
(TRUE becomes 1, FALSE becomes 0)

int bool bool = int.as_a(bool)
(0 becomes FALSE, non-0 becomes TRUE)

int enum enum = int.as_a(enum)
(no checking is performed to make sure the int value is valid for the range of the
enum)

enum int int = enum.as_a(int)
(truncation is automatic)

enum bool enum.as_a(bool)
[enumerated types with an associated unsigned integer value of 0 become
FALSE; those with an associated non-0 values become TRUE (see 5.1.3)]

bool enum bool.as_a(enum)
(Boolean types with a value of FALSE are converted to the enumerated type
value that is associated with the unsigned integer value of 0; those with a value
of TRUE are converted to the enumerated type value that is associated with the
unsigned integer value of 1; no checking is performed to make sure the Boolean
value is valid for the range of the enum)

enum enum enum1 = enum2.as_a(enum1)
(no checking is performed to make sure the int value is valid for the range of the
enum)

list of
int(bits:x)

list of
int(bits:y)

listx.as_a(list of int(bits:y))
(the same number of items, each padded or truncated)
listy = pack(packing.low, listx)
(concatenated data, different number of items)

IEEE
Std 1647-2011 IEEE STANDARD

80 Copyright © 2011 IEEE. All rights reserved.

In Table 23, int represents int/uint of any size, including bit, byte, and any user-created size. If a solution is
specific to bit or byte, then bit or byte is explicitly stated. int(bits:x) means x as any constant; variables shall
not be used as the integer width.

The solutions presume variables are declared as follows:

var int : int;

var list_of_byte : list of byte;

Table 23—Type conversion between strings and scalars or lists of scalars

From To ASCII
convert? Solutions

list of int
list of byte

string Yes list_of_int.as_a(string)
(each list item is converted to its ASCII character and the
characters are concatenated into a single string; int[0]
represents left-most character; if a list item is not a printable
ASCII character, the string returned is empty)

string list of int
list of byte

Yes string.as_a(list of int)
(each character in the string is converted to its numeric value
and assigned to a separate element in the list; the left-most
character becomes int[0])

string list of int Yes list_of_int = pack(packing.low, string)
list_of_int = %{string}
(the numeric values of the characters are concatenated before
assigning them to the list; any pack option gives same result;
the null byte, 00, is the last item in the list)

string int Yes int = %{string}
int = pack(packing.low, string)
(any pack option gives the same result)

int string Yes unpack(packing.low, %{8’b0, int}, string)
(any pack option with scalar_reorder={} gives the
same result)

string int No string.as_a(int)
(converts to decimal)
append(“0b”, string).as_a(int)
(converts to binary)
append(“0x”, string).as_a(int)
(converts to hexadecimal)

int string No int.as_a(string)
(uses the current print radix)
append(int)
(converts int according to the current print radix)
dec(int), hex(int), bin(int)
(converts int according to a specific radix)

string bool No bool = string.as_a(bool)
(only TRUE and FALSE can be converted to Boolean; all
other strings return an error)

bool string No string = bool.as_a(string)

string enum No enum = string.as_a(enum)

enum string No string = enum.as_a(string)

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 81

var list_of_int : list of int;
var bool : bool;
var enum : enum;
var string : string

Any conversions not explicitly shown might have to be accomplished in two stages.

5.8.2.3 Type conversion between structs, struct subtypes, and lists of structs

Struct subtypes are automatically cast to their base struct type, so for example, a variable of type Ethernet
packet can be assigned to a variable of type packet without using as_a(). as_a() can be used to cast a base
struct type to one of its subtypes; if a mismatch occurs, then NULL is assigned. For example, the print
pkt.as_a(foreign packet) action results in pkt.as_a(foreign packet) = NULL if pkt is not a
foreign packet.

When the expression to be converted is a list of structs, as_a() returns a new list of items whose type
matches the specified type parameter. If no items match the type parameter, an empty list is returned. The
list can contain items of various subtypes, but all items shall have a common parent type, i.e., the specified
type parameter shall be a subtype of the type of the list.

Assigning a struct subtype to a base struct type does not change the declared type. Thus, as_a() needs to be
used to cast the base struct type as the subtype and access any of the subtype-specific struct members.

Subtypes created through like inheritance exhibit the same behavior as subtypes created through when
inheritance.

5.8.2.4 Type conversion between simple lists and keyed lists

Simple lists can be converted to keyed lists and vice versa. The hash key is dropped in converting a keyed
list to a simple list. However, a key needs to be specified first to convert a simple list to a keyed list.

Example

To convert a simple list of packets sys.packets to a keyed list, where the len field of the packet struct
is the key:

var pkts : list (key:len) of packet;
pkts = sys.packets.as_a(list (key:len) of packet)

Using the as_a() method returns a copy of sys.packets, so the original sys.packets is still a simple
list, not a keyed list. Thus, print pkts.key_index(130) returns the index of the item that has a len
field of 130, while print sys.packets.key_index(130)shall return an error.

If a conversion between a simple list and a keyed list also involves a conversion of the type of each item, that
conversion of each item follows the standard rules, e.g., when as_a() is used to convert an integer to a string,
no ASCII conversion is performed. Similarly, if as_a() is used to convert a simple list of integers to a keyed
list of strings, no ASCII conversion is performed.

No checking is performed to ensure the value is valid when casting from a numeric or Boolean type to an
enumerated type, or when casting between enumerated types.

— The as_a() pseudo-method, when applied to a scalar list, creates a new list whose size is the same as
the original size and then casts each element separately.

IEEE
Std 1647-2011 IEEE STANDARD

82 Copyright © 2011 IEEE. All rights reserved.

— When the as_a() operator is applied to a list of structs, the list items for which the casting failed are
omitted from the list.

— as_a() can be used to convert a string to an enumerated type. The string has to exactly match one of
the possible values of that type, using a case-sensitive string comparison, or a runtime error shall be
issued.

See also 4.16.1.

5.8.2.5 Type conversion between reals and non-numeric scalars

Converting a non-numeric scalar type object to a real type object using the as_a() operator uses the
following process:

a) The scalar type object is first converted to an integer value.

b) The object is then converted to a real value according to process and rules listed in 5.5.

Additional rules apply to converting non-numeric scalar objects to real objects using the as_a() operator:

— When converting a string value to real using the as_a() operator, the string is parsed as if it was a
real literal, and the value of the real literal is returned.

— If the string does not conform to the definition of a real literal, an error is emitted.

5.8.2.6 Type conversion between numeric lists and sets

Numeric lists (including keyed lists) can be converted to sets and vice versa using the as_a() operator.

When a numeric list is converted to a set, as_a() returns a set that contains the numeric values of all and only
items of the list. The order of items in the list and the number of their appearances are disregarded. An empty
list is converted to an empty set.

For example, {1;5;3;2;1}.as_a(set) returns [1..3,5].

Converting a set to a numeric list uses the following process:

a) All the numeric values are retrieved from the set from the lower bound to upper bound, i.e., in the
increasing order.

a) Each numeric value is then automatically cast to the type of list elements, according to rules listed in
5.6

An empty set is converted to an empty list.

For example; [-1..1].as_a(list of int) returns {-1;0;1}, and [-1..1].as_a(list of
uint) returns {MAX_UINT;0;1}.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 83

5.8.3 all_values()

This returns a list that contains all the legal values of the specified scalar type. The order of the items is from
the smallest to the largest. When the type is an enumerated type, this order is determined by the numeric
values of the items.

Syntax example:

print all_values(reg_address)

5.8.4 set_of_values()

This returns a set of all the legal values of the specified numeric type. For example,
set_of_values(uint(bits:4)) returns the set [0..15], and
set_of_values(int[1..10]) returns the set [1..10].

Syntax example:

print set_of_values(reg_address)

5.8.5 full_set_of_values()

This returns a set of all possible values of the specified numeric type. It is determined by the bit width and
signedness of the type only, and any range restriction specified by a range modifier is disregarded. The
resulting set may include values that are not legal values of the type, provided that they are possible values.

Purpose Access all values of a scalar type

Category Pseudo-routine

Syntax all_values(scalar-type: type name): list of scalar type

Parameters scalar-type Any legal e scalar type.

Purpose Access the set of all legal values of a numeric type

Category Pseudo-routine

Syntax set_of_values(numeric-type: type name): set

Parameters
numeric-type Any legal e numeric type, except unbounded integer types that have no range

restriction.

Purpose Access the set of all possible values of a numeric type

Category Pseudo-routine

Syntax full_set_of_values(numeric-type: type name): set

Parameters numeric-type Any legal e numeric type, except unbounded integer types that have no range
restriction.

IEEE
Std 1647-2011 IEEE STANDARD

84 Copyright © 2011 IEEE. All rights reserved.

For example, set_of_values(uint(bits:4)[1..10]) returns [1..10], but
full_set_of_values(uint(bits:4)[1..10]) returns [0..15].

For types that have no range restrictions, the result of full_set_of_values() is equivalent to the result of
set_of_values().

Syntax example:

print full_set_of_values(reg_address)

