
IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 295

21. Control flow actions

This clause describes the e control flow actions.

21.1 Conditional actions

Conditional actions are used to specify code segments that execute only when a specific condition is met.

21.1.1 if then else

If the first bool-exp is TRUE, the then action block is executed. If the first bool-exp is FALSE, the else if
clauses are executed sequentially: if an else if bool-exp is found that is TRUE, its then action block is
executed; otherwise, the final else action block is executed.

Because if then else is a single action, no semicolons (;) should appear between if and else, unless they are
required to separate two or more actions within one of the action blocks.

NOTE—Since else if then clauses can be used for multiple Boolean checks (comparisons), consider using a case bool-
case-item action (see 21.1.3) when there are a large number of comparisons to perform.

Syntax example:

if a > b then {
 print a, b
} else if a == b then {
 print a
} else {
 print b, a
}

Purpose Perform an action block if a given Boolean expression is TRUE or a different action if the
expression is FALSE

Category Action

Syntax if bool-exp [then] {action; ...} [else if bool-exp [then] {action; ...}] [else {action; ...}]

Parameters

bool-exp A Boolean expression.

action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

IEEE
Std 1647-2011 IEEE STANDARD

296 Copyright © 2011 IEEE. All rights reserved.

21.1.2 case labeled-case-item

This evaluates the case-exp and executes the first action-block for which label-exp matches the case-exp. If
no label-exp matches the case-exp, it executes the default-action block, if specified.

Whether or not a label-exp matches the case-exp is determined as follows:

— If case-exp and label-exp are of comparable types, that is, the equality operator (==) is applicable to
two operands of these types, then matching is determined by applying the equality operator to the
two expressions: label-exp matches the case-exp if case-exp==label-exp returns TRUE.

— Otherwise, matching is determined by applying the inclusion operator (in) to the two expressions:
label-exp matches the case-exp if case-exp in label-exp returns TRUE.

After an action-block is executed, the e program proceeds to the line that immediately follows the entire
case statement.

Syntax example:

case packet.length {

 64 : {out("minimal packet") };

 [65..256] : {out("short packet") };

 [257..512] : {out("long packet") };

 default : {out("illegal packet length")}

}

Purpose Execute an action block based on whether a given comparison is TRUE

Category Action

Syntax case case-exp {labeled-case-item; ... [default[:] {default-action; ...}]}

Parameters

case-exp A legal e expression.

labeled-case-
item

label-exp[:] action-block
where

label-exp is a legal e expression or an enumerated constant range, as
follows:

if case-exp is of a numeric type, label-exp must be of a
numeric type, or of a numeric list type, or of the set type

if case-exp is of an enumerated type, label-exp must be
of the same or comparable enumerated type, or of a list
type thereof, or it must be a range of enumerated item
constants thereof

if case-exp is of another type, label-exp must be of a
comparable type or of a list type thereof

action-block is a list of zero or more actions separated by semicolons
and enclosed in braces. Syntax: {action;...}

The entire labeled-case-item is repeatable, not just the action-block related to
the label-exp.

default-action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 297

21.1.3 case bool-case-item

This evaluates the bool-exp conditions one after the other and executes the action-block associated with the
first TRUE bool-exp. If no bool-exp is TRUE, it executes the default-action-block, if specified. After an
action-block is executed, the e program proceeds to the line that immediately follows the entire case
statement.

Each of the bool-exp conditions is independent of the other bool-exp conditions and there is no main case-
exp to which all cases refer, unlike the case labeled-case-item (see 21.1.2).

NOTE—This case action has the same functionality as a single if then else action, where each bool-case-item is
specified as a separate else if then clause.

Syntax example:

case {
 packet.length == 64 {out("minimal packet")};
 packet.length in [65..255] {out("short packet") };
 default {out("illegal packet")}
}

21.2 Iterative actions

Iterative actions are used to specify code segments that execute in a loop, for multiple times, in a sequential
order.

NOTE 1—A repeat until action performs the action block at least once. A while action might not perform the action
block at all.

NOTE 2—The optional do syntax used in some of the constructs of this subclause is purely syntactic sugar.

Purpose Execute an action block based on whether a given comparison is TRUE

Category Action

Syntax case {bool-case-item; ... [default {default-action; ...}]}

Parameters

bool-case-item bool-exp[:] action-block
where

bool-exp is a Boolean expression

action-block is a list of zero or more actions separated by semicolons
and enclosed in braces. Syntax: {action;...}

The entire bool-case-item is repeatable, not just the action-block related to the
bool-exp.

default-action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

IEEE
Std 1647-2011 IEEE STANDARD

298 Copyright © 2011 IEEE. All rights reserved.

21.2.1 while

This executes the action block repeatedly in a loop while bool-exp is TRUE. This construct can be used to set
up a perpetual loop as while TRUE {}. The loop shall not execute at all if the bool-exp is FALSE when
the while action is encountered.

Syntax example:

while a < b do {
 a += 1
}

21.2.2 repeat until

This executes the action block repeatedly in a loop until bool-exp is TRUE. The action block is executed at
least once.

Syntax example:

repeat {
 i += 1
} until i == 3

Purpose Execute an action block repeatedly as long as a Boolean expression evaluates to TRUE

Category Action

Syntax while bool-exp [do] {action; ...}

Parameters

bool-exp A Boolean expression.

action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

Purpose Execute an action block repeatedly as long as a Boolean expression evaluates to FALSE

Category Action

Syntax repeat {action; ...} until bool-exp

Parameters

action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

bool-exp A Boolean expression.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 299

21.2.3 for each in

For each item in list-exp, if its type matches type, this executes the action block. Inside the action block, the
implicit variable it (if no item-name is specified) or the optional item-name (when specified) refers to the
matched item, and the implicit variable index (or the optional index-name) reflects the index of the current
item. If reverse is specified, list-exp is traversed in reverse order, from last to first. The implicit variable
index (or the optional index-name) starts at zero (0) for regular loops and at list.size()-1 for reverse
loops.

Each for each in action defines two new local variables for the loop, named by default it and index. The
following restrictions also apply:

a) When loops are nested inside one another, the local variables of the internal loop hide those of the
external loop. To overcome this, assign each item-name and index-name unique names.

b) Within the action block, a value cannot be assigned to it or index—or to item-name or index-name.

Syntax example:

for each transmit packet (tp) in sys.pkts do {
 print tp // "transmit packet" is a type
}

Purpose Execute an action block once for every element of a list expression

Category Action

Syntax for each [type] [(item-name)] [using index (index-name)]
in [reverse] list-exp [do] {action; ...}

Parameters

type A type of the struct comprising the list specified by list-exp. Elements in the
list shall match this type.

item-name The name of the current item in list-exp. If this parameter is not specified, the
item can be referenced using the implicit variable it.

index-name The name of the index of the current list item. If this parameter is not speci-
fied, the item can be referenced using the implicit variable index.

list-exp An expression that results in a list.

action;... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

IEEE
Std 1647-2011 IEEE STANDARD

300 Copyright © 2011 IEEE. All rights reserved.

21.2.4 for each in set

For each numeric included in set-exp, this executes the action block. If type is specified, the element is
automatically cast to type; otherwise, an unbounded integer is used. Inside the action block, the implicit
variable it (if no item-name is specified) or the optional item-name (when specified) refers to the element. If
reverse is specified, the elements are traversed in decreasing order; otherwise, they are traversed in
increasing order.

Each for each in set action defines a new local variable for the loop, named by default it. The following
restrictions also apply:

a) When loops are nested inside one another, the local variable of the internal loop hide that of the
external loop. To overcome this, assign each item-name a unique name.

b) Within the action block, a value cannot be assigned to it or to item-name .

Syntax example:

for each uint (n) in my_set do {
print n

}

Purpose Execute an action block once for every element included in a set

Category Action

Syntax for each [type] [(item-name)] in [reverse] set set-exp [do] {action; ...}

Parameters

type A numeric type.

item-name The name of the current set element. If this parameter is not specified, the ele-
ment can be referenced using the implicit variable it.

set-exp An expression that results in a set.

action;... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 301

21.2.5 for from to

This creates a temporary variable var-name of type int and repeatedly executes the action block while
incrementing (or decrementing if down is specified) its value from from-exp to to-exp in interval values
specified by step-exp (which defaults to 1), i.e., the loop is executed until the value of var-name is greater
than the value of to-exp or less than to-exp.

The temporary variable var-name is visible only within the for from to loop where it was created.

Syntax example:

for i from 5 down to 1 do {

 out(i)

} // Outputs 5,4,3,2,1

21.2.6 for

The for loop works similarly to the for loop in the C language. This for loop executes the initial-action
once and then checks the bool-exp. If the bool-exp is TRUE, it executes the action block followed by the
step-action. It repeats this sequence in a loop for as long as bool-exp is TRUE. The following restrictions also
apply:

a) When a loop variable is used within a for loop, it needs to be declared before the loop (unlike the
temporary variable of type int automatically declared in a for from to loop).

Purpose Execute a for loop for the number of times specified

Category Action

Syntax for var-name from from-exp [down] to to-exp [step step-exp] [do] {action; ...}

Parameters

var-name A temporary variable of type int.

from-exp, to-exp,
step-exp

Valid e expressions that resolve to type int.
The default value for step-exp is 1.

action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

Purpose Execute a C style for loop

Category Action

Syntax for {initial-action; bool-exp; step-action} [do] {action; ...}

Parameters

initial-action An action.

bool-exp A Boolean expression

step-action An action.

action;... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

IEEE
Std 1647-2011 IEEE STANDARD

302 Copyright © 2011 IEEE. All rights reserved.

b) Although this action is similar to a C-style for loop, the initial-action and step-action need to be
e style actions.

Syntax example:

for i from 5 down to 1 do {
 out(i)
} // Outputs 5,4,3,2,1

21.3 File iteration actions

This subclause describes loop constructs, which are used to manipulate general ASCII files.

21.3.1 for each line in file

This executes the action block for each line in the text file file-name. Inside the block, it (if no name is
specified) or name (if specified) refers to the current line (as a string) without the final line feed (\n)
character.

NOTE—The optional line syntax is purely syntactic sugar.

Syntax example:

for each line in file "signals.dat" do {
 ’(it)’ = 1
} // Reads a list of signal names and assigns to each the value 1

Purpose Iterate a for loop over all lines in a text file

Category Action

Syntax for each [line] [(name)] in file file-name-exp [do] {action; ...}

Parameters

name Variable referring to the current line in the file.

file-name-exp A string expression that gives the name of a text file.

action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 303

21.3.2 for each file matching

For each file (in the file search path) whose name matches file-name-exp, this executes the action block.
Inside the block, it (if no name is specified) or name (if specified) refers to the matching file name.

Syntax example:

for each file matching "*.e" do {
 out(it)
} // lists the ’e’ files in the current directory

21.4 Actions for controlling the program flow

These actions alter the flow of the program in places where the flow would otherwise continue differently.

21.4.1 break

This breaks the execution of the nearest enclosing iterative action (for or while). When a break action is
encountered within a loop, the execution of actions within the loop is terminated and the next action to be
executed is the first one following the loop.

break actions shall not be placed outside the scope of a loop (or the compiler shall report an error).

Syntax example:

break

Purpose Iterate a for loop over a group of files

Category Action

Syntax for each file [(name)] matching file-name-exp [do] {action; ...}

Parameters

name Variable referring to the current line in the file.

file-name-exp A string expression that gives the name of a text file.

action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

Purpose Break the execution of a loop

Category Action

Syntax break

IEEE
Std 1647-2011 IEEE STANDARD

304 Copyright © 2011 IEEE. All rights reserved.

21.4.2 continue

This stops the execution of the nearest enclosing iteration of a for or while loop, and continues with the next
iteration of the same loop. When a continue action is encountered within a loop, the current iteration of the
loop is aborted, and execution continues with the next iteration of the same loop.

continue actions shall not be placed outside the scope of a loop (or the compiler shall report an error).

Syntax example:

continue

Purpose Stop executing the current loop iteration and start executing the next loop iteration

Category Action

Syntax continue

