IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

10. Constraints and generation

Test generation is a process producing data layouts according to a given specification. The specifications are
provided in the form of type declarations and constraints. Constraints are statements that restrict values
assigned to data items by test generation.

A constraint can be viewed as a property of a data item or as a relation between several data items.
Therefore, it is natural to express constraints using Boolean expressions. Any valid Boolean expression in
e can be turned into a constraint. Also, there are few special syntactic constructs not based on Boolean
expressions for defining constraints.

Constraints can be applied to any data types including user-defined scalar types as well as struct and list
types. It is natural to mix data types in one constraint, e.g.,

keep my_list.has(it == Oxff) => my_structl == my_struct2

10.1 Types of constraints

Constraints can be subdivided according to several criteria as follows:
a) Explicit or implicit
1) Explicit constraints are those declared using the keep statement or inside keeping {...} block.
2) Implicit constraints are those imposed by type definitions and variable declarations.

Examples
x - int[l, 3, 5, 10..100]; \\ is the same as:
X I int;
keep x in [1, 3, 5, 10..100];
1[20] : list of int; \\ is the same as:

I - list of int;
keep I.size() == 20
b) Hard or soft

1) Hard constraints are honored whenever the constrained data items are generated. A situation
when a hard constraint contradicts other hard constraints, and thus cannot be honored, shall
result in an error.

2) Soft constraints are honored if they do not contradict hard constraints or soft constraints of the
same connected field set honored earlier. If a soft constraint cannot be honored, it is
disregarded. (See 10.2.12 for the explanations on how the selection of soft constraints is done.)

c) Simple or compound

A constraint combining other constraints in a Boolean combination using not, and, or, and => is
called compound. Otherwise, the constraint is called simple.

10.2 Generation concepts

This subclause describes the basic concepts of generation.

Copyright © 2011 IEEE. All rights reserved. 165

IEEE
Std 1647-2011 IEEE STANDARD

10.2.1 Generation action

A generation action is a specific invocation of the generation process, initiated by a gen or do action. Pre-
run generation is also a generation action, and can be considered as an implicit gen sys action.

10.2.1.1 Pre-Run Generation Actions
Pre-run generation is initiated before starting the simulation run.

Pre-run generation is the generation of sys, in which sys and all generatable fields within sys, including
nested structs, are allocated and generated recursively. Any field prefixed with the do-not-generate character
(1) is not generated.

All unit instances must be generated during pre-run generation, so that the unit tree hierarchy is stable for the
duration of the run.

10.2.1.2 On-the-Fly Generation Actions

Any field or variable can be generated on-the-fly during a simulation run by executing a gen action within a
user-defined method.

10.2.2 Generatable variable

A variable that is subject to the generation process and can be constrained is one of the following:

a) Field of a struct or a unit.
b) Local variable that is a parameter of a gen action, and its structural descendants, if they exist.

var x: int;
gen Xx;

c) List-size of a generatable list.
d) Unit attribute.

10.2.3 Connected Field Sets (CFS)

Within a generation action, constraints create relationships between the fields being generated (or other
generatable variables). A set of fields in a generation action that is connected by a set of constraints is called
a connected field set (CFS).

A CFS has the following attributes:

a) Completeness—every generatable variable in a generation action is a member of some CFS. All
generatable variables that are connected by constraints (directly or indirectly) are placed in the
same CFS.

b) Exclusivity—for any given generation action, a generatable variable is a member of one and only
one CFS.

¢) Generation at once—for any given generation action, all generatable variables in a CFS are gener-
ated at the same time.

d) Unified input state—the same values of the same set of sampled inputs are applied to all fields in a
CFS.

e) A building block of a generation action—a generation action consists of the sequential generation of
a set of CFSs.

166 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

NOTE

— Within a single struct, different fields can belong to different CFSs.

— The same CFS can contain fields from different places in the hierarchy generated by the root gen-
action.

10.2.4 Inputs

Expressions in constraints are either generatable or they are inputs to the CFS (that is, they are non-
generatable).

Generatable expressions are assigned a value by the current CFS

Input values are not affected by the constraints, but they can affect the values assigned to the generatable
items. Thus, the inputs must be evaluated before any generatable items can be generated.

The specific values of a CFS's inputs comprise the input state.

An input to a constraint is an expression whose path has one of the following attributes:

— Contains a user-defined method-call
keep x == foo(y):

— Starts with sys (that is, a global or absolute path), for example:
keep counter == sys.counter;

— Is me, for example:
keep root_node => parent == me;

— Is not in the scope of the current generation action, for example:

var my_method_variable:my_struct;
gen x keeping {it == my_method_variable.id};

— Contains a call to a predefined unidirectional method or list pseudo-method, for example:
keep read_only(z) == p.a.x;

For some constraints, it is convenient to assume some of the parameters are always treated as inputs. There
are five such kinds of expressions, treating some of their parameters as inputs, even if these parameters
represent generatable paths.

— list segments: in an expression 1. . j], the segment boundaries i and j are treated as inputs in the
generation of |. Thus, a constraint such as
keep ({1; 2; 3; 4; 5P[i-.j] in {2; 3};
is allowed to cause a contradiction error.
— list in list: The right hand side of a “list in list” or “is a permutation” expression is considered as an
input to the constraint.
keep listl.is_a_permutation(list2);//1ist2 is input

— soft..select conditions, weights and policies: The condition, weights and policies of a soft...select
constraint are inputs, and evaluated before the enforcement of the constraint. The only generatable
expression in a soft...select constraint is the expression on which the distribution is applied.

keep soft b => x == select { // b is input, only x is generatable.
1 :© 10;
y Iz; //y and z are inputs

};

Copyright © 2011 IEEE. All rights reserved. 167

IEEE
Std 1647-2011 IEEE STANDARD

— conditional reset_soft(): The condition of reset_soft() constraint is an input.
— unit instance assignment:

u_inst: my_unit is instance;
u_ref: my_unit;
keep u_ref == u_inst; //u_inst is input

10.2.5 Unidirectional and Bidirectional Relations

Bidirectional relations imply that all the generatable fields in a constraint should be solved together in the
same CFS. For example:

keep x > vy;
Unidirectional relations on the other hand connect two generatable fields in which there is an implied gen-
eration order, for example:

keep x == read_only(y);
A constraint can have both unidirectional and bidirectional relations. For example, the following constraint
contains the unidirectional relations x->y and x ->z and the bidirectional relation y <-> z.

keep read_only(x==0) => y==z;

In unidirectional relations where there is an implied generation order:

— The field that must be resolved first is called the determinant.
— The field that depends on the value of the determinant is called the dependent.

For example, in the following example, y is the determinant and x is the dependent:

keep x == read_only(y);

10.2.6 Inconsistently Connected Field Sets (ICFS)

The generator responds to a generation action by:

1. Partitioning the fields in the gen-action being solved into connected field sets (CFSs)

2. Within each CFS, looping through reduction and assignment until the constraints are solved.

All the fields in a given CFS are solved together.

This process works as long as any two fields are connected only by unidirectional constraints or only by
bidirectional constraints. Problems arise when bidirectional constraints directly or indirectly connect two
fields that have a unidirectional connection. When this happens, the generator creates inconsistently con-
nected field sets (ICFSs), which it might or might not be able to solve.

10.2.7 Order of CFSs

There are two main types of unidirectional connections that imply an order between generatable fields:

a) Structural dependency
1) Field depends on its containing struct
2) Field in a subtype depends on its subtype determinant

168 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

3) Anitem in a list depends on the list's size
b) Input dependency
1) Field depends on input (method call, value(), global path) that uses another field as a parameter

10.2.7.1 Structural dependencies

A descendant field is dependent on its structural ancestor (either a struct or a list) because the ancestor (the
determinant) needs to be allocated in order to assign a value to the descendant field (the dependent).

For lists, the size of a list must be determined before any list element (or any descendant of that element) is
generated.

10.2.7.1.1 when Subtype Dependencies in Constraints

Just like with any structural dependency, any field that is declared under a when subtype depends on the
value of the when determinant. In other words, there is an implicit unidirectional constraint (a subtype de-
pendency) between the when determinant and the dependent field:

when-determinant -> dependent-field

If a field is constrained under a when subtype, but was declared outside it, the behavior is more robust. If the
when determinant is also connected to a dependent field directly or indirectly by bidirectional constraints,
the when determinant is treated as bidirectional, not creating an ICFS. As shown in Example: Subtype
Dependency Treated as Bidirectional on page 169, the generator can avoid inconsistent connections by
treating the subtype dependency as bidirectional. In these cases, the when determinant and the dependent
field remain in the same CFS.

Exception to this rule are cases in which the when determinant is required to be an input of a constraint.
Specifically, a soft...select or a reset_soft() constraint written under a when subtype makes the when sub-
type its condition, thus enforcing the when subtype to be generated before the constrained field. Another
case is of named constraints, where the exact subtype should be determined for the generator to decide
which layer of the named constraint should be enforced.

Example: Subtype Dependency Treated as Bidirectional

In this example, the when determinant “color" and the dependent field "x" are connected bidirectionally by
the keep color!=YELLOW => x < y; constraint. Both the when determinant and the dependent field
belong to the same CFS, and both constraints are considered bidirectional. No generation order is implied by
these constraints.

color <-> x <-> vy

<"
extend sys {

p: packet_s
}:

struct packet_s {
color: [RED,BLUE,YELLOW];
X: uint;
y: uint;

keep color!=YELLOW => x < y;
when RED packet_s {
keep x < 100
};
when BLUE packet_s {
keep x > 50

Copyright © 2011 IEEE. All rights reserved. 169

IEEE
Std 1647-2011 IEEE STANDARD

L]
\%

10.2.7.2 Input dependencies

Any constraint containing a unidirectional operator defines an input dependency. For example, in keep X
= value(y), value(y) is a unidirectional operator. In this example, y is the determinant expression
and x is the dependent expression.

10.2.7.2.1 Dependencies of method-calls

All the parameters of an expression that contains a method-call are inputs to the constraint. A slightly more
complex dependency is created for the path of the method-call, thus to the struct or unit that calls the
method.

— If the CFS contains no fields belonging to the path, the path should be completely generated, and it's
post_generate() routine should be called before the CFS that calls the method is solved. This
is to enforce that the path is complete and the method-call is evaluated correctly.

— If a CFS contains a descendant of the method-call path, the determinant is the path of the method
call, but not its descendents. Thus if the method body uses generatable fields, it is the user's responsi-
bility to pass them as a parameter to the method-call.

For example, for a CFS containing only the following constraint:
keep y == p.foo();
p, and all its fields, and all their fields, will be generated, and p.post_generate() will be called be-
fore solving the CFS of y.
However for the CFS:
keep p-x == p.foo();

only the p object will be generated before the CFS of p.x is solved.
10.2.8 Basic flow of generation

Generation can be initiated for any field or variable. For items of struct types, the generation allocates the
struct storage and recursively generates all generatable fields of the struct. All fields of a struct are
considered generatable, except for the fields prefixed with 1 (see 6.8). There is no specific order in which
data items or the fields in a struct hierarchy are generated.

For list items, the generation allocates the list and recursively generates all its elements. There is no specific
ordering for whether list items are generated after the size of the list has been fixed or that the items are
generated in the order of their indexes. Constraints specified for the items can impose restrictions on the list
size or on the items specified earlier in the list.

For scalar types, such as int, uint, bool, etc., the generation only generates the respective value.

The following ordering rules, however, do apply:

a) pre_generate() and post_generate()

1) pre_generate() of a struct is called after the struct is allocated and initialized using init(), but
before any of the fields of the struct are generated. In particular, for a struct containing nested

170 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

structs, the pre_generate() method is called before any of the pre_generate() methods of the
nested structs.

2) post_generate() is called after the generation of all fields of the struct is finished. In particular,
for a struct containing nested structs, the post_generate() method is called only when all the
nested generations are finished.

b) Methods
A method accepting a generatable item as an argument is called after that item is fully generated.

Example
struct s {
a - int;
b - t; // t’ is some other struct type
keep a == f(b)
}

The constraint a==F(b) implies b is fully generated, including the calls to its pre_generate() and
post_generate() before F is called on b. See also 10.2.9 and 10.2.10.

10.2.9 Using methods in constraints

Constraint paths can include method calls. The syntax is:

[simple-path.]Jmethod-name([parameter, ...])[.trailing-path]

where simple-path does not include method calls and the following restrictions apply:

— If simple-path is generatable, then it is fully generated before the method is called.
— Generatable paths used as parameters of the method are fully generated before the method is called.

— For methods returning pointers to structs, the trailing path is sampled after evaluating the method and
used as an input of the constraint.

Example

struct s {
X I int[0..5];
q : t;
keep x < m(q).y:

m(param:t): t is {
result = param

}
}:

struct t {

y - int[0..5]
}

In this example, q is generated before x and then g is used as an input in the constraint x<m(q) -y. If q.y
generates to O, then the constraint x<m(q) -y fails.

10.2.9.1 Classification of methods

Methods are classified into the following three categories:

Copyright © 2011 IEEE. All rights reserved. 171

IEEE
Std 1647-2011 IEEE STANDARD

a) Methods that behave like mathematical functions (pure). The computed result is entirely determined
by the arguments passed to the method. Multiple calls to the method with the same parameters
always produce the same result.

The use of such methods in constraints is safe and unrestricted.

b) Methods that observe the “state of the world,” but do not change it. Such method can read fields, sig-
nals, global configuration flags, etc., and base the computation on that data. Multiple calls to the
method with the same parameters can produce different results.

When using the methods of this category of constraints the following rules apply:

1) The method shall not base its computation on the items of the current generatable context,
unless such items are passed as parameters to the method.

Example

struct packet {

data : list of byte;
checksum : uint;
keep checksum == calc_checksum(data);

calc_checksum(data:list of byte): uint is {
// use ’data’ to calculate checksum

}
}
This is correct; data is generated before the method is called.

2) The timing of the call and/or the number of calls to the method cannot be presumed, especially
for methods reading values of the real-time or process clocks, operating-system (OS)
environment variables, sizes of allocated memory, etc.

Example

extend sys {
1[1000] : list of uint;
keep for each in I {
it == read_machine_real_time_clock_msec()

}

It is incorrect to assume the method read_machine_real time_clock _msec is called
1000 times, i.e., once for each list element in order (see 10.2.9.2). It is acceptable for the gener-
ator to assume this method is a pure function, and thus, call it only once for the list and assign
the result to all the list elements. It is also acceptable to assign values to list elements unrelated
to their natural order of indexes. Thus (normally in the presence of other constraints), the times
read by the method might not be ordered with respect to the list indexes.

¢) Methods that observe and change the “state of the world.”

The use of such methods in constraints can create problems. Instead, use the corresponding opera-
tions within the post_generate() method.

Example

struct packet {
data : list of data_item;

post_generate() is {
var id;

172 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

for each in data do {
if it.x < 100 then {
it.id = id;
id += 1

}

In general, it is impossible to classify methods automatically into the preceding three categories. Therefore,
the following warnings shall be used if a method calling issue occurs:

— method call warning #1: a method used in a constraint contains a non-local path anywhere in its
body.

— method call warning #2: a method used in a constraint contains an explicit assignment to a non-local
path.

10.2.9.2 Number of calls

A method used in constraints can be called zero or more times. The number of calls to a method is irrelevant
for the semantics of the constraint if the method behaves as a pure function [see 10.2.9.1, category a)].
However, the results of generation can differ depending on the number of calls for the methods with side
effects. Therefore, avoid using the methods of category c), and only use methods of category b) with
caution.

10.2.10 Generatable paths and the sampling of inputs

The purpose of constraints is to constrain generatable items, i.e., those items that can be assigned random
values (by the generator) satisfying the constraints. Thus, it is important to define which items are
considered generatable and when.

In the context of the initial generation, all fields of sys and all fields of nested structs are generatable, except
the fields declared as non-generatable (using the I prefix).

In the context of a gen item action (see 10.5.1), item is generatable and, if item is of a struct type, all its
nested fields are generatable—except the fields marked with 1. If gen item action applies to a field defined
as non-generatable, the item becomes generatable; however, any nested non-generatable fields remain non-
generatable.

Example
struct packet {
X I int;
Iy o int

¥

extend sys {
pl : packet; -
Ip2 : packet; -

generated during pre-generation
skipped during pre-generation

post_generate() is also {
gen p2 -- this allocates p2 and generates p2.x but not p2.y

}

Copyright © 2011 IEEE. All rights reserved. 173

IEEE
Std 1647-2011 IEEE STANDARD

Data items in constraints are referenced by using paths (see 4.3.4). In generation context, each path is either
generatable or non-generatable. Generatable paths refer to items that are assigned values during the
generation with respect to the corresponding constraints. Each constraint shall have all its inputs sampled
before the items referenced by the generatable paths are generated.

Non-generatable paths refer to items that are not affected by generation, but those items might affect
generatable items. Thus, non-generatable paths refer to inputs of constraints. A path is non-generatable if
a) itisan absolute path (e.g., sys.-counter).
b) it includes method calls (e.g., Xx-y-m() - 2).
¢) itincludes do-not-gen fields (e.g., Xy .non_gen_¥Field.z).
d) the pathis me (e.g., keep root_node => parent == me;).

Otherwise, the path is generatable.

A path that is generatable but is not intended to be generated may be modified by defining it as input to a
constraint using the read_only() syntax, as in keep x<read_only(y). In this case, the set of values y
can take is unaffected by the constraints on x. The parameter y is treated as an input.

Arbitrary expressions can be used as arguments of read_only(). For example, in keep x <
read_only(y+2z), both y and z become inputs of the constraint. First, y and z are generated (unaffected
by the possible values of x). Then, their sum is computed and used as an input in the constraints.

Semantically, read_only() can be viewed as an identity function

read_only(arg : TYPE) is { result = arg }

defined for each type TYPE known to the generator. The use of read_only() in constraints is thus identical
to the use of such an identity function.

A constraint that has no generatable paths with respect to the current generation context shall be reported as
an error.

10.2.11 Scope of constraints

A constraint can be either applicable or inapplicable depending on the context of generation. There are two
basic rules governing that aspect of generation.

a) All constraints defined for sys and any of the nested structs are applicable during the initial
generation.
b) For generation started by the gen item action (see 10.5.1), the following are applicable:
1) The constraints defined within the optional constraints block.
2) All constraints defined in the type of item, if item is of a struct type.
3) All constraints referring to item in this struct (me) and in the struct hierarchy containing me.

Example

struct packet {

X I uilnt;
y I uint;
keep x <y

¥

extend sys {

174 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Ipl : packet;
keep pl.y == 8;
Ip2 : packet;

post_generate() is also {
gen pl keeping {it.x > 5};
p2 = new;
gen p2.x

}

The generation of p1 succeeds. The applicable constraints here are p1.x>5 (by rule bl), p1.x<pl.y (by
rule b2), and p1.y==8 (by rule b3) Thus, p1.y becomes 8 and p1.x becomes either 6 or 7.

The generation of p2.x fails. For p2 allocated using new, p2.x=0 and p2.y=0. The only applicable
constraints in this case is p2.x<p2.y (by rule b3). p2.y is not a generatable item here in the context of
gen p2.x (see 10.2.10); it is used as input, so the constraint is equivalent to p2.x < 0. Since x is a
uint, the constraint is not satisfiable.

10.2.12 Soft constraints

A constraint can be declared as soft by prefixing it with the soft keyword in the declaration. See also 10.4.5.

keep soft constraint;
gen item keeping {soft constraint; .._};
keep soft item = select {...}

Intuitively, soft constraints are satisfied if possible and otherwise disregarded. Soft constraints suggest
default values and relations that can be overridden by hard or other soft constraints. They are considered
with respect to the order of importance, which is a reverse of the (textual) order of soft constraints in the
model.

The following properties of soft constraints also apply:

a) Assume two soft constraints ¢, and c,, such that ¢4 is more important than c,. Then the generator
shall always produce a solution satisfying c, if one exists. It is also required that the generator find
a solution satisfying both c; and c,, if it exists.

b) Assume a collection of data items (fields and/or variables) X, - - -X,,, a collection of constraints
C1 - - - Ci linking the data items, and a solution exists satisfying all ¢4 . . - cy. Then a solution needs
to be found for {soft cq;...;soft cy} such that all soft constraints are satisfied.

Informally, this property means that in the absence of hard constraints, soft constraints act as hard, except
for those cases causing contradictions.

Example

struct s {

X I iInt;
y - int;
z - Int;

keep x in [1..100];
keep x <y ory«<z

}

is the same as

struct s {

Copyright © 2011 IEEE. All rights reserved. 175

IEEE

Std 1647-2011 IEEE STANDARD
X I iInt;
y I int;
z int;

keep soft x in [1..100];
keep soft x <y ory <z

}

10.2.12.1 keep gen-item.reset_soft()

Purpose | Quit evaluation of soft constraints for a field

Category | Struct member

Syntax keep gen-item.reset_soft()

Parameters| gen-item A generatable item (see 10.4.8).

This causes the program to quit the evaluation of soft value constraints for the specified field. Soft
constraints for other fields are still evaluated. Soft constraints are considered in reverse order to the order in
which they are defined in the e code.

The syntax keep gen-item.reset_soft() is used for discarding soft constraints referring to the gen-item loaded
so far. Soft constraints not referring to gen-item or soft constraints referring to gen-item, but loaded later, are
taken into account by the constraint resolution engine. The main use of this feature is for overloading the
default “soft” behavior of a model.

Syntax example:

keep c.reset_soft()

176 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

10.2.12.2 keep soft... select

Purpose | Constrain distribution of values

Category | Struct member

Syntax keep soft gen-item==select {weight: value; ...}

gen-item A generatable item of type list (see 10.4.8).

weight Any uint expression. Weights are proportions; they do not have to add up to
100. A relatively higher weight indicates a greater probability that the value is
chosen.

value value is one of the following:

a) set—An expression of a set type, or a range list suchas [2. - 7] or
[a- -b]. A select expression with a set as a value, selects the por-
tion of the current range that intersects with the specified set.

b) exp—Any expression returning the type of the gen-item.

c) others—Selects the portions of the current range that do not inter-
sect with other select expressions in this constraint.

Using a weight of O for others causes the constraint to be ignored,
i.e., the effect is the same as if the others option were not entered at
all.

d) pass—Ignores this constraint and keeps the current range as is.

e) edges—Selects the values at the extreme ends of the current
range(s).

f) min—Selects the minimum value of the gen-item.

g) max—Selects the maximum value of the gen-item.

Parameters

This specifies the relative probability that a particular value or set of values is chosen from the current range
of legal values. The current range is the range of values as reduced by hard constraints and by soft
constraints that have already been applied. A weighted value shall be assigned with the probability of

weight/(sum of all weights)

Weights are treated as integers. If an expression is used for a weight, the value of the expression shall be
smaller than the maximum integer size (MAX_INT).

Like other soft constraints, keep soft select is order dependent (see 10.2.12) and shall not be met if it
conflicts with hard constraints or soft constraints that have already been applied. In those cases where some
values conflict with other constraints, keep soft select shall bias the distribution based on the remaining
permissible values.

Syntax example:

keep soft me.opcode == select {
30 : ADD;
20 : ADDI;

10 : [SUB, SUBI]
T

10.2.13 Constraining non-scalar data types

This subclause describes constraining structs and lists.

Copyright © 2011 IEEE. All rights reserved. 177

IEEE
Std 1647-2011 IEEE STANDARD

10.2.13.1 Constraining structs

There are two basic constraints that apply to structs: struct equality and struct inequality. Other constraints
affecting items of struct types (such as list constraints with structs as list elements) can be equivalently
expressed using these basic constraints and Boolean combinators.

10.2.13.1.1 Struct equality
Struct equality constrains two structs to share the same struct layout, i.e., it aliases two struct pointers.
Example

struct packet {
X I Int;
y - int

};

extend sys {
pl : packet;
p2 : packet;
keep pl == p2;

post_generate() is also {
pl.x =5
}
}

This causes p1 and p2 to represent the same struct, i.e., sys.pl and sys.p2 can be viewed as pointers
pointing to the same place in memory. Thus, the assignment in post_generate has the same effect on
both structures, i.e., sys.pl.x = sys.p2.x = 5.

In contrast,

struct packet {
X I int;
y - int

}:

extend sys {
pl : packet;
p2 : packet;
keep pl.x == p2.X;
keep pl.y == p2.y;
post_generate() is also {
pl.x =5
}
}

The first two lines in “extend sys” define two structures with the same contents, sys.pl and sys.p2.
Then the assignment in post_generate changes the value of sys.pl.Xx, but not of sys.s2.x. Thus,
at the end sys.pl.x=5, while sys.p2.x is set to a random value from the range [MIN_INT..
MAX_INTT]. Of course, this value could be 5 as well, but the chance for that is 1/(232). Thus, most likely at
theend sys.pl.x 1= sys.p2.x.

178 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

10.2.13.1.2 Struct inequality

Struct inequality states that two struct pointers cannot be aliased, although they can still have the identical
contents. Normally, struct inequality only makes sense for structs with a finite set of possible values (see
10.2.13.2).

Example

struct packet {
X I iInt;
y - int

}:

extend sys {
pl : packet;
p2 : packet;
keep pl in sys.list_of_input_packets;
keep p2 in sys.list_of_input_packets;
keep pl1 = p2;
keep pl.x == p2.X;
keep pl.y == p2.y
}

This code constrains both p1 and p2 to be elements of a (pre-built) list of input packets, such that p1 and
p2 are distinct packets and have the same contents. The generation succeeds if and only if (iff) the list

sys. list_of_ input_packets contains repetitions. There is no contradiction in the fact p1 and p2
are different structs with identical contents.

10.2.13.2 Allocation versus aliasing

By default, a new structure is allocated for each item of a struct type. The only exception to that are the cases
when the range of possible structs is limited by constraints to a finite number of choices.

Example

p : packet;
keep (packet == sys.input_packetl) or (packet == sys.input_packet2)

In this example, the range of values for packet is limited by the values sys. input_packetl and

sys. input_packet2, where both values are pre-built structures, i.e., inputs to the constraint. In
contrast,

keep packet !'= sys.input_packetl
does not limit the choices of packet to a finite set. Here, there are an infinite number of ways to allocate
packet so that it does not point to sys. input_packetl. Thus, the system allocates a NEW struct for
packet in this case. This behavior makes struct inequality redundant for those cases where the set of
potential struct values is unlimited.
10.2.13.3 Constraining lists

This subclause describes constraining lists. See also Table 25.

Lists are treated as pointers exactly like structs.

Copyright © 2011 IEEE. All rights reserved. 179

IEEE
Std 1647-2011 IEEE STANDARD

10.2.13.3.1 List equality and inequality

List equality constraint states that two lists are allocated with the same object, and therefore contain the
same elements in the same order.

Example

extend sys {
L1 : list of int;
L2 : list of int;

Ix : iInt;
keep L1 == L2;

post_generate() is also {
X = L2.popQ)
}
}

This generates two identical lists L1 and L2. Then, post_generate() removes the last element of L2,
which is also the last element of L1.

As for the list inequality constraint (L1 1= L2), it states that the items of list type L1 and L2 are not
aliased. Still, the lists can have the same number of elements and the same values for their items.

10.2.13.3.2 List item
The syntax generatable_path_to_list[index] provides a generatable path of a list element. This syntax can be

used in constraints as any other generatable path. List item constraints are fully solvable. Thus, the
constraint can be used in several different modes.

Examples
keep sys.packets[5] == x; -- element extraction from fixed list
keep I[7] < 25; -- constraining certain element of list
keep sys.packets[i]-.id == 10; -- index look-up for fixed list and value
keep I[i] < X -- multi-way constraint

10.2.13.3.3 Iltem in list

The expression item in list states that item is an element of the list. Note that a constraint such as

keep x in 1
also implies that I includes at least one element, i.e., it is non-empty.
10.2.13.3.4 List in list
The syntax listl in list2 provides the way of constraining two lists listl and list2 so listl is a (possibly
permuted) sublist of list2. listl is a possibly permuted sublist of list2 if for every valid index i in listl there
exists a matching valid index j in list2 such that Tistl[1]==1ist2[j]. Every index j of list2 is
represented at most once in listl.
Informally, this definition means listl can be obtained from list2 by a number (possibly zero) of delete

operations of elements of list2 and then applying is_a_permutation(list2).

180 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Examples

{1;2;3}isasublistof {0;1;3;2;3}
{1;2;3%}is apermuted sublist of {1;3;2}
{1;1;2}isasublistof {1;3;1;4;2}
{1;1;2}isNOT asublistof {1;2;2;3}
{1;1;2%}is apermuted sublist of {2;1;1}

10.2.13.3.5 Permutations

The syntax listl.is_a_permutation(list2) states that listl is a permutation of list2. The lists listl and list2
contain exactly the same elements and the same numbers of repetitions of each element.

Examples

{2;3;1%} is apermutation of {1;2;3}

{2;3} is not a permutation of {1;2;3}
{1;2;3%}isapermutation of {1;2;3%}
{2;3;2;1}is NOT a permutation of {1;2;3%}

is_a_permutation is a symmetric property, i.e., listl is a permutation of list2 iff list2 is a permutation of
listl. Thus, the following two constraints are equivalent:

keep listl.is_a_permutation(list2);
keep list2.is_a_permutation(listl)

10.2.13.3.6 List attributes

There are several properties of lists that can be constrained using the attribute syntax, list.attribute(...).

list.size()—constrains the size of the list, e.g., keep my_list.size() in [5..8]
my_list can have 5,6,7, or 8 elements.

list.count(exp)—counts the number of list elements satisfying exp that have a Boolean type, e.g.,
keep my_list_count(it == 3) ==

the number 3 appears exactly five timesinmy_ list.

list.has(exp)—verifies at least one item of the list satisfies the Boolean exp. This is the same as
list._count(exp) > O.

list.all_different(exp[,cond_exp])—returns TRUE if, and only if, evaluation of the expression
returns a unique value for each of the list elements, meaning that no two items (or expressions) in the
list have the same value. If a cond_exp parameter is present, the constraint is applied only to the
items with a TRUE cond exp. For example, keep my_list.all_different(it,
index>5)ensures that there are no duplicate items in indices above 5.

list.sum(exp)—constrains the sum of the list elements satisfying exp containing a Boolean type. The
attribute applies only to lists of numeric type, e.g., keep my_list.sum(it) == 100
for the elements of my_list in the range [0. . 20] is 100.

list.and_all(exp)—returns the logical AND of all Boolean expressions. For example,
list.and_all(it>5) returns TRUE if all the list items are greater than 5.

list.or_all(exp)—uverifies at least one item of the list satisfies the Boolean exp. This is the same as
list.has(exp).

list. max_value(exp)—constrains the maximum exp in a list. For example,
list_.max_value(it) == 100 constrains the maximal list item to be 100.

Copyright © 2011 IEEE. All rights reserved. 181

IEEE

Std 1647-2011 IEEE STANDARD

list. min_value(exp)—constrains the minimum exp in a list. For example,
list.min_value(it) == 100 constrains the minimal list item to be 100.

10.2.13.3.7 Constraining all list items: keep for each

Purpose | Constrain list items
Category | Struct member
Svntax keep for each [(item-name)] [using [index (index-name)] [prev (prev-name)]] in
Y gen-item [do] {(constraint-bool-exp | nested-for-each); ...}
item-name An optional name used as a local variable referring to the current item in the
list. The default is it.
index-name An optional name referring to the index of the current item in the list. The
default is index.
prev-name An optional name referring to the previous item in the list. The default is
Parameters Prev.
gen-item A generatable item of type list (see 10.4.8).
constraint- A simple or a compound Boolean expression (see 10.4.7).
bool-exp
nested-for-each A nested for each block, with the same syntax as the enclosing for each
block, except that keep is omitted.

This defines a value constraint on multiple list items. The following restrictions also apply:

for each constraints can be nested. The parameters item-name, index-name, and prev-name of a
nested for each can shadow the names used in the outer for each blocks. In particular, if the optional
names are unspecified, then the default names it, index, and prev refer to the corresponding details
of the innermost for each block.

Within a for each constraint, index represents a running index in the list, which is treated as a con-
stant with respect to each list item.
Generated items need to be referenced by using a pathname that starts either with it, prev, or the

optional item-name or prev-name, respectively. Items whose pathname does not start with it can only
be sampled; their generated values cannot be constrained.

If a for each constraint is contained in a gen ... keeping action, the iterated variable needs to be
named first.

Syntax example:

keep for each (p) in pkl do {

}

soft p.protocol in [atm, eth]

10.2.13.3.8 All solutions

This feature generates lists of structs covering all possible combinations of values for certain fields. The
syntax is list.is_all_iterations(.fieldname, ...), where list is a list of elements and fieldname, ... are field
names of some struct type T. The arguments of is_all_iterations are unique, i.e., there are no repetitions in
the list of fields. All fields shall be defined under the base type T, i.e., fields defined in when subtypes or
like successors are not allowed.

182

Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Example

struct s {

bl : bool;
b2 : bool;
X - int

}:

extend sys {
I - list of s;
keep I.is_all_iterations(.bl, _b2)

}

The resulting sys. I includes four elements for all four combinations of TRUE/FALSE of b1 and b2. The
values of x are chosen randomly.

10.3 Type constraints

This subclause describes how to use type constraints to restrict the declared type of a field to one of its like
or when subtypes for a given context. A constraint prefixed with the type modifier is both (a) enforced by
the generator (like a regular constraint) and (b) presupposed at compile time for purposes of type checking.
Expressions for which type constraints apply are automatically downcast to the specified subtype wherever
required. This saves explicit downcasting [“is_a()” and “as a” operators] for the expression and lets the
downcast expression be used as a generatable term (rather than input) in constraint contexts.

10.3.1 keep type

Purpose Refine the type of a field to one of its subtypes for the specified context

Category | Struct member

keep type [me.]field-name is a type
keep type [me.]field-name.property-name == [me.]Jmy-property-name
keep for each [(item-name)] in list-field-name {

type item-name is a type;

Syntax
keep for each [(item-name)] in list-field-name {
i)./.pe item-name.property-name == [me.]my-property-name;

)
field-name The name of a struct field in the enclosing struct.
type The name of a struct or unit type.
property-name The name of an enumerated or Boolean const field.

Parameters | my-property- The name of a field of the same type as the property-name in this constraint.
name
item-name An optional name used as a local variable referring to the current item in the

list. The default is it.

list-field-name The name of a field of typelist of struct (or unit) in the enclosing struct.

Copyright © 2011 IEEE. All rights reserved. 183

IEEE
Std 1647-2011 IEEE STANDARD

A type constraint can be put either on a field of a struct type or on a list field of a struct type. The declaration
is similar to a regular constraint inside a keep struct member, or, in the list case, inside a keep for each
construct, with the type keyword prefixing the expression.

The type keyword is a constraint modifier syntactically analogous to soft. However, unlike soft, it can
modify only specific constraint expressions and can appear only in restricted contexts.

The type correlation can be fixed or, when the correlated types are when subtypes, variable. The former case
is expressed using the is a operator. In the latter case the determinant property (the when determinant) of the
referenced struct is equated to a determinant property of the same type in the declaring struct type.

Type constraints affect the static semantics of field-access expressions of the form instance-expression.field-
name (field-access in which instance-expression is omitted is equivalent to one having me as the instance-
expression). Typically the static type of a field-access expression is determined according to the type of the
field as it was initially declared in the struct type of instance-expression (or in one of its supertypes). Type
constraints tying the static type of instance-expression with a subtype of the field’s declared type can change
this rule. If the context in which the field-access occurs requires the subtype, the field-access is
automatically downcast. In this case, a runtime check is added to ensure that the casting is justified, and an
error is issued if it is not. The runtime check involves a minor overhead, not more than that required by the
as_a() operator.

NOTE
— Inthe Boolean expression following type, operators other than == and is a are not allowed.
For example, the following is not allowed:
keep type TRUE => engine is a FORD engine // not allowed
— The for each clause must occur immediately after keep. For example, the following is not allowed:

keep my_doors.size() > 4 => for each in my_doors { // not allowed
type it is a small door

}

— Type constraints can equate only constant fields, so the const keyword must appear in the declaration of fields
involved in equality constraints.

— Type constraints in general affect code from that point onwards. This includes type constraints that appear
inside a for each clause, in which case other expressions in the same scope after the declaration (but not before
it) can assume automatic casting.

— Type constraints cannot appear inside a gen action.
— The soft keyword cannot be used with type constraints.

— As with non-type constraints, the determinant field of the when subtype is assigned only during generation.
Thus the pre_generate() method of the type specified in the type constraint is not called during generation.

— A field’s type may be restricted by more than one type constraint with respect to different “when” dimensions
(determinant fields).

Syntax example:

keep type f.pl == pil;
keep for each in If {

type it is a B S1
}

10.3.2 Type constraints and struct fields

Automatic casting of a struct-reference field is performed in any context that requires it, including the
following:

— Struct-member access
— Assignment

184 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

— Parameter passing
10.3.3 Type constraints and list fields

When the type relation is one-to-many, in other words, when a list field is concerned, automatic casting is
applied not to the list itself but to its elements. Automatic casting affects list operators whose result type is
the element type, such as indexing (the [] operator) and pop(). It also affects the iteration variable inside the
for each construct, both in procedural and in constraint contexts.

10.3.4 Type constraints and like subtypes

Type constraints work just as well for like subtypes of the declared type of the field. They apply to the two
“is a” forms of the keep type struct member.

Note that type constraints with like subtypes cannot make the actual like type of a generated field dependent
on a when determinant. In other words, they may not figure under a when subtype if they affect a field not
declared in the same subtype. This is an error: the constraint is unenforceable.

10.4 Defining constraints

This subclause describes the constructs used to define constraints. See also 4.10.

10.4.1 keep

Purpose | Define a hard value constraint

Category | Struct member

Syntax keep [name is [only]] constraint-bool-exp

name Optional identifier for constraint overriding and reference by tools.
Parameters constraint- A simple or a compound Boolean expression (see 10.4.7).
bool-exp

This states restrictions on the values generated for fields in the struct or its subtree, or describes required
relationships between field values and other items in the struct or its subtree.

Hard constraints are applied whenever the enclosing struct is generated. For any keep constraint in a
generated struct, the generator either meets the constraint or issues a constraint contradiction message. If the
keep constraint appears under a when construct, the constraint is considered only if the when condition is
true.

Syntax example (un-named constraint):

keep kind = tx or len == 16
Syntax example (named constraint):

keep address_range is soft addr in [0..9]

Copyright © 2011 IEEE. All rights reserved. 185

IEEE
Std 1647-2011 IEEE STANDARD

10.4.1.1 Constraint overriding

Every named constraint must have exactly one actual definition per struct type. An initial definition of a
constraint in a struct type may be overridden in like and when subtypes or in later extensions of the same
struct—any number of times—using the is only modifier.

The semantics of constraint overriding is identical to that of overriding other extendable struct members,
such as methods. A constraint can be redefined in different when subtypes (even if they are not
contradictory), and the latest definition that applies to the generated subtype is chosen (for ordering
definitions see Annex B).

Example:
struct packet {
size: [big, small];
data: list of byte;
keep data_size is undefined; // abstract constraint

when big packet {
keep data_size is all of { // concrete definition for big packets
data.size() > 10;
data.size() < 20
}
3
}

10.4.2 keep

Purpose | Define an abstract constraint

Category | Struct member

Syntax keep name is [only]

Parameters| name Optional identifier for constraint overriding and reference by tools.

10.4.3 keep all of {...}

Purpose | Define a constraint block

Category | Struct member

Syntax keep [name is [only]] all of {constraint-bool-exp; ...}

name Optional identifier for constraint overriding and reference by tools.
Parameter: . . .
arameters constraint- A simple or a compound Boolean expression (see 10.4.7).
bool-exp

A keep constraint block is exactly equivalent to a keep constraint for each constraint Boolean expression in
the block. The all of block can be used as a constraint Boolean expression itself.

Syntax example:

186 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

keep all of {
kind = tx;
len == 16
}

10.4.4 keep struct-list.is_all_iterations()

Purpose | Cause alist of structs to have all iterations of a field

Category | Constraint-specific list method

Syntax keep [name is [only]] gen-item.is_all_iterations(.field-name: exp, ...)

name Optional identifier for constraint overriding and reference by tools.
gen-item A generatable item of type list of struct (see 10.4.8).

Parameters| . - - !
field-name The name of a scalar field of a struct. The field name shall be prefixed by a

period (-). The order of fields in this list does not affect the order in which
they are iterated. The specified field that is defined first in the struct is the one
that is iterated first.

This causes a list of structs to have all legal, non-contradicting iterations of the fields specified in the field
list. Fields not included in the field list are not iterated; their values can be constrained by other relevant
constraints. The highest value always occupies the last element in the list.

Soft constraints on fields specified in the field list are skipped. All other relevant hard constraints on the list
and on the struct are applied. If these constraints reduce the ranges of some of the fields in the field list, then
the generated list is also reduced.

The following restrictions also apply:

— The number of iterations in a list produced by list.is_all_iterations() is the product of the number of
possible values in each field in the list. Use the absolute_max_list_size generation configuration
option to set the maximum number of iterations allowed in a list (the default is 524 288).

— The list.is_all_iterations() method shall only be used in a constraint Boolean expression.
— The fields to be iterated shall be of a scalar type, not a list or struct type.

Syntax example:

keep packets.is_all_iterations(.kind, .protocol)

Copyright © 2011 IEEE. All rights reserved. 187

IEEE
Std 1647-2011 IEEE STANDARD

10.4.5 keep soft

Purpose | Define a soft value constraint

Category | Struct member

Syntax keep [name is [only]] soft constraint-bool-exp

name Optional identifier for constraint overriding and reference by tools.
Parameters constraint- A simple Boolean expression (see 10.4.7).
bool-exp

This suggests default values for fields or variables in the struct or its subtree, or describes suggested
relationships between field values and other items in the struct or its subtree. The following restrictions

apply:

— Soft constraints are order dependent (see 10.2.12) and shall not be met if they conflict with hard
constraints or soft constraints that have already been applied.

— The soft keyword shall not be used in compound Boolean expressions.
— Individual constraints inside a constraint block can be soft constraints.

— Because soft constraints only suggest default values, it is better not to use them to define
architectural constraints.

Syntax example:

keep soft legal

10.4.6 read_only()

Purpose | Modify generation sequence

Category | Pseudo-method

Syntax read_only(item: exp)

Parameters| item A legal e expression.

read_only() computes the value of the expression inside it. It makes the expression an input to the constraint,
and if there are generative elements inside the expression, the generation order is enforced so that these
elements are generated before the connected field set to which the constraint belongs.

Example

keep a == read_only(b + ©)

This constraint has two results:

— b and c are generated before a.
— The value of a cannot otherwise be constrained in a bidirectional constraint.

Syntax example:

188 Copyright © 2011 IEEE. All rights reserved.

IEEE

FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

keep 1 < read_only(g)

10.4.7 constraint-bool-exp

Purpose | Define a constraint on a generatable item

Category | Expression

Syntax bool-exp [or |

and | => bool-exp] ...

bool-ex
Parameters P

An expression that returns either TRUE or FALSE when evaluated at
runtime.

A constraint Boolean expression is a simple or compound Boolean expression that describes the legal values
for at least one generatable item or constrains the relation of one generatable item with others. A compound
Boolean expression is composed of two or more simple expressions joined with the or, and, or implication
(=>) operators. Table 25 shows the e special constructs that are useful in constraint Boolean expressions.

Table 25—Constraining Boolean expressions

Constraint Definition
soft A keyword that indicates the constraint is either a soft value constraint or a soft
order constraint. See 10.4 for a definition of these types of constraints.
soft...select An expression that constrains the distribution of values.

.reset_soft()

A pseudo-method that causes the test generator to quit evaluation of soft constraints
for a field, in effect, removing previously defined soft constraints.

.is_all_iterations()

A list method used only within constraint Boolean expressions that causes a list of
structs to have all legal, non-contradicting iterations of the specified fields.

.Is_a_permutation()

A list method that can be used within constraint Boolean expressions to constrain a
list to have the same elements as another list.

[not] in An operator that can be used within constraint Boolean expressions to constrain an
item to a range of values or a list to be a subset of another list; or when used with
not, to be outside the range or absent from another list.

is [not] a An operator that checks the subtype of a struct.

The following considerations also apply:

— The soft keyword can be used in simple Boolean expressions, but not in compound Boolean

expressions.

— The order of precedence for Boolean operators is: and, or, =>. A compound expression containing
multiple Boolean operators of equal precedence is evaluated from left to right, unless parentheses
[(O] are used to indicate expressions of higher precedence.

— Any e operator can be used in a constraint Boolean expression. However, certain operators can affect

generation order or can

create an constraint that is not enforceable.

— In compound expressions where multiple implication operators are used, the order in which the oper-

ations are performed

is significant. For example, in the following constraint, the first

expression (a => b) is evaluated first by default:

Copyright © 2011 IEEE. All rights reserved. 189

IEEE

Std 1647-2011 IEEE STANDARD
keep a => b => c; // is equivalent to:
keep (not a or b) => c; // is equivalent to:

keep a and (not b) or c

However, adding parentheses around the expression (b => c) causes it to be evaluated first, with
very different results.

keep a => (b => ¢); // is equivalent to:
keep a => (not b) or c; // is equivalent to:
keep (not a) or (not b) or c

Examples

The following are examples of simple constraint Boolean expressions:

not short // where "short™ is of type "bool™
long == TRUE
soft x >y
X +z==y+7
The following are examples of compound constraint Boolean expressions:

X > 0 and soft x <y

is_a_good_match(x, y) => z < 1024

color = red or resolution in [900..999]
packet is a good packet => length in [0..1023]

See also 5.1.1.

Syntax example:

zZ==X+Yy

10.4.8 gen-item

Purpose | Identifies a generatable item

Category | Expression

[me]field1-name[field2-name ...]

Syt | it | Tit] field1-namel field2-name ...]

Parameters| field-name The name of a field in the current struct or struct type.

A generatable item is an operand in a Boolean expression that describes the legal values for that generatable
item or constrains its relation with another generatable item. Every constraint shall have at least one
generatable item or an error shall be issued.

In a keep constraint, the syntax for specifying a generatable item is a path starting with me of the struct
containing the constraint and ending with a field name. In a gen action, the syntax for specifying a
generatable item is a path starting with it of the struct containing the constraint and ending with a field name.

A generatable item cannot have an indexed reference in it, except as the last item in the path. See also 4.3.3.

Syntax example:

me.protocol

190 Copyright © 2011 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

10.5 Invoking generation

There are two ways of invoking generation, as follows:

a) Generation is invoked automatically when generating the tree of structures starting at sys.

b) Generation can be called for any data item by using the gen action. The scope of this type of genera-
tion is restricted (see 10.5.1). The generation order is (recursively):

1) Allocate the new struct
2) Call pre_generate()
3) Perform generation

4) Call post_generate()

10.5.1 gen

Purpose | Generate values for an item

Category | Action

Syntax gen gen-item [keeping {[it].constraint-bool-exp; ...}]

gen-item A generatable item. If the expression is a struct, it is automatically allocated,
and all fields under it are generated recursively, in depth-first order.
Parameters
constraint- A simple or compound Boolean expression (see 10.4.7).
bool-exp

This generates a random value for the instance of the item specified in the expression and stores the value in
that instance, while considering all the constraints specified in the keeping block, as well as other relevant
constraints at the current scope on that item or its children. Constraints defined at a higher scope than the
enclosing struct are not considered.

The following considerations also apply:

— Values for particular struct instances, fields, or variables can be generated during simulation (on-the-
fly generation) by using the gen action.

— This constraint can also be used to specify constraints that apply only to one instance of the item.
— The soft keyword can be used in the list of constraints within a gen action.

— The earliest the gen action can be called is from a struct’s pre_generate() method.

— The generatable item for the gen action cannot include an index reference.

— Ifagen ... keeping action contains a for each constraint, the iterated variable needs to be named.

Syntax example:

gen next_packet keeping {
-kind in [normal, control]

Copyright © 2011 IEEE. All rights reserved. 191

IEEE
Std 1647-2011

10.5.2 pre_generate()

IEEE STANDARD

Purpose Method run before generation of struct
Category Method of any_struct
Syntax [struct-exp.]pre_generate()
Parameters| struct-exp An expression that returns a struct. The default is the current struct.

The pre_generate() method is run automatically after an instance of the enclosing struct is allocated, but
before generation is performed. This method is initially empty, but can be extended to apply values
procedurally to prepare constraints for generation. It can also be used to simplify constraint expressions

before they are analyzed by the constraint resolution engine.

NOTE—Prefix the ! character (see 6.8) to the name of any field whose value is determined by pre_generate(). Other-
wise, normal generation overwrites this value.

Syntax example:

pre_generate() is also {

m

}

=7

10.5.3 post_generate()

Purpose | Method run after generation of struct
Category Predefined method of any_struct
Syntax [struct-exp.]post_generate()
Parameters| Struct-exp An expression that returns a struct. The default is the current struct.

The post_generate() method is run automatically after an instance of the enclosing struct is allocated and
both pre-generation and generation have been performed. This method can be extended for any_struct to
manipulate values produced during generation. It can also be used to derive more complex expressions or
values from the generated values.

Syntax example:

post_generate() is also {
m=ml+ 1

}

192

Copyright © 2011 IEEE. All rights reserved.

