
IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 165

10. Constraints and generation

Test generation is a process producing data layouts according to a given specification. The specifications are
provided in the form of type declarations and constraints. Constraints are statements that restrict values
assigned to data items by test generation.

A constraint can be viewed as a property of a data item or as a relation between several data items.
Therefore, it is natural to express constraints using Boolean expressions. Any valid Boolean expression in
e can be turned into a constraint. Also, there are few special syntactic constructs not based on Boolean
expressions for defining constraints.

Constraints can be applied to any data types including user-defined scalar types as well as struct and list
types. It is natural to mix data types in one constraint, e.g.,

keep my_list.has(it == 0xff) => my_struct1 == my_struct2

10.1 Types of constraints

Constraints can be subdivided according to several criteria as follows:

a) Explicit or implicit

1) Explicit constraints are those declared using the keep statement or inside keeping {...} block.

2) Implicit constraints are those imposed by type definitions and variable declarations.

Implicit constraints are always hard.

Examples

x : int[1, 3, 5, 10..100]; \\ is the same as:

x : int;
 keep x in [1, 3, 5, 10..100];

l[20] : list of int; \\ is the same as:

l : list of int;
 keep l.size() == 20

b) Hard or soft

1) Hard constraints are honored whenever the constrained data items are generated. A situation
when a hard constraint contradicts other hard constraints, and thus cannot be honored, shall
result in an error.

2) Soft constraints are honored if they do not contradict hard constraints or soft constraints
honored earlier. If a soft constraint cannot be honored, it is disregarded. (See 10.2.6 for the
explanations on how the selection of soft constraints is done.)

c) Simple or compound

A constraint combining other constraints in a Boolean combination using not, and, or, and => is
called compound. Otherwise, the constraint is called simple.

10.2 Generation concepts

This subclause describes the basic concepts of generation.

IEEE
Std 1647-2011 IEEE STANDARD

166 Copyright © 2011 IEEE. All rights reserved.

10.2.1 Basic flow of generation

Generation can be initiated for any field or variable. For items of struct types, the generation allocates the
struct storage and recursively generates all generatable fields of the struct. All fields of a struct are
considered generatable, except for the fields prefixed with ! (see 6.8). There is no specific order in which
data items or the fields in a struct hierarchy are generated.

For list items, the generation allocates the list and recursively generates all its elements. There is no specific
ordering for whether list items are generated after the size of the list has been fixed or that the items are
generated in the order of their indexes. Constraints specified for the items can impose restrictions on the list
size or on the items specified earlier in the list.

For scalar types, such as int, uint, bool, etc., the generation only generates the respective value.

The following ordering rules, however, do apply:

a) pre_generate() and post_generate()

1) pre_generate() of a struct is called after the struct is allocated and initialized using init(), but
before any of the fields of the struct are generated. In particular, for a struct containing nested
structs, the pre_generate() method is called before any of the pre_generate() methods of the
nested structs.

2) post_generate() is called after the generation of all fields of the struct is finished. In particular,
for a struct containing nested structs, the post_generate() method is called only when all the
nested generations are finished.

b) Methods

A method accepting a generatable item as an argument is called after that item is fully generated.

Example

struct s {
 a : int;
 b : t; // ’t’ is some other struct type
 keep a == f(b)
}

The constraint a==f(b) implies b is fully generated, including the calls to its pre_generate() and
post_generate() before f is called on b. See also 10.2.2 and 10.2.3.

10.2.2 Using methods in constraints

Constraint paths can include method calls. The syntax is:

[simple-path.]method-name([parameter, ...])[.trailing-path]

where simple-path does not include method calls and the following restrictions apply:

— If simple-path is generatable, then it is fully generated before the method is called.

— Generatable paths used as parameters of the method are fully generated before the method is called.

— For methods returning pointers to structs, the trailing path is sampled after evaluating the method and
used as an input of the constraint.

Example

struct s {
 x : int[0..5];

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 167

 q : t;
 keep x < m(q).y;

 m(param:t): t is {
 result = param
 }
};

struct t {
 y : int[0..5]
}

In this example, q is generated before x and then q is used as an input in the constraint x<m(q).y. If q.y
generates to 0, then the constraint x<m(q).y fails.

10.2.2.1 Classification of methods

Methods are classified into the following three categories:

a) Methods that behave like mathematical functions (pure). The computed result is entirely determined
by the arguments passed to the method. Multiple calls to the method with the same parameters
always produce the same result.

The use of such methods in constraints is safe and unrestricted.

b) Methods that observe the “state of the world,” but do not change it. Such method can read fields, sig-
nals, global configuration flags, etc., and base the computation on that data. Multiple calls to the
method with the same parameters can produce different results.

When using the methods of this category of constraints the following rules apply:

1) The method shall not base its computation on the items of the current generatable context,
unless such items are passed as parameters to the method.

Example

struct packet {
 data : list of byte;
 checksum : uint;
 keep checksum == calc_checksum(data);

 calc_checksum(data:list of byte): uint is {
 // use ’data’ to calculate checksum
 }
}

This is correct; data is generated before the method is called.

2) The timing of the call and/or the number of calls to the method cannot be presumed, especially
for methods reading values of the real-time or process clocks, operating-system (OS)
environment variables, sizes of allocated memory, etc.

Example

extend sys {
 l[1000] : list of uint;
 keep for each in l {
 it == read_machine_real_time_clock_msec()
 }
}

IEEE
Std 1647-2011 IEEE STANDARD

168 Copyright © 2011 IEEE. All rights reserved.

It is incorrect to assume the method read_machine_real_time_clock_msec is called
1000 times, i.e., once for each list element in order (see 10.2.2.2). It is acceptable for the gener-
ator to assume this method is a pure function, and thus, call it only once for the list and assign
the result to all the list elements. It is also acceptable to assign values to list elements unrelated
to their natural order of indexes. Thus (normally in the presence of other constraints), the times
read by the method might not be ordered with respect to the list indexes.

c) Methods that observe and change the “state of the world.”

The use of such methods in constraints can create problems. Instead, use the corresponding opera-
tions within the post_generate() method.

Example

struct packet {
 data : list of data_item;

 post_generate() is {
 var id;

 for each in data do {
 if it.x < 100 then {
 it.id = id;
 id += 1
 }
 }
 }
}

In general, it is impossible to classify methods automatically into the preceding three categories. Therefore,
the following warnings shall be used if a method calling issue occurs:

— method call warning #1: a method used in a constraint contains a non-local path anywhere in its
body.

— method call warning #2: a method used in a constraint contains an explicit assignment to a non-local
path.

10.2.2.2 Number of calls

A method used in constraints can be called zero or more times. The number of calls to a method is irrelevant
for the semantics of the constraint if the method behaves as a pure function [see 10.2.2.1, category a)].
However, the results of generation can differ depending on the number of calls for the methods with side
effects. Therefore, avoid using the methods of category c), and only use methods of category b) with
caution.

10.2.3 Generatable paths and the sampling of inputs

The purpose of constraints is to constrain generatable items, i.e., those items that can be assigned random
values (by the generator) satisfying the constraints. Thus, it is important to define which items are
considered generatable and when.

In the context of the initial generation, all fields of sys and all fields of nested structs are generatable, except
the fields declared as non-generatable (using the ! prefix).

In the context of a gen item action (see 10.5.1), item is generatable and, if item is of a struct type, all its
nested fields are generatable—except the fields marked with !. If gen item action applies to a field defined

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 169

as non-generatable, the item becomes generatable; however, any nested non-generatable fields remain non-
generatable.

Example

struct packet {
 x : int;
 !y : int
};

extend sys {
 p1 : packet; -- generated during pre-generation
 !p2 : packet; -- skipped during pre-generation

 post_generate() is also {
 gen p2 -- this allocates p2 and generates p2.x but not p2.y
 }
}

Data items in constraints are referenced by using paths (see 4.3.4). In generation context, each path is either
generatable or non-generatable. Generatable paths refer to items that are assigned values during the
generation with respect to the corresponding constraints. Each constraint shall have all its inputs sampled
before the items referenced by the generatable paths are generated.

Non-generatable paths refer to items that are not affected by generation, but those items might affect
generatable items. Thus, non-generatable paths refer to inputs of constraints. A path is non-generatable if

a) it is an absolute path (e.g., sys.counter).

b) it includes method calls (e.g., x.y.m().z).

c) it includes do-not-gen fields (e.g., x.y.non_gen_field.z).

d) the path is me (e.g., keep root_node => parent == me;).

Otherwise, the path is generatable.

An otherwise generatable path can be defined as input to a constraint using the read_only() syntax, e.g.,
keep x<read_only(y). In this case, the set of values y can take is unaffected by the constraints on x.
The parameter y is treated as an input.

Arbitrary expressions can be used as arguments of read_only(). For example, in keep
x<read_only(y+z), both y and z become inputs of the constraint. The constraint resolution engine
generates y and z (unaffected by the possible values of x) and computes their sum, which is then used as an
input in the constraints.

Semantically, read_only() can be viewed as an identity function

read_only(arg : TYPE) is { result = arg }

defined for each type TYPE known to the generator. The use of read_only() in constraints is thus identical
to the use of such an identity function.

A constraint that has no generatable paths with respect to the current generation context shall be reported as
an error.

IEEE
Std 1647-2011 IEEE STANDARD

170 Copyright © 2011 IEEE. All rights reserved.

10.2.4 Special cases of inputs in constraints

For some constraints, it is convenient to assume some of the parameters are always treated as inputs. One
natural example is method calls. For a constraint, such as keep x==f(y,z), y and z are presumed to be
generated first and then their values are used as inputs in the context of x==f(y,z). If x cannot accept the
value returned by the call to f(y,z), the generation results in a contradiction error. Thus, given the values
of arguments, the constraint resolution engine is presumed to be able to compute and assign the value of the
method/function call. The converse is not presumed, however.

There are four kinds of constraints treating some of their parameters as inputs, even if these parameters
represent generatable paths.

a) method calls: all arguments of a method call are treated as inputs.

b) bit slice: the two boundaries i and j of a bit slice, such as in keep x[j:i]==y, are treated as
inputs. It means that i and j are generated first and their values used as inputs for solving it with
respect to x and y. Thus, the constraint resolution engine is not required to deduce the values of the
bit slice boundaries. Namely,

keep 0b101010010101[j:i] == 0b100

is allowed to cause a contradiction error.

c) list segments: in an expression l[i..j], the segment boundaries i and j are treated as inputs in the
generation of l. Thus, a constraint such as

keep ({1; 2; 3; 4; 5})[i..j] in {2; 3}

is allowed to cause a contradiction error.

d) shift operations: in expressions such as x<<k and x>>k, the number of bits for shifting is treated as
input. Thus, a constraint such as

keep 0b1110011010 >> k == 0b1110

is allowed to cause a contradiction error.

10.2.5 Scope of constraints

A constraint can be either applicable or inapplicable depending on the context of generation. There are two
basic rules governing that aspect of generation.

a) All constraints defined for sys and any of the nested structs are applicable during the initial
generation.

b) For generation started by the gen item action (see 10.5.1), the following are applicable:

1) The constraints defined within the optional constraints block.

2) All constraints defined in the type of item, if item is of a struct type.

3) All constraints referring to item in this struct (me) and in the struct hierarchy containing me.

Example

struct packet {
 x : uint;
 y : uint;
 keep x < y
};

extend sys {
 !p1 : packet;

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 171

 keep p1.y == 8;
 !p2 : packet;

 post_generate() is also {
 gen p1 keeping {it.x > 5};
 p2 = new;
 gen p2.x
 }
}

The generation of p1 succeeds. The applicable constraints here are p1.x>5 (by rule b1), p1.x<p1.y (by
rule b2), and p1.y==8 (by rule b3) Thus, p1.y becomes 8 and p1.x becomes either 6 or 7.

The generation of p2.x fails. For p2 allocated using new, p2.x=0 and p2.y=0. The only applicable
constraints in this case is p2.x<p2.y (by rule b3). p2.y is not a generatable item here in the context of
gen p2.x (see 10.2.3); it is used as input, so the constraint is equivalent to p2.x < 0. Since x is a uint,
the constraint is not satisfiable.

10.2.6 Soft constraints

A constraint can be declared as soft by prefixing it with the soft keyword in the declaration. See also 10.4.5.

keep soft constraint;
gen item keeping {soft constraint; ...};
keep soft item = select {...}

Intuitively, soft constraints are satisfied if possible and otherwise disregarded. Soft constraints suggest
default values and relations that can be overridden by hard or other soft constraints. They are considered
with respect to the order of importance, which is a reverse of the (textual) order of soft constraints in the
model.

The following properties of soft constraints also apply:

a) Assume two soft constraints c1 and c2, such that c1 is more important than c2. Then the generator
shall always produce a solution satisfying c1, if one exists. It is also required that the generator find
a solution satisfying both c1 and c2, if it exists.

b) Assume a collection of data items (fields and/or variables) x1...xn, a collection of constraints
c1...ck linking the data items, and a solution exists satisfying all c1...ck. Then a solution needs
to be found for {soft c1;...;soft ck} such that all soft constraints are satisfied.

Informally, this property means that in the absence of hard constraints, soft constraints act as hard, except
for those cases causing contradictions.

Example

struct s {
 x : int;
 y : int;
 z : int;
 keep x in [1..100];
 keep x < y or y < z
}

is the same as

struct s {
 x : int;

IEEE
Std 1647-2011 IEEE STANDARD

172 Copyright © 2011 IEEE. All rights reserved.

 y : int;
 z : int;
 keep soft x in [1..100];
 keep soft x < y or y < z
}

10.2.6.1 keep gen-item.reset_soft()

This causes the program to quit the evaluation of soft value constraints for the specified field. Soft
constraints for other fields are still evaluated. Soft constraints are considered in reverse order to the order in
which they are defined in the e code.

The syntax keep gen-item.reset_soft() is used for discarding soft constraints referring to the gen-item loaded
so far. Soft constraints not referring to gen-item or soft constraints referring to gen-item, but loaded later, are
taken into account by the constraint resolution engine. The main use of this feature is for overloading the
default “soft” behavior of a model.

Syntax example:

keep c.reset_soft()

Purpose Quit evaluation of soft constraints for a field

Category Struct member

Syntax keep gen-item.reset_soft()

Parameters gen-item A generatable item (see 10.4.12).

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 173

10.2.6.2 keep soft... select

This specifies the relative probability that a particular value or set of values is chosen from the current range
of legal values. The current range is the range of values as reduced by hard constraints and by soft
constraints that have already been applied. A weighted value shall be assigned with the probability of

weight/(sum of all weights)

Weights are treated as integers. If an expression is used for a weight, the value of the expression shall be
smaller than the maximum integer size (MAX_INT).

Like other soft constraints, keep soft select is order dependent (see 10.2.6) and shall not be met if it conflicts
with hard constraints or soft constraints that have already been applied. In those cases where some values
conflict with other constraints, keep soft select shall bias the distribution based on the remaining
permissible values.

Syntax example:

keep soft me.opcode == select {
 30 : ADD;
 20 : ADDI;
 10 : [SUB, SUBI]
}

10.2.7 Constraining non-scalar data types

This subclause describes constraining structs and lists.

Purpose Constrain distribution of values

Category Struct member

Syntax keep soft gen-item==select {weight: value; ...}

Parameters

gen-item A generatable item of type list (see 10.4.12).

weight Any uint expression. Weights are proportions; they do not have to add up to
100. A relatively higher weight indicates a greater probability that the value is
chosen.

value value is one of the following:
a) range-list—A range list such as [2..7]. A select expression with

a range list selects the portion of the current range that intersects
with the specified range list.

b) exp—A constant expression. A select expression with a constant
expression (usually a single number) selects that number, if it is part
of the current range.

c) others—Selects the portions of the current range that do not inter-
sect with other select expressions in this constraint.
Using a weight of 0 for others causes the constraint to be ignored,
i.e., the effect is the same as if the others option were not entered at
all.

d) pass—Ignores this constraint and keeps the current range as is.
e) edges—Selects the values at the extreme ends of the current

range(s).
f) min—Selects the minimum value of the gen-item.
g) max—Selects the maximum value of the gen-item.

IEEE
Std 1647-2011 IEEE STANDARD

174 Copyright © 2011 IEEE. All rights reserved.

10.2.7.1 Constraining structs

There are two basic constraints that apply to structs: struct equality and struct inequality. Other constraints
affecting items of struct types (such as list constraints with structs as list elements) can be equivalently
expressed using these basic constraints and Boolean combinators.

10.2.7.1.1 Struct equality

Struct equality constrains two structs to share the same struct layout, i.e., it aliases two struct pointers.

Example

struct packet {
 x : int;
 y : int
};

extend sys {
 p1 : packet;
 p2 : packet;
 keep p1 == p2;

 post_generate() is also {
 p1.x = 5
 }
}

This causes p1 and p2 to represent the same struct, i.e., sys.p1 and sys.p2 can be viewed as pointers
pointing to the same place in memory. Thus, the assignment in post_generate has the same effect on
both structures, i.e., sys.p1.x = sys.p2.x = 5.

In contrast,

struct packet {
 x : int;
 y : int
};

extend sys {
 p1 : packet;
 p2 : packet;
 keep p1.x == p2.x;
 keep p1.y == p2.y;
post_generate() is also {
 p1.x = 5
 }
}

The first two lines in “extend sys” define two structures with the same contents, sys.p1 and sys.p2.
Then the assignment in post_generate changes the value of sys.p1.x, but not of sys.s2.x. Thus,
at the end sys.p1.x=5, while sys.p2.x is set to a random value from the range [MIN_INT..
MAX_INT]. Of course, this value could be 5 as well, but the chance for that is 1/(2^32). Thus, most likely at
the end sys.p1.x != sys.p2.x.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 175

10.2.7.1.2 Struct inequality

Struct inequality states that two struct pointers cannot be aliased, although they can still have the identical
contents. Normally, struct inequality only makes sense for structs with a finite set of possible values (see
10.2.7.2).

Example

struct packet {
 x : int;
 y : int
};

extend sys {
 p1 : packet;
 p2 : packet;
 keep p1 in sys.list_of_input_packets;
 keep p2 in sys.list_of_input_packets;
 keep p1 != p2;
 keep p1.x == p2.x;
 keep p1.y == p2.y
}

This code constrains both p1 and p2 to be elements of a (pre-built) list of input packets, such that p1 and
p2 are distinct packets and have the same contents. The generation succeeds if and only if (iff) the list
sys.list_of_ input_packets contains repetitions. There is no contradiction in the fact p1 and p2
are different structs with identical contents.

10.2.7.2 Allocation versus aliasing

By default, a new structure is allocated for each item of a struct type. The only exception to that are the cases
when the range of possible structs is limited by constraints to a finite number of choices.

Example

p : packet;
 keep (packet == sys.input_packet1) or (packet == sys.input_packet2)

In this example, the range of values for packet is limited by the values sys.input_packet1 and
sys.input_packet2, where both values are pre-built structures, i.e., inputs to the constraint. In
contrast,

keep packet != sys.input_packet1

does not limit the choices of packet to a finite set. Here, there are an infinite number of ways to allocate
packet so that it does not point to sys.input_packet1. Thus, the system allocates a NEW struct for
packet in this case. This behavior makes struct inequality redundant for those cases where the set of
potential struct values is unlimited.

10.2.7.3 Constraining lists

This subclause describes constraining lists. See also Table 25.

10.2.7.3.1 List equality

List equality constraint states that two lists contain the same elements in the same order.

IEEE
Std 1647-2011 IEEE STANDARD

176 Copyright © 2011 IEEE. All rights reserved.

Example

extend sys {
 l1 : list of int;
 l2 : list of int;
 !x : int;
 keep l1 == l2;

 post_generate() is also {
 x = l2.pop()
 }
}

This generates two identical lists l1 and l2. Then, post_generate() removes the last element of l2
and preserves it in x. l1 and l2 are not aliased to the same list by the list equality constraint; they are
“copies.” Therefore, l2.pop() does not remove the last value of l1.

10.2.7.3.2 List inequality

The list inequality constraint (l1 != l2) states that the items of list type l1 and l2 are different. Namely:

a) The number of elements in the lists is different; or

b) The number of elements is the same and there is an index i such that

l1[i] != l2[i]

10.2.7.3.3 List item

The syntax generatable_path_to_list[index] provides a generatable path of a list element. This syntax can be
used in constraints as any other generatable path. List item constraints are fully solvable. Thus, the
constraint can be used in several different modes.

Examples

keep sys.packets[5] == x; -- element extraction from fixed list
keep l[7] < 25; -- constraining certain element of list
keep sys.packets[i].id == 10; -- index look-up for fixed list and value
keep l[i] < x -- multi-way constraint

10.2.7.3.4 Item in list

The expression item in list states that item is an element of the list. Note that a constraint such as

keep x in l

also implies that l includes at least one element, i.e., it is non-empty.

10.2.7.3.5 List in list

The syntax list1 in list2 provides the way of constraining two lists list1 and list2 so list1 is a (possibly
permuted) sublist of list2. list1 is a possibly permuted sublist of list2 if for every valid index i in list1 there
exists a matching valid index j in list2 such that list1[i]==list2[j]. Every index j of list2 is
represented at most once in list1.

Informally, this definition means list1 can be obtained from list2 by a number (possibly zero) of delete
operations of elements of list2 and then applying is_a_permutation(list2).

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 177

Examples

{1;2;3} is a sublist of {0;1;3;2;3}

{1;2;3} is a permuted sublist of {1;3;2}

{1;1;2} is a sublist of {1;3;1;4;2}

{1;1;2} is NOT a sublist of {1;2;2;3}

{1;1;2} is a permuted sublist of {2;1;1}

10.2.7.3.6 Permutations

The syntax list1.is_a_permutation(list2) states that list1 is a permutation of list2. The lists list1 and list2
contain exactly the same elements and the same numbers of repetitions of each element.

Examples

{2;3;1} is a permutation of {1;2;3}

{2;3} is not a permutation of {1;2;3}

{1;2;3} is a permutation of {1;2;3}

{2;3;2;1} is NOT a permutation of {1;2;3}

is_a_permutation is a symmetric property, i.e., list1 is a permutation of list2 iff list2 is a permutation of
list1. Thus, the following two constraints are equivalent:

keep list1.is_a_permutation(list2);

keep list2.is_a_permutation(list1)

10.2.7.3.7 List attributes

There are several properties of lists that can be constrained using the attribute syntax, list.attribute(...).

list.size()—constrains the size of the list, e.g., keep my_list.size() in [5..8]
my_list can have 5,6,7, or 8 elements.

list.count(exp)—counts the number of list elements satisfying exp that have a Boolean type, e.g.,
keep my_list.count(it == 3) == 5
the number 3 appears exactly five times in my_list.

list.has(exp)—verifies at least one item of the list satisfies the Boolean exp. This is the same as
list.count(exp) > 0.

list.unique(exp)—constrains the elements satisfying the Boolean exp so they are unique within the
list, e.g., keep my_list.unique(it.is a(RED packet))
ensures there are no duplicate RED packets in my_list.

list.sum(exp)—constrains the sum of the list elements satisfying exp containing a Boolean type. The
attribute applies only to lists of numeric type, e.g., keep my_list.sum(it) == 100
for the elements of my_list in the range [0..20] is 100.

IEEE
Std 1647-2011 IEEE STANDARD

178 Copyright © 2011 IEEE. All rights reserved.

10.2.7.3.8 Constraining all list items: keep for each

This defines a value constraint on multiple list items. The following restrictions also apply:

— for each constraints can be nested. The parameters item-name, index-name, and prev-name of a
nested for each can shadow the names used in the outer for each blocks. In particular, if the optional
names are unspecified, then the default names it, index, and prev refer to the corresponding details
of the innermost for each block.

— Within a for each constraint, index represents a running index in the list, which is treated as a con-
stant with respect to each list item.

— Generated items need to be referenced by using a pathname that starts either with it, prev, or the
optional item-name or prev-name, respectively. Items whose pathname does not start with it can only
be sampled; their generated values cannot be constrained.

— If a for each constraint is contained in a gen ... keeping action, the iterated variable needs to be
named first.

Syntax example:

keep for each (p) in pkl do {

soft p.protocol in [atm, eth]

}

10.2.7.3.9 All solutions

This feature generates lists of structs covering all possible combinations of values for certain fields. The
syntax is list.is_all_iterations(.fieldname, ...), where list is a list of elements and fieldname, ... are field
names of some struct type T. The arguments of is_all_iterations are unique, i.e., there are no repetitions in
the list of fields. All fields shall be defined under the base type T, i.e., fields defined in when subtypes or
like successors are not allowed.

Purpose Constrain list items

Category Struct member

Syntax keep for each [(item-name)] [using [index (index-name)] [prev (prev-name)]] in
gen-item [do] {(constraint-bool-exp | nested-for-each); ...}

Parameters

item-name An optional name used as a local variable referring to the current item in the
list. The default is it.

index-name An optional name referring to the index of the current item in the list. The
default is index.

prev-name An optional name referring to the previous item in the list. The default is
prev.

gen-item A generatable item of type list (see 10.4.12).

constraint-
bool-exp

A simple or a compound Boolean expression (see 10.4.11).

nested-for-each A nested for each block, with the same syntax as the enclosing for each
block, except that keep is omitted.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 179

Example

struct s {
 b1 : bool;
 b2 : bool;
 x : int
};

extend sys {
 l : list of s;
 keep l.is_all_iterations(.b1, .b2)
}

The resulting sys.l includes four elements for all four combinations of TRUE/FALSE of b1 and b2. The
values of x are chosen randomly.

10.3 Type constraints

This subclause describes how to use type constraints to restrict the declared type of a field to one of its like
or when subtypes for a given context. A constraint prefixed with the type modifier is both (a) enforced by
the generator (like a regular constraint) and (b) presupposed at compile time for purposes of type checking.
Expressions for which type constraints apply are automatically downcast to the specified subtype wherever
required. This saves explicit downcasting [“is_a()” and “as a” operators] for the expression and lets the
downcast expression be used as a generatable term (rather than input) in constraint contexts.

10.3.1 keep type

Purpose Refine the type of a field to one of its subtypes for the specified context

Category Struct member

Syntax

keep type [me.]field-name is a type
keep type [me.]field-name.property-name == [me.]my-property-name
keep for each [(item-name)] in list-field-name {

…
type item-name is a type;
…

}
keep for each [(item-name)] in list-field-name {

…
type item-name.property-name == [me.]my-property-name;
…

}

Parameters

field-name The name of a struct field in the enclosing struct.

type The name of a struct or unit type.

property-name The name of an enumerated or Boolean const field.

my-property-
name

The name of a field of the same type as the property-name in this constraint.

item-name An optional name used as a local variable referring to the current item in the
list. The default is it.

list-field-name The name of a field of typelist of struct (or unit) in the enclosing struct.

IEEE
Std 1647-2011 IEEE STANDARD

180 Copyright © 2011 IEEE. All rights reserved.

A type constraint can be put either on a field of a struct type or on a list field of a struct type. The declaration
is similar to a regular constraint inside a keep struct member, or, in the list case, inside a keep for each
construct, with the type keyword prefixing the expression.

The type keyword is a constraint modifier syntactically analogous to soft. However, unlike soft, it can
modify only specific constraint expressions and can appear only in restricted contexts.

The type correlation can be fixed or, when the correlated types are when subtypes, variable. The former case
is expressed using the is a operator. In the latter case the determinant property (the when determinant) of the
referenced struct is equated to a determinant property of the same type in the declaring struct type.

Type constraints affect the static semantics of field-access expressions of the form instance-expression.field-
name (field-access in which instance-expression is omitted is equivalent to one having me as the instance-
expression). Typically the static type of a field-access expression is determined according to the type of the
field as it was initially declared in the struct type of instance-expression (or in one of its supertypes). Type
constraints tying the static type of instance-expression with a subtype of the field’s declared type can change
this rule. If the context in which the field-access occurs requires the subtype, the field-access is
automatically downcast. In this case, a runtime check is added to ensure that the casting is justified, and an
error is issued if it is not. The runtime check involves a minor overhead, not more than that required by the
as_a() operator.

NOTE

— In the Boolean expression following type, operators other than == and is a are not allowed.
For example, the following is not allowed:

keep type TRUE => engine is a FORD engine // not allowed

— The for each clause must occur immediately after keep. For example, the following is not allowed:

keep my_doors.size() > 4 => for each in my_doors { // not allowed
type it is a small door

}

— Type constraints can equate only constant fields, so the const keyword must appear in the declaration of fields
involved in equality constraints.

— Type constraints in general affect code from that point onwards. This includes type constraints that appear
inside a for each clause, in which case other expressions in the same scope after the declaration (but not before
it) can assume automatic casting.

— Type constraints cannot appear inside a gen action.

— The soft keyword cannot be used with type constraints.

— As with non-type constraints, the determinant field of the when subtype is assigned only during generation.
Thus the pre_generate() method of the type specified in the type constraint is not called during generation.

— A field’s type may be restricted by more than one type constraint with respect to different “when” dimensions
(determinant fields).

Syntax example:

keep type f.p1 == p1;
keep for each in lf {

type it is a B S1
}

10.3.2 Type constraints and struct fields

Automatic casting of a struct-reference field is performed in any context that requires it, including the
following:

— Struct-member access

— Assignment

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 181

— Parameter passing

10.3.3 Type constraints and list fields

When the type relation is one-to-many, in other words, when a list field is concerned, automatic casting is
applied not to the list itself but to its elements. Automatic casting affects list operators whose result type is
the element type, such as indexing (the [] operator) and pop(). It also affects the iteration variable inside the
for each construct, both in procedural and in constraint contexts.

10.3.4 Type constraints and like subtypes

Type constraints work just as well for like subtypes of the declared type of the field. They apply to the two
“is a” forms of the keep type struct member.

Note that type constraints with like subtypes cannot make the actual like type of a generated field dependent
on a when determinant. In other words, they may not figure under a when subtype if they affect a field not
declared in the same subtype. This is an error: the constraint is unenforceable.

10.4 Defining constraints

This subclause describes the constructs used to define constraints. See also 4.10.

10.4.1 keep

This states restrictions on the values generated for fields in the struct or its subtree, or describes required
relationships between field values and other items in the struct or its subtree.

Hard constraints are applied whenever the enclosing struct is generated. For any keep constraint in a
generated struct, the generator either meets the constraint or issues a constraint contradiction message. If the
keep constraint appears under a when construct, the constraint is considered only if the when condition is
true.

Syntax example (un-named constraint):

keep kind != tx or len == 16

Syntax example (named constraint):

keep address_range is soft addr in [0..9]

Purpose Define a hard value constraint

Category Struct member

Syntax keep [name is [only]] constraint-bool-exp

Parameters

 name Optional identifier for constraint overriding and reference by tools.

constraint-
bool-exp

A simple or a compound Boolean expression (see 10.4.11).

IEEE
Std 1647-2011 IEEE STANDARD

182 Copyright © 2011 IEEE. All rights reserved.

10.4.1.1 Constraint overriding

Every named constraint must have exactly one actual definition per struct type. An initial definition of a
constraint in a struct type may be overridden in like and when subtypes or in later extensions of the same
struct—any number of times—using the is only modifier.

The semantics of constraint overriding is identical to that of overriding other extendable struct members,
such as methods. A constraint can be redefined in different when subtypes (even if they are not
contradictory), and the latest definition that applies to the generated subtype is chosen (for ordering
definitions see Annex B).

Example:
struct packet {

size: [big, small];
data: list of byte;

keep data_size is undefined; // abstract constraint

when big packet {
keep data_size is all of { // concrete definition for big packets

data.size() > 10;
data.size() < 20

}
}

}

10.4.2 keep is undefined

The undefined keyword can be used to declare an abstract property that will be defined later using a keep is
only struct member with the same name.

Trying to generate an instance of a struct type for which a constraint was left undefined results in an error.

Purpose Define an abstract constraint

Category Struct member

Syntax keep name is undefined

Parameters name Optional identifier for constraint overriding and reference by tools.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 183

10.4.3 keep all of {...}

A keep constraint block is exactly equivalent to a keep constraint for each constraint Boolean expression in
the block. The all of block can be used as a constraint Boolean expression itself.

Syntax example:

keep all of {
kind != tx;
len == 16

}

10.4.4 keep struct-list.is_all_iterations()

This causes a list of structs to have all legal, non-contradicting iterations of the fields specified in the field
list. Fields not included in the field list are not iterated; their values can be constrained by other relevant
constraints. The highest value always occupies the last element in the list.

Soft constraints on fields specified in the field list are skipped. All other relevant hard constraints on the list
and on the struct are applied. If these constraints reduce the ranges of some of the fields in the field list, then
the generated list is also reduced.

The following restrictions also apply:

— The number of iterations in a list produced by list.is_all_iterations() is the product of the number of
possible values in each field in the list. Use the absolute_max_list_size generation configuration
option to set the maximum number of iterations allowed in a list (the default is 524 288).

— The list.is_all_iterations() method shall only be used in a constraint Boolean expression.

Purpose Define a constraint block

Category Struct member

Syntax keep [name is [only]] all of {constraint-bool-exp; ...}

Parameters

 name Optional identifier for constraint overriding and reference by tools.

constraint-
bool-exp

A simple or a compound Boolean expression (see 10.4.11).

Purpose Cause a list of structs to have all iterations of a field

Category Constraint-specific list method

Syntax keep [name is [only]] gen-item.is_all_iterations(.field-name: exp, ...)

Parameters

 name Optional identifier for constraint overriding and reference by tools.

gen-item A generatable item of type list of struct (see 10.4.12).

field-name The name of a scalar field of a struct. The field name shall be prefixed by a
period (.). The order of fields in this list does not affect the order in which
they are iterated. The specified field that is defined first in the struct is the one
that is iterated first.

IEEE
Std 1647-2011 IEEE STANDARD

184 Copyright © 2011 IEEE. All rights reserved.

— The fields to be iterated shall be of a scalar type, not a list or struct type.

Syntax example:

keep packets.is_all_iterations(.kind, .protocol)

10.4.5 keep soft

This suggests default values for fields or variables in the struct or its subtree, or describes suggested
relationships between field values and other items in the struct or its subtree. The following restrictions
apply:

— Soft constraints are order dependent (see 10.2.6) and shall not be met if they conflict with hard
constraints or soft constraints that have already been applied.

— The soft keyword shall not be used in compound Boolean expressions.

— Individual constraints inside a constraint block can be soft constraints.

— Because soft constraints only suggest default values, it is better not to use them to define
architectural constraints.

Syntax example:

keep soft legal

10.4.6 keep gen ... before

This requires the generatable items specified in the first list to be generated before the items specified in the
second list. This constraint can be used to influence the distribution of values by preventing soft value
constraints from being consistently skipped (see 10.2). The following restrictions also apply:

— This constraint itself can cause constraint cycles. If a constraint cycle involving one of the fields in
the keep gen ... before constraint exists and if the resolve_cycles generation configuration option is
TRUE, the constraint can be ignored if the program cannot satisfy both it and other constraints that
conflict with it.

— This constraint cannot appear on the LHS of a implication operator (=>).

Purpose Define a soft value constraint

Category Struct member

Syntax keep [name is [only]] soft constraint-bool-exp

Parameters

 name Optional identifier for constraint overriding and reference by tools.

constraint-
bool-exp

A simple Boolean expression (see 10.4.11).

Purpose Modify the generation order

Category Struct member

Syntax keep gen (gen-item: exp, ...) before (gen-item: exp, ...)

Parameters gen-item An expression that returns a generatable item. The parentheses [()] are
required. See also 10.4.12.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 185

Syntax example:

keep gen (y) before (x)

10.4.7 keep soft gen ... before

This modifies the soft generation order by recommending the fields specified in the first field list be
generated before the fields specified in the second field list. This soft generation order is second in priority
to the hard generation order created by dependencies between parameters and keep gen before constraints.

This constraint can be used to suggest a generation order that is later overridden in individual tests with a
hard order constraint. This constraint cannot appear on the LHS of a implication operator (=>).

Syntax example:

keep soft gen (y) before (x)

10.4.8 keep gen_before_subtypes()

To speed up generation of structs with multiple when subtypes, this type of constraint, called a subtype
optimization constraint, causes the generator engine to wait until a when determinant value is generated for
a specified field before it analyzes constraints and generates fields under the when subtype.

When no subtype optimization constraints are present in a struct, the generator analyzes all of the constraints
and fields in the struct before it generates the struct, even those constraints and fields that are defined under
when subtypes. When a subtype optimization constraint is present, the generator initially analyzes only the
constraints and fields of the base struct type. When a subtype optimization when determinant is
encountered, the generator analyzes the associated when subtype and then generates it.

The following considerations also apply:

— Subtype optimization can handle multiple determinants. Subtypes are analyzed and generated in the
order in which their when determinants are encountered.

Purpose Suggest order of generation

Category Struct member

Syntax keep soft gen (gen-item: exp, ...) before (gen-item: exp, ...)

Parameters gen-item An expression that returns a generatable item. The parentheses [()] are
required. See also 10.4.12.

Purpose Specify a when determinant field for deferred generation

Category Struct member

Syntax keep gen_before_subtypes(determinant-field: field, ...)

Parameters

determinant-field An expression that evaluates to the name of a field in the struct type. The field
shall have at least one value that is used as a when determinant for a subtype
definition. If the field is not a when determinant field, a warning is issued and
the constraint is ignored.
Multiple field expressions can be entered, separated by commas (,).

IEEE
Std 1647-2011 IEEE STANDARD

186 Copyright © 2011 IEEE. All rights reserved.

— If multiple determinants are specified, and some of them are subtype optimization determinants
while others are not, then a subtype that is a result of multiple inheritance of a subtype optimization
determinant and a non-subtype optimization determinant shall be treated the same.

— The generator engine’s ability to resolve contradictions is diminished somewhat by subtype optimi-
zation constraints. Specifically, the generator might not be able to resolve contradictions arising from
constraints under subtypes that involve fields of the base type.

— The analysis and generation is recursive. If a subtype contains another determinant that is specified
in a subtype optimization constraint, then that sub-subtype is analyzed and generated as soon as its
determinant field is generated under the higher-level subtype.

Syntax example:

keep gen_before_subtypes(format)

10.4.9 keep reset_gen_before_subtypes()

When subtype optimization is turned off by default, this constraint causes the generator to ignore all
previously defined gen_before_subtypes() constraints for the enclosing struct or unit. Any such constraints
defined after the reset shall be followed.

When subtype optimization is turned on by default, this constraint turns off subtype optimization for the
enclosing struct or unit. When subtype optimization is forced on or off, this constraint has no effect.

Syntax example:

keep reset_gen_before_subtypes()

10.4.10 read_only()

This generates values for any data items that are contained in the expression and returns the value of the
expression. This method affects generation order and also makes the constraint unidirectional.

Example

keep a == read_only(b + c)

This constraint has two results:

Purpose Disable all previous keep gen_before_subtypes() subtype optimization constraints

Category Struct member

Syntax keep reset_gen_ before_subtypes()

Purpose Modify generation sequence

Category Pseudo-method

Syntax read_only(item: exp)

Parameters item A legal e expression.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 187

— b and c are generated before a.

— The value of a cannot otherwise be constrained.

Syntax example:

keep i < read_only(j)

10.4.11 constraint-bool-exp

A constraint Boolean expression is a simple or compound Boolean expression that describes the legal values
for at least one generatable item or constrains the relation of one generatable item with others. A compound
Boolean expression is composed of two or more simple expressions joined with the or, and, or implication
(=>) operators. Table 25 shows the e special constructs that are useful in constraint Boolean expressions.

The following considerations also apply:

— The soft keyword can be used in simple Boolean expressions, but not in compound Boolean
expressions.

— The order of precedence for Boolean operators is: and, or, =>. A compound expression containing
multiple Boolean operators of equal precedence is evaluated from left to right, unless parentheses
[()] are used to indicate expressions of higher precedence.

Purpose Define a constraint on a generatable item

Category Expression

Syntax bool-exp [or | and | => bool-exp] ...

Parameters bool-exp An expression that returns either TRUE or FALSE when evaluated at
runtime.

Table 25—Constraining Boolean expressions

Constraint Definition

soft A keyword that indicates the constraint is either a soft value constraint or a soft
order constraint. See 10.4 for a definition of these types of constraints.

soft...select An expression that constrains the distribution of values.

.reset_soft() A pseudo-method that causes the test generator to quit evaluation of soft constraints
for a field, in effect, removing previously defined soft constraints.

.is_all_iterations() A list method used only within constraint Boolean expressions that causes a list of
structs to have all legal, non-contradicting iterations of the specified fields.

.is_a_permutation() A list method that can be used within constraint Boolean expressions to constrain a
list to have the same elements as another list.

[not] in An operator that can be used within constraint Boolean expressions to constrain an
item to a range of values or a list to be a subset of another list; or when used with
not, to be outside the range or absent from another list.

is [not] a An operator that checks the subtype of a struct.

IEEE
Std 1647-2011 IEEE STANDARD

188 Copyright © 2011 IEEE. All rights reserved.

— Any e operator can be used in a constraint Boolean expression. However, certain operators can affect
generation order or can create an constraint that is not enforceable.

— In compound expressions where multiple implication operators are used, the order in which the oper-
ations are performed is significant. For example, in the following constraint, the first
expression (a => b) is evaluated first by default:

keep a => b => c; // is equivalent to:
keep (not a or b) => c; // is equivalent to:
keep a and (not b) or c

However, adding parentheses around the expression (b => c) causes it to be evaluated first, with
very different results.

keep a => (b => c); // is equivalent to:
keep a => (not b) or c; // is equivalent to:
keep (not a) or (not b) or c

Examples

The following are examples of simple constraint Boolean expressions:

not short // where "short" is of type "bool"
long == TRUE
soft x > y
x + z == y + 7

The following are examples of compound constraint Boolean expressions:

x > 0 and soft x < y
is_a_good_match(x, y) => z < 1024
color != red or resolution in [900..999]
packet is a good packet => length in [0..1023]

See also 5.1.1.

Syntax example:

z == x + y

10.4.12 gen-item

A generatable item is an operand in a Boolean expression that describes the legal values for that generatable
item or constrains its relation with another generatable item. Every constraint shall have at least one
generatable item or an error shall be issued.

In a keep constraint, the syntax for specifying a generatable item is a path starting with me of the struct
containing the constraint and ending with a field name. In a gen action, the syntax for specifying a
generatable item is a path starting with it of the struct containing the constraint and ending with a field name.

Purpose Identifies a generatable item

Category Expression

Syntax
[me.]field1-name[.field2-name ...]
| it | [it].field1-name[.field2-name ...]

Parameters field-name The name of a field in the current struct or struct type.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 189

A generatable item cannot have an indexed reference in it, except as the last item in the path. See also 4.3.3.

Syntax example:

me.protocol

10.5 Invoking generation

There are two ways of invoking generation, as follows:

a) Generation is invoked automatically when generating the tree of structures starting at sys.

b) Generation can be called for any data item by using the gen action. The scope of this type of genera-
tion is restricted (see 10.5.1). The generation order is (recursively):

1) Allocate the new struct

2) Call pre_generate()

3) Perform generation

4) Call post_generate()

10.5.1 gen

This generates a random value for the instance of the item specified in the expression and stores the value in
that instance, while considering all the constraints specified in the keeping block, as well as other relevant
constraints at the current scope on that item or its children. Constraints defined at a higher scope than the
enclosing struct are not considered.

The following considerations also apply:

— Values for particular struct instances, fields, or variables can be generated during simulation (on-the-
fly generation) by using the gen action.

— This constraint can also be used to specify constraints that apply only to one instance of the item.

— The soft keyword can be used in the list of constraints within a gen action.

— The earliest the gen action can be called is from a struct’s pre_generate() method.

— The generatable item for the gen action cannot include an index reference.

— If a gen ... keeping action contains a for each constraint, the iterated variable needs to be named.

Syntax example:

gen next_packet keeping {
.kind in [normal, control]

}

Purpose Generate values for an item

Category Action

Syntax gen gen-item [keeping {[it].constraint-bool-exp; ...}]

Parameters

gen-item A generatable item. If the expression is a struct, it is automatically allocated,
and all fields under it are generated recursively, in depth-first order.

constraint-
bool-exp

A simple or compound Boolean expression (see 10.4.11).

IEEE
Std 1647-2011 IEEE STANDARD

190 Copyright © 2011 IEEE. All rights reserved.

10.5.2 pre_generate()

The pre_generate() method is run automatically after an instance of the enclosing struct is allocated, but
before generation is performed. This method is initially empty, but can be extended to apply values
procedurally to prepare constraints for generation. It can also be used to simplify constraint expressions
before they are analyzed by the constraint resolution engine.

NOTE—Prefix the ! character (see 6.8) to the name of any field whose value is determined by pre_generate(). Other-
wise, normal generation overwrites this value.

Syntax example:

pre_generate() is also {
 m = 7
}

10.5.3 post_generate()

The post_generate() method is run automatically after an instance of the enclosing struct is allocated and
both pre-generation and generation have been performed. This method can be extended for any_struct to
manipulate values produced during generation. It can also be used to derive more complex expressions or
values from the generated values.

Syntax example:

post_generate() is also {
m = m1 + 1

}

Purpose Method run before generation of struct

Category Method of any_struct

Syntax [struct-exp.]pre_generate()

Parameters struct-exp An expression that returns a struct. The default is the current struct.

Purpose Method run after generation of struct

Category Predefined method of any_struct

Syntax [struct-exp.]post_generate()

Parameters struct-exp An expression that returns a struct. The default is the current struct.

