
IEEE Std 1647™-2015
(Revision of

IEEE Std 1647-2011)

IEEE Standard for the
Functional Verification Language e

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

Approved 26 July 2015

IEEE SA-Standards Board

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2015 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 26 July 2015. Printed in the United States of America.

IEEE and POSIX are registered trademarks in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and
Electronics Engineers, Incorporated.

Java is a trademark of Sun Microsystems, Inc. in the United States and other countries.

Perl is a registered trademark of Perl, Inc.

SystemC is a registered trademark of Open SystemC Initiative.

Verilog is a registered trademark of Cadence Design Systems, Inc.

PDF: ISBN 978-0-7381-6687-2 STD97128
Print: ISBN 978-0-7381-6688-9 STDPD97128

IEEE prohibits discrimination, harassment and bullying. For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the
publisher.

Grateful acknowledgment is made to Cadence, Inc., for permission to use the following source material:

Namespaces for Types in e, Version 1.1

e Language Reference, Version 5.1, Chapter 26 (Encapsulation Constructs)

e Language Reference, Version 9.2, Chapter 6 (Template Types), Chapter 12 (Generation Constraints),
Chapter 21 (Macros)

e Language Reference, Version 10.2, Chapter 2 (e Data Types), Chapter 6 (e Ports)

e Reuse Methodology Developer Manual, Version 2.1, Chapter 5 (Sequences), Chapter 6 (Messaging)

e Ports, Chapter 6

Specman Beta Features, Chapter 4 (Constant Fields and Constant when Subtypes), Chapter 15
(Reflection Interface for e)

Abstract: The e functional verification language is an application-specific programming language,
aimed at automating the task of verifying a hardware or software design with respect to its
specification. Verification environments written in e provide a model of the environment in which the
design is expected to function, including the kinds of erroneous conditions the design needs to
withstand. A typical verification environment is capable of generating user-controlled test inputs
with statistically interesting characteristics. Such an environment can check the validity of the
design responses. Functional coverage metrics are used to control the verification effort and gauge
the quality of the design. e verification environments can be used throughout the design cycle, from
a high-level architectural model to a fully realized system. A definition of the e language syntax and
semantics and how tool developers and verification engineers should use them are contained in this
standard.
Keywords: assertion, concurrent programming, constraint, dynamic verification, functional
coverage, functional verification, IEEE 1647, simulation, temporal logic, test generation

http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the
IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers representing
varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and
serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the
consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the
information or the soundness of any judgments contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other
damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting
from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims
any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that
the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market,
or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the
time a standard is approved and issued is subject to change brought about through developments in the state of the art and
comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for
revision or reaffirmation, or every ten years for stabilization. When a document is more than five years old and has not been
reaffirmed, or more than ten years old and has not been stabilized, it is reasonable to conclude that its contents, although still
of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the
latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for,
or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to
another. Any person utilizing this, and any other IEEE Standards document, should rely upon his or her independent
judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent
professional in determining the appropriateness of a given IEEE standard.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare
appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any
interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its
societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests
except in those cases where the matter has previously received formal consideration. A statement, written or oral, that is not
processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered the official position
of IEEE or any of its committees and shall not be considered to be, nor be relied upon as, a formal interpretation of the
IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall
make it clear that his or her views should be considered the personal views of that individual rather than the formal position,
explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with
IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate
supporting comments. Recommendations to change the status of a stabilized standard should include a rationale as to why a
revision or withdrawal is required. Comments and recommendations on standards, and requests for interpretations should be
addressed to:

Secretary, IEEE-SA Standards Board

445 Hoes Lane

Piscataway, NJ 08854-4141

USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by The Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To
arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive,
Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational
classroom use can also be obtained through the Copyright Clearance Center.

Introduction

The e functional verification language is an application-specific programming language aimed at the
problem of verifying functional correctness of hardware and software designs. Simply stated, functional
verification attempts to provide a quantitative answer to the question: How well does the design match the
functional specification?

Functional correctness of chip designs grew in criticality from the mid-1980s. As design complexity kept
growing, ad hoc testing methods ran out of steam and a more systematic verification approach was
necessary. Manually constructed test suites, the early method of choice, became both uneconomical and
ineffective when scaled up. As a result, many companies supplemented manual test suites with pseudo-
random generation of input stimulus. Such test generation programs were typically built for a particular
project or a particular architecture. They turned out to be expensive to develop and maintain, but once
functional, they would clean up the design in a very thorough way.

A key observation made by Yoav Hollander, the creator of e, was that verification environments of different
projects have a lot in common and yet each verification environment is structured to match a particular
design specification. Hollander’s solution was to create a language that had verification-specific constructs
as primitives and the full capabilities of a high-level language for customization. In particular, pseudo-
random test generation became a built-in capability of the language. Early prototypes of the language were
experimented with as early as 1993, showing significant productivity gains.

The e language was productized by Verisity, Ltd., in 1996, as part of a functional verification tool suite. The
proliferation of the e language and the growing investment in e-based intellectual property (IP) compelled
the creation of the e steering committee in June of 2002, composed of individuals from Texas Instruments,
Rambus, STMicroelectronics, Cisco, Intel, Axis System, STARC, and Verisity. The e steering committee
recommended the e language be standardized through the Institute of Electrical and Electronics Engineers
(IEEE). Accepting the recommendation, Verisity released the rights to the language to the IEEE in June of
2003.

The e language, in its current form, brings together concepts from many domains.

— e has a basic object-oriented (OO) programming model, with implicit memory management and
single inheritance. In this, e is similar to Java™.a

— Beyond objects, e supports aspects, which can be viewed as layers cutting across multiple objects.
Adding an aspect to an existing program refines the program by introducing a coherent change to a
plurality of objects.

— e supports constraints as object features. Constraints are used to refine object modeling. The
execution model of the language involves resolving constraint systems and picking random values
that would satisfy constraint systems.

— e is a strongly typed language, like Pascal and Modula.

— e has concurrency constructs and modeling blocks for hierarchical composition, similar to hardware
description languages (HDLs) like Verilog® (see IEEE Std 1364™) and VHSIC hardware description
language (VHDL) (see IEC/IEEE 61691-1-1).a, b Concurrency in e is synchronous, like in Esterel.

— e contains a temporal language that borrows from Linear Temporal Logic and Interval Temporal
Logic.

aJava is a trademark of Sun Microsystems, Inc. in the United States and other countries. Verilog is a registered trademark of Cadence
Design Systems, Inc. This information is given for the convenience of users of this standard and does not constitute an endorsement by
the IEEE of these products. Equivalent products may be used if they can be shown to lead to the same results.
bInformation on references can be found in Clause 2.

This introduction is not part of IEEE Std 1647-2011, IEEE Standard for the Functional Verification Language e.
iv Copyright © 2015 IEEE. All rights reserved.

— e has many built-in constructs aimed at simplifying common programming tasks; built-in support for
lists and hashes; and pattern matching and string- and file-manipulation features, which are
borrowed from Perl®.c

— The e syntax is extendable with a powerful macro capability.

This combination of concepts caters directly to the needs of verification engineers, removing the need to
cobble together multiple components in different languages.

As with any programming language, the source of ingenuity is with the programmer. Verification engineers
need sound methodologies, creativity, an inquisitive mind, and a keen eye for poorly specified aspects. Yet
experience with e shows that when put to good use, the e language fosters productivity and quality results.

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the
provisions of this standard does not imply compliance to any applicable regulatory requirements.
Implementers of the standard are responsible for observing or referring to the applicable regulatory
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in
compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private
uses. These include both use, by reference, in laws and regulations, and use in private self-regulation,
standardization, and the promotion of engineering practices and methods. By making this document
available for use and adoption by public authorities and private users, the IEEE does not waive any rights in
copyright to this document.

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the
issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether
a given document is the current edition and whether it has been amended through the issuance
of amendments, corrigenda, or errata, visit the IEEE Standards Association website at http://
ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process,
visit the IEEE-SA website at http://standards.ieee.org.

cPerl is a registered trademark of Perl, Inc. This information is given for the convenience of users of this standard and does not consti-
tute an endorsement by the IEEE of these products. Equivalent products may be used if they can be shown to lead to the same results.
Copyright © 2015 IEEE. All rights reserved. v

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://
standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for
errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. A patent holder or patent applicant has filed a statement
of assurance that it will grant licenses under these rights without compensation or under reasonable rates,
with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants
desiring to obtain such licenses. Other Essential Patent Claims may exist for which a statement of assurance
has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a
license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or
determining whether any licensing terms or conditions provided in connection with submission of a Letter of
Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this
standard are expressly advised that determination of the validity of any patent rights, and the risk of
infringement of such rights, is entirely their own responsibility. Further information may be obtained from
the IEEE Standards Association.
vi Copyright © 2015 IEEE. All rights reserved.

Participants

At the time this standard was submitted to the IEEE-SA Standards Board for approval, the IEEE
e Functional Verification Language (eWG) Working Group had the following members and observers:

Darren Galpin, Chair
Srinivasan Venkataramanan, Vice-Chair

Alan Perlman, Karen Ochoa, Amy Witherow, Technical Editors

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention.

Cristian Amitroaie
Mike Bartley
Erez Bashi
Stefan Birman
Hannes Froehlich
Kishore Karnane
Yaron Kashai

Silas McDermott
Genadi Osowiecki
Andrew Piziali
Aleksandar Randjic
Scott Roland
Damian Savage

Uwe Simm
Akash Singh
Marat Teplitsky
Yuri Tsoglin
Matan Vax
Greg White

Christoffer Amlo
Hugh Barrass
Michael Benjamin
Victor Berman
Parag Bhatt
Avi Bloch
Danila Chernetsov
Keith Chow
Tommy Cooper
Jacob Daniel
Sandeep Desai
Stylianos Diamantidis
Thomas Dineen
George Economakos
James Gilb
Sergiu Goma
Randall Groves
M. Hashmi
Werner Hoelzl

Dennis Horwitz
Joseph Hupcey III
Piotr Karocki
Jake Karrfalt
Yaron Kashai
Eran Keydar
Zeev Kirshenbaum
Brett G. Lammers
Jim Lewis
Guoliang Liu
William Lumpkins
Greg Luri
Chris Macionski
Riccardo Mariani
Arthur Marris
Michael T. McNamara
Gary Michel
Michael Mirmak

Robert Myers
Michael S. Newman
William Paulsen
Steven Pearlmutter
Gregory Peterson
Robert Peterson
Andrew Piziali
Vikram Punj
William Schilp
John Shields
Lori Kate Smith
Michael Stellfox
Mark Strickland
Ajayharsh Varikat
Matan Vax
Srinivasa Vemuru
David G. Von Bank
Henry J. Von Bank
Paul Work
Copyright © 2015 IEEE. All rights reserv
ed.
 vii

When the IEEE-SA Standards Board approved this standard on 16 July 2015, it had the following
membership:

Richard H. Hulett, Chair
John Kulick, Vice Chair

Robert M. Grow, Past Chair
Judith Gorman, Secretary

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, NRC Representative
Richard DeBlasio, DOE Representative
Michael Janezic, NIST Representative

Don Messina
IEEE Standards Program Manager, Document Development

Joan M. Woolery
IEEE Standards Program Manager, Technical Program Development

Masayuki Ariyoshi
William Bartley
Ted Burse
Clint Chaplin
Wael Diab
Jean-Philippe Faure
Alexander Gelman
Paul Houzé

Jim Hughes
Joseph L. Koepfinger*
David J. Law
Thomas Lee
Hung Ling
Oleg Logvinov
Ted Olsen

Gary Robinson
Jon Walter Rosdahl
Sam Sciacca
Mike Seavey
Curtis Siller
Phil Winston
Howard L. Wolfman
Don Wright
viii Copyright © 2015 IEEE. All rights reserved.

Contents

1. Overview.. 1

1.1 Scope.. 1
1.2 Purpose... 1
1.3 Verification environments ... 1
1.4 Basic concepts relating to this standard ... 3
1.5 Conventions used ... 8
1.6 Use of color in this standard .. 10
1.7 Contents of this standard.. 10

2. Normative references ... 13

3. Definitions, acronyms, and abbreviations.. 13

3.1 Definitions ... 13
3.2 Acronyms and abbreviations ... 15

4. e basics ... 17

4.1 Lexical conventions ... 17
4.2 Syntactic elements ... 24
4.3 Struct hierarchy and name resolution .. 30
4.4 Ranges.. 36
4.5 Operator precedence .. 36
4.6 Evaluation order of expressions... 37
4.7 Bitwise operators ... 38
4.8 Boolean operators .. 40
4.9 Arithmetic operators .. 42
4.10 Comparison operators .. 43
4.11 String matching.. 47
4.12 Extraction and concatenation operators ... 49
4.13 Scalar modifiers ... 53
4.14 Parentheses... 54
4.15 list.method() .. 54
4.16 Special-purpose operators.. 55

5. Data types .. 59

5.1 e data types... 59
5.2 Untyped expressions .. 65
5.3 Assignment rules.. 66
5.4 Real data type... 69
5.5 Precision rules for numeric operations .. 72
5.6 Automatic type casting .. 74
5.7 Defining and extending scalar types .. 75
5.8 Type-related constructs.. 77

6. Structs, subtypes, and fields... 85

6.1 Structs overview .. 85
6.2 Defining structs: struct .. 86
Copyright © 2015 IEEE. All rights reserved. ix

6.3 Extending structs: extend type .. 87
6.4 Restrictions on inheritance... 87
6.5 Extending subtypes .. 88
6.6 Creating subtypes with when... 88
6.7 Extending when subtypes .. 90
6.8 Defining fields: field ... 91
6.9 Defining list fields ... 93
6.10 Projecting list of fields .. 95
6.11 Defining attribute fields .. 95

7. Units... 97

7.1 Overview.. 97
7.2 Defining units and fields of type unit .. 99
7.3 Unit attributes .. 103
7.4 Predefined methods of any_unit .. 104
7.5 Unit-related predefined methods of any_struct ... 106
7.6 Unit-related predefined routines .. 108

8. Template types ... 111

8.1 Defining a template type ... 111
8.2 Instantiating a template type ... 113

9. e ports... 115

9.1 Introduction to e ports.. 115
9.2 Using simple ports ... 116
9.3 Using buffer ports .. 118
9.4 Using event ports ... 119
9.5 Using method ports .. 120
9.6 Defining and referencing ports .. 122
9.7 Port attributes ... 127
9.8 Buffer port methods ... 139
9.9 MVL methods for simple ports.. 141
9.10 Global MVL routines... 147
9.11 Comparative analysis of ports and tick access... 150
9.12 e port binding ... 151
9.13 Transaction level modeling interface ports in e... 153
9.14 TLM Sockets in e... 161

10. Constraints and generation... 169

10.1 Types of constraints ... 169
10.2 Generation concepts... 169
10.3 Type constraints ... 187
10.4 Defining constraints ... 189
10.5 Invoking generation ... 195

11. Temporal struct members .. 197

11.1 Events... 197
11.2 on .. 201
11.3 on event-port .. 202
x Copyright © 2015 IEEE. All rights reserved.

11.4 expect | assume ... 203
11.5 Procedural API for Temporal Operators on event and expect struct Members....................... 204

12. Temporal expressions .. 219

12.1 Overview.. 219
12.2 Temporal operators and constructs .. 222
12.3 Success and failure of a temporal expression .. 237

13. Time-consuming actions.. 239

13.1 Synchronization actions ... 239
13.2 Concurrency actions .. 240
13.3 State machines ... 242

14. Coverage constructs ... 247

14.1 Defining coverage groups: cover .. 247
14.2 Defining basic coverage items: item .. 249
14.3 Defining cross coverage items: cross .. 254
14.4 Defining transition coverage items: transition .. 256
14.5 Extending coverage groups: cover ... using also ... is also ... 258
14.6 Extending coverage items: item ... using also ... 259
14.7 Coverage API... 260
14.8 Coverage methods for the covers struct... 266

15. Macros ... 271

15.1 Overview.. 271
15.2 define-as statement ... 272
15.3 define-as-computed statement ... 272
15.4 Match expression structure .. 273
15.5 Interpretation of match expressions ... 275
15.6 Macro expansion code ... 276

16. Print, checks, and error handling ... 279

16.1 print ... 279
16.2 Handling DUT errors ... 279
16.3 Handling user errors... 285
16.4 Handling programming errors: assert ... 287

17. Methods ... 289

17.1 Rules for defining and extending methods .. 289
17.2 Invoking methods .. 297
17.3 Parameter passing .. 300
17.4 Using the C interface ... 302

18. Creating and modifying e variables ... 305

18.1 About e variables ... 305
18.2 var ... 305
18.3 = .. 306
Copyright © 2015 IEEE. All rights reserved. xi

18.4 op= .. 306
18.5 <=... 307

19. Packing and unpacking .. 309

19.1 Basic packing ... 309
19.2 Predefined pack options... 312
19.3 Customizing pack options.. 313
19.4 Packing and unpacking specific types ... 313
19.5 Implicit packing and unpacking... 319

20. Control flow actions... 321

20.1 Conditional actions .. 321
20.2 Iterative actions.. 323
20.3 File iteration actions... 328
20.4 Actions for controlling the program flow .. 329

21. Importing and preprocessor directives... 331

21.1 Importing e modules .. 331
21.2 #ifdef, #ifndef ... 332
21.3 #define .. 333
21.4 #undef ... 334

22. Encapsulation constructs.. 335

22.1 package: package-name .. 335
22.2 package: type-declaration ... 335
22.3 package | protected | private: struct-member .. 336
22.4 Scope operator (::) .. 337

23. Simulation-related constructs .. 339

23.1 force .. 339
23.2 release ... 339
23.3 Tick access: 'hdl-pathname' .. 340
23.4 simulator_command() .. 340
23.5 stop_run() .. 341

24. Messages .. 343

24.1 Overview.. 343
24.2 Message model .. 343
24.3 Message execution ... 343
24.4 Structured debug messages .. 344
24.5 message and messagef .. 349
24.6 Tag ... 350
24.7 Verbosity.. 350
24.8 Predefined type sdm_handler... 351
24.9 Messages Interface... 353

25. Sequences... 373
xii Copyright © 2015 IEEE. All rights reserved.

25.1 Overview.. 373
25.2 Sequence statement ... 375
25.3 do sequence action ... 377
25.4 Sequence struct types and members .. 378
25.5 BFM-driver-sequence flow diagrams .. 383

26. List pseudo-methods library .. 387

26.1 Pseudo-methods overview ... 387
26.2 Using list pseudo-methods... 387
26.3 Pseudo-methods to modify lists ... 387
26.4 General list pseudo-methods.. 396
26.5 Math and logic pseudo-methods .. 411
26.6 List CRC pseudo-methods ... 414
26.7 Keyed list pseudo-methods .. 416

27. Predefined methods library .. 419

27.1 Predefined methods of sys ... 419
27.2 Predefined methods of any_struct.. 419
27.3 Methods and predefined attributes of unit any_unit .. 422
27.4 Set Pseudo-methods ... 422
27.5 Other Pseudo-methods ... 427
27.6 Coverage methods.. 429

28. Predefined routines library... 431

28.1 Deep copy and compare routines... 431
28.2 Integer arithmetic routines ... 434
28.3 Real arithmetic routines ... 438
28.4 bitwise_op() .. 439
28.5 get_all_units() ... 440
28.6 String routines.. 440
28.7 Output routines .. 448
28.8 Operating system interface routines .. 450
28.9 set_config() ... 454
28.10Random routines ... 454

29. Predefined file routines library .. 455

29.1 File names and search paths... 455
29.2 File handles .. 455
29.3 Low-level file methods .. 455
29.4 General file routines... 460
29.5 Reading and writing structs ... 466

30. Reflection API ... 469

30.1 Introduction.. 469
30.2 Type information ... 470
30.3 Aspect information .. 485
30.4 Value query and manipulation ... 491

31. Predefined resource sharing control structs ... 495
Copyright © 2015 IEEE. All rights reserved. xiii

31.1 Semaphore methods ... 495
31.2 How to use the semaphore struct ... 496

32. Intellectual property protection.. 501

32.1 Encryption.. 501
32.2 Decryption ... 501
32.3 Reflection API ... 502
32.4 Encryption targets .. 502

Annex A .. 503

Bibliography .. 503

Annex B .. 505

Source code serialization ... 505

Annex C .. 513

Comparison of when and like inheritance ... 513

Annex D .. 521

Name spaces .. 521

Annex E .. 529

Reflection API examples ... 529

Annex F ... 533

Encryption targets .. 533
xiv Copyright © 2015 IEEE. All rights reserved.

IEEE Standard for the
Functional Verification Language e

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or
environmental protection. Implementers of the standard are responsible for determining appropriate
safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These
notices and disclaimers appear in all publications containing this document and may be found under the
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.”
They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/
disclaimers.html.

1. Overview

This clause explains the scope and purpose of this standard; gives an overview of the basic concepts, major
semantic components, and conventions used in this standard; and summarizes its contents.

1.1 Scope

This standard defines the e functional verification language. This standard aims to serve as an authoritative
source for the definition of (a) syntax and semantics of e language constructs, (b) the e language interaction
with standard simulation languages, and (c) e language libraries.

1.2 Purpose

This standard serves the community involved with functional verification of electronic designs using the e
language. It provides an implementation independent definition of the e language and facilitates the
development of e language based design automation tools.

1.3 Verification environments

Electronic systems are integrated circuits (ICs), boards, or modules combining multiple ICs together, along
with optional embedded processors and software components. Electronic systems are built to specifications
that anticipate the environment in which such systems are expected to function and define the expected
system functionality. Functional verification measures how well a system meets its specification. Even with
moderately complex systems this question cannot be answered by inspection. For all modern electronic
Copyright © 2015 IEEE. All rights reserved. 1

http://standards.ieee.org/IPR/disclaimers.html
http://standards.ieee.org/IPR/disclaimers.html

IEEE
Std 1647-2015 IEEE STANDARD
systems, a sophisticated verification process needs to accompany the design process to ensure compliance
with the specification.

Many electronic design automation (EDA) tools are used to carry out the functional verification process.
The most prominent functional verification method, used to verify virtually all system designs, is called
dynamic verification or simulation-based verification. Simulation-based verification makes use of a
functional model of the system being designed. The functional model is simulated in the context of a mock-
up of the anticipated system environment. This mock-up is called the verification environment.

There are many requirements a verification environment needs to fulfill, as follows:

— It needs to create input stimulus and feed it into the system being verified.

— It needs to collect the output from the system being verified, as well as the state of selected internal
nodes.

— It needs to check that the output matches the expectations, based on the functional requirements, the
state of the system being verified, and the inputs provided.

— It needs to measure functional coverage: the extent to which functions of the system being verified
have been exercised by the verification environment.

— It needs to facilitate error identification, isolation, and debug. For that purpose, test environments
contain combinational and temporal assertions, as well as various messaging and logging
capabilities.

— The verification environment needs to be able to mimic all possible variations and configurations the
system being verified might face in practice.

— The verification environment needs to be able to throw a wide variety of error conditions at the
system being verified, in order to test error handling and error recovery.

— The verification environment should be easily controllable, to allow steering by the verification
engineers.

The verification environment is a primary component in a simulation-based verification process. The
environment needs to drive the system being verified through enough diverse scenarios to cover a
statistically meaningful portion of the systems state space. Coverage data collected throughout the process
should provide the foundation to an informed decision about the production readiness of the system being
designed.

Sophisticated verification environments are complex software systems, representing a significant
investment. Reuse of verification components is a primary way of minimizing this investment. Reusability is
typically an artifact of a well thought-out software architecture, but in the case of e, the language itself
facilitates reuse through aspect-oriented programming (AOP) constructs and the semantics of generation.

The e functional verification language can facilitate the creation of sophisticated verification environments,
as e features many constructs that automate and support common verification environment tasks.

A standard definition of the e language should serve both practicing verification engineers and EDA tool
developers. Engineers using e to build verification environments and reusable verification components need
to ensure the valuable intellectual property (IP) they create can be interpreted by others. Tool developers
need to agree on consistent syntax and semantics to ensure interoperability between tools. These goals are
best facilitated by means of an open standard.
2 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
1.4 Basic concepts relating to this standard

This subclause discusses some basic concepts relating to the e functional verification language. e is built
upon many of the concepts shared by most programming languages—these concepts are not repeated here.
The concepts in the following subclauses are either unique to e or contain some specific details pertaining
to e.

1.4.1 Fundamental considerations

An e program is a computer program written in the e functional verification language. e is a Turing
complete programming language.1 While aimed specifically at constructing functional verification
environments, e can be used to create arbitrary programs.

In principle, an e program can be either compiled or interpreted. A compiled execution flow requires the
availability of an e compiler, which reads in the e program and produces a machine-executable image of the
program. Such machine-executable images can execute, or run, on suitable computers. Alternatively, an
e program can be loaded into an e interpreter and execute within the interpreter context. A computer
program executing e code in either mode shall be called an e runtime engine.

1.4.2 Organization of e programs

e programs comprise one or more text files called modules. Each module can contain e code and comments.
The syntactic form of code and comments is discussed in Clause 4.

An e module can require the presence of other modules. Such requirements can be specified explicitly, using
the import statement, as well as derived automatically. The considerations for importing modules and
resolving module dependencies are discussed in Clause 21 and Annex B, respectively. Each e program
induces an ordered list of modules. Loading the modules in a different order might result in a program that is
malformed or is different from the intended program.

e programs can be interpreted or compiled as a whole. The e semantics allow, but do not require, an
alternative mode where an initial list of modules is loaded or compiled first, and later modules are
introduced to the execution environment, in order, during program execution. This “load on top” mode has
important practical implications, such as debugging and development efficiency, but it is entirely in the
implementation domain.

1.4.3 Modes of execution

e programs are distinguished based on the modeling of time during execution. A more complete discussion
of treatment of time can be found in Clause 11 and Clause 12.

1.4.3.1 Stand-alone execution

e programs can execute independently. In such cases, the program shall use cycle-based semantics. Time
shall be modeled by an internal source generating a sequence of discrete time units (ticks). The time variable
shall be assigned consecutive integer values, starting from 0 (before the initial tick). The advancement of
time shall stop when the program requests simulation to stop or for an exception. These conditions are
covered under 23.5, 28.9, and Clause 16.

1A programming language or any other logical system is called Turing complete if it has a computational power equivalent to a
universal Turing machine.
Copyright © 2015 IEEE. All rights reserved. 3

IEEE
Std 1647-2015 IEEE STANDARD
1.4.3.2 Co-execution with a master simulator

e programs can execute in tandem with a master simulator. In this case, control is passed back and forth
between the e runtime engine and the master simulator. The master simulator is typically a commercial
Verilog®, VHDL, or SystemC® simulator that runs a simulation of the system being verified.2

In this execution mode, the time semantics are controlled by the master simulator. The executing e program
defines conditions under which execution of the master simulator is suspended and control is passed to the
e runtime engine. These switches of control are called callbacks. A more detailed discussion of callback
conditions can be found in 11.1.4.2.

The master simulator defines the representation of time and the time increments, based on its native
semantics. For example, an event-driven Verilog simulator determines time representation based on the
timescale in effect and the increments of time based on the processing of simulation events.

Upon each callback, the e execution engine shall read the time value from the master simulator. That time
value shall hold for the entire duration of the tick (until control is returned to the master simulator).

In a co-execution environment, the e execution engine can read and write values of entities represented in
the master simulator domain. Such values are generally latched at the start of each tick. Changes are applied
only at the point control is passed back to the master simulator. Further details on the interaction with
foreign entities can be found in Clause 9 and Clause 23.

1.4.4 Execution phases

The execution of e programs goes through the phases listed in Table 1.

The phases can be customized to meet the needs of particular verification environment tasks. The methods
listed can be extended to customize each phase. Methods listed with a sys. prefix are only available at the

2Verilog is a registered trademark of Cadence Design Systems, Inc. SystemC is a registered trademark of Open SystemC Initiative. This
information is given for the convenience of users of this standard and does not constitute an endorsement by the IEEE of these products.
Equivalent products may be used if they can be shown to lead to the same results.

Table 1—Execution phases

Phase name Purpose Methods called

init Initialize objects. init()

setup Used to hook up verification environment components;
configure environment.

sys.setup()

generate Execute an elaboration and initial generation of the object
hierarchy rooted in sys.

pre_generate()
post_generate()

run Launch time-consuming methods (TCMs) in the context of
an object; execute the timed portion of the program.

run()

extract Collect log and coverage information after execution. sys.xtract()

check Perform final checking. sys.check()

finalize Clean up prior to termination. quit()
4 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
topmost object called sys. Other methods are available for any object. Such methods shall be called in order
as long as the object can be reached from sys.

For more information about the object instance hierarchy in an e program, see 4.3.1. The methods defined
any_struct are discussed in 27.2.

1.4.5 Major semantic components

The rest of this subclause highlights some key components of the e language.

1.4.5.1 Types

e is a strongly typed language. Every scalar and object created during the execution of an e program has an
associated type. Such scalars and objects are said to be instances of their type. Types in e completely define
the features and functions of all their instances.

e features a single inheritance scheme. According to this scheme, each type has exactly one parent type. The
type hierarchy is rooted in some predefined types for objects and scalars.

The association of instances and types in e can be static or dynamic. Static typing means an instance is
associated with a particular type at creation and that association does not change during the life of the
instance. Dynamic typing means the association between instance and type can change during the lifetime of
the instance. Dynamic inheritance (sometimes called when inheritance), enables the creation of instances
that adapt during their lifetime to changing conditions—changing their features and functions accordingly.
Do not confuse dynamic typing with casting, where an instance is converted to a type with compatible
features. Nor is dynamic typing the same as up-casting: an object-oriented (OO) concept that allows an
object to be accessed as one of its super-types, abstracting away some of the type features.

A comprehensive discussion of static and dynamic typing in e can be found in Annex C.

1.4.5.2 Packages, aspects, and information hiding

e packages comprise ordered collections of modules. Packages are typically used to implement a particular
functionality or feature set. Packages are aspects: they refine and extend predefined types, and optionally
introduce new types.

Information hiding is a fundamental OO concept that isolates an object’s published interface from the
implementation details. Hiding means that certain features are simply out of scope; there is no way to access
them from outside an object. In e, types, as well as type features, can be subject to information hiding.

e introduces two orthogonal relationships in order to implement an AOP viable information hiding scheme:
type membership and package membership. Features can be public, private to an object, private to a
package, or private to both. Figure 1 depicts these relationships.

Type A and Type B are globally visible. Type C is private to Package Q. X is a globally visible
feature of A, and Y is visible within Package P. Z is a feature of B, which is defined in Package P, but
is visible anywhere within B. W is a feature of B defined in Package Q and is only visible in the
intersection of Package Q and Type B.

For a detailed discussion of packages and information hiding, see Clause 22.
Copyright © 2015 IEEE. All rights reserved. 5

IEEE
Std 1647-2015 IEEE STANDARD
1.4.5.3 Numeric expressions and values

e supports signed and unsigned integer values of arbitrary length. Numbers can be represented as binary,
octal, decimal, and hexadecimal values. e inherits number representation and much of its arithmetic and
logical semantics from the C language (see ISO/IEC 9899).3 Semantics of specific bit-oriented, logical, and
arithmetic operators can be found in 4.7, 4.8, and 4.9, respectively.

Values passed on from external domains, such as a master simulator, are converted to e values at the
interface, as they are passed through ports. Similarly, e values can be converted to drive multi-valued logic
at the interface. Value conversion is discussed in 9.9.

e supports double-precision floating-point numbers as the real data type.

1.4.5.4 Constraints and generation

Constraints in e are features of object types. Constraints introduce relationships among fields accessible
from the object scope or between such fields and values (constants or dynamically computed values).
Constraints affect generation actions only; they do not affect imperative assignment. For instance, an integer
field might be constrained to a specific value, say 1. Assigning another value to that field is legal.
Initialization shall assign 0 to that field (the default value for integers). Generation of the field shall assign it
to 1, based on the constraint.

Constraints are primarily declarative. Each generation operation involves a closure of types and constraints
affecting the operation. The closure defines the constraint satisfaction problem (CSP) that needs to be
resolved to construct an instance hierarchy and assign values according to the constraints involved. The CSP
might have multiple solutions (i.e., different instance hierarchies and/or different value assignments that
satisfy all constraints); such CSPs are called under-constrained. In such cases, a solution shall be randomly
selected from the set of available solutions.

The programmer can use this to define an under-constrained problem, indicating that random variations are
allowed. Given this, different implementations may produce different results and still remain compliant with
this standard.

3For information on references, see Clause 2.

Figure 1—Type and package membership

Package P

Package Q

Type A Type B

X

W

Z
YY

Z

Type CW
6 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Constraint-based generation is used for the following two main purposes during execution:

— Instantiation of the initial unit tree, hooking up port connections and instantiation of object instances
within the unit tree

— Creation of object hierarchies on demand, typically to serve as input stimulus driving the simulation

Constraints and generation are discussed in Clause 10.

1.4.5.5 Concurrent execution

e semantics support concurrent execution of computation. Concurrent computation can be spawned
explicitly, using the start action. Implicit concurrency is created by defining temporal struct members, such
as event, assume, and expect. See Clause 11 and Clause 13 for a detailed discussion of these constructs.

In software implementations, concurrent execution is simulated by running multiple threads of execution
within an operating system (OS) process. The rules that govern time multiplexing between threads of
execution are called threading semantics. e mandates that threading is non-preemptive: the running thread
can yield control, but control cannot be taken away. Threads in e yield control when they become blocked.
Threads can block when they wait on, or synchronize to, a temporal expression (TE); attempt to perform a
port operation that blocks; or attempt to access a shared resource that is occupied. The programmer can
assume atomic execution for sequences of actions not containing these operations.

Once a thread blocks, the runtime engine selects the next thread to run. This is called scheduling. Threads
shall be scheduled to run as long as they are not blocked. When all threads are blocked, simulated time is
advanced according to the mode of execution in effect (see 1.4.3).

This standard does not address the scheduling problem. It is fully expected for thread scheduling to vary
among compliant implementations for considerations such as performance. Well-formed e programs should
be robust in the face of scheduling variations: the computation should yield compatible results irrespective
of scheduling. e has several synchronization mechanisms to support robust concurrent programming, see
Clause 11 and Clause 31. Well-formed e programs shall have congruent execution between software
implementations based on simulated concurrency and hardware implementations, where concurrency is
actual.

1.4.5.6 Functional coverage

Functional coverage is a user-defined metric. The process of measuring functional coverage involves three
steps, as follows:

a) The programmer builds a coverage model, representing key architectural and micro-architectural
features of the system being verified.

b) Coverage data is collected during simulation and accumulated for analysis.

c) Coverage information is aggregated across many simulations and is analyzed to produce coverage
scores. Coverage scores indicate the extent to which the features represented in the coverage models
have been exercised by the verification process.

A coverage model includes one or more cover groups, which represent a data set to be sampled under certain
conditions: the occurrence of a sampling event with an optional combinational guard. A cover group consists
of cover items. Each cover item samples one value for each occurrence of the sampling event and classifies
that value according to programmer-defined categories called buckets. During runtime, coverage values are
sampled each time a sampling event is emitted. The trail of cumulative samples is the raw data used to
determine coverage scores.
Copyright © 2015 IEEE. All rights reserved. 7

IEEE
Std 1647-2015 IEEE STANDARD
The creation of a coverage model entails the definition of cover groups with their sampling conditions, cover
items, and buckets. Coverage model definition is intertwined into the rest of an e program, as coverage
groups are added to various object types. Coverage is often added as a separate aspect, maintaining a clean
separation from other functions.

Functional coverage is distinct from other coverage measures, such as code coverage, state machine
coverage, assertion coverage, and the like. However, all these forms of coverage can be combined to form a
multi-dimensional hybrid coverage metric. More information about functional coverage can be found in
Clause 14 and in Functional Verification Coverage Measurement and Analysis [B5].4

1.4.5.7 Checking, printing, and reporting

e features several constructs aimed at simplifying the control over checking, printing, and reporting. These
features might seem mundane, but there is great practical value in a common control scheme to which all
e programs adhere, especially when combining components developed independently.

e programs can contain code to identify, and react to, various error conditions. One source of errors is
unexpected behavior of the system being verified. These errors are called DUT errors (DUT stands for
design under test). A second source of errors is assertions indicating unexpected behavior of the e program
itself. A third kind of errors is exceptions created by the e runtime engine in response to unhandled
programming errors.

Each DUT error can be selectively assigned a degree of severity, from logging a message to immediate
termination of the run. A customized error message that aids debugging can be associated with each DUT
error. A DUT error can trigger the execution of a code block for logging and recovery. All of these features
provide structure necessary for managing large verification environments containing massive amounts of
unfamiliar code.

The checking, printing, and reporting constructs in e are discussed in Clause 16.

1.5 Conventions used

This standard uses visual cues to help locate and interpret information easily.

1.5.1 Visual cues (meta-syntax)

The meta-syntax for the description of lexical and syntax rules uses the conventions shown in Table 2.

1.5.2 Syntax notation within a construct

Each construct subclause starts with the syntax for the construct. The syntax shows the construct, any
arguments it accepts with their types, and the construct’s return type (if it has one). The argument types and
the construct return type are for information only and are not entered. When using the construct, follow the
meta-syntax detailed in Table 2.

Examples

The syntax notation for the predefined pseudo-method first() is

list.first(exp: bool): list-type

4The numbers in brackets correspond to those of the bibliography in Annex A.
8 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
This is what the notation means:

— The bold.first and the parentheses [()] shall be entered exactly.

— The parts in italics, list and exp, need to be replaced by a list name and an expression.

— “: bool” indicates the exp needs to be a Boolean expression.

— “: list-type” means the pseudo-method returns an item of the list element type.

Following is an example of a call to the list.first() pseudo-method, where numbers is a list of integer items
and my_number is an integer. The pseudo-method returns the first integer in the list greater than 5:

my_number = numbers.first(it > 5)

1.5.3 Syntax examples

Any syntax examples shown in this standard are for information only and are only intended to illustrate the
use of such syntax.

Table 2—Document conventions

Visual cue Represents

courier The courier font indicates e or HDL code. For example, the following line indicates
e code:

keep opcode in [ADD, ADDI];

bold The bold font is used to indicate keywords, text that shall be typed exactly as it appears.
See also 1.6. For example, in the following command, the keywords “keep” and
“reset_soft” as well as the period and the parentheses shall be typed as they appear:

keep item.reset_soft()

italic The italic font represents user-defined variables. For example, a Boolean expression needs
to be specified in the following line (after the “keep” keyword):

keep constraint-bool-exp

[] square brackets Square brackets indicate optional parameters. For example, in the following construct, the
keywords “list of” are optional:

 var name: [list of] type

[] bold brackets Bold square brackets are required. For example, in the following construct, the bold square
brackets need to be typed as they appear:

extend enum-type-name: [name, ...]

construct, ...
construct; ...

An item followed by a separator character (usually a comma or a semicolon) and an ellip-
sis is an abbreviation for zero or more elements of the specified type, each separated from
the next by the separator character. For example, in the following line zero or more actions
may appear between the braces, each separated from the next by a semicolon.

if bool-exp [then] {action; ...}

() parentheses Parentheses [()] indicates a grouping, usually of alternative choices. For example, the
following line shows the “bits” or “bytes” keywords are possible values for the “type”
parameter:

type scalar-type (bits | bytes: num)

| separator bar The separator bar (|) character indicates alternative choices. For example, the following
line indicates either the “bits” or “bytes” keyword shall be used:

type scalar-type (bits | bytes: num)
Copyright © 2015 IEEE. All rights reserved. 9

IEEE
Std 1647-2015 IEEE STANDARD
1.6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in black and white. The places where color is used are
the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text.

1.7 Contents of this standard

The organization of the remainder of this standard is as follows:

— Clause 2 provides references to other applicable standards that are assumed or required for this
standard.

— Clause 3 defines terms, acronyms, and abbreviations used throughout the different specifications
contained in this standard.

— Clause 4 describes the fundamental syntactic and semantic components of the e language.

— Clause 5 defines e data types and describes their usage.

— Clause 6 defines how structs, subtypes, and fields function within this standard.

— Clause 7 describes the constructs used to define units and their use in a modular verification
methodology.

— Clause 8 describes the principles and usage of e templates types. Template types in e define generic
structs and units that are parameterized by type. They can then be instantiated, giving specific types
as actual parameters.

— Clause 9 defines e unit interfaces and their usage within this standard.

— Clause 10 defines test generation and constraint functions within this standard.

— Clause 11 defines how temporal constructs can be used for specifying and verifying behavior over
time in a e program.

— Clause 12 defines the syntax and semantics of TEs and describes their usage to track temporal
behavior.

— Clause 13 defines what time-consuming actions are and how to use them.

— Clause 14 describes how to define, extend, and use coverage constructs.

— Clause 15 describes how to modify the grammar of the e language.

— Clause 16 shows the various constructs that print an expression, check for errors in the design under
test (DUT), or add exception handling and diagnostics to an e program.

— Clause 17 defines how to declare and use e methods within an e program.

— Clause 18 describes how to create and assign values to e variables.

— Clause 19 shows how to perform basic packing and unpacking of scalars, strings, lists, and structs in
this standard.

— Clause 20 describes how to use e control flow actions.

— Clause 21 defines how to create dependencies between e files and use the preprocessor directives in
this standard.

— Clause 22 contains the syntax and descriptions of the e statements used to create packages and
modify access control.

— Clause 23 describes simulation-related actions, expressions, and routines used.
10 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
— Clause 24 describes the flexible mechanism used to write text messages to various destinations.

— Clause 25 describes a uniform way to define streams of data items and compose them into
verification scenarios.

— Clause 26 describes the pseudo-methods used to work with lists.

— Clause 27 describes all the predefined methods used.

— Clause 28 describes all the predefined routines used.

— Clause 29 contains information about using files and the predefined file routines.

— Clause 30 explains how to access structural information about the type system through the
application programming interface (API), also known as the reflection API, and defines the
reflection API.

— Clause 31 defines some predefined methods that are useful in controlling time-consuming methods
(TCMs) and resource sharing between TCMs.

— Clause 32 describes IP protection, which aims to shield valuable information contained in an IP
without sacrificing the usability of the IP as a whole.

— Annexes. Following Clause 32 are a series of annexes.
Copyright © 2015 IEEE. All rights reserved. 11

IEEE
Std 1647-2015 IEEE STANDARD
12 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
2. Normative references

The following referenced documents are indispensable for the application of this standard (i.e., they must be
understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

IEC/IEEE 61691-1-1, Behavioral languages—Part 1-1: VHDL language reference manual.5, 6

IEEE Std 754™, IEEE Standard for Floating-Point Arithmetic.7

IEEE Std 1364™, IEEE Standard for Verilog Hardware Description Language.

ISO/IEC 8859-1, Information technology—8-bit single-byte coded graphic character sets—Part 1: Latin
Alphabet No. 1.8

ISO/IEC 9899, Programming languages—C.

ISO/IEC/IEEE 9945, Information technology—Portable Operating System Interface (POSIX®) BaseSpeci-
fications, Issue 7.

3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The IEEE Standards
Dictionary: Glossary of Terms & Definitions should be consulted for terms not defined in this clause.9

3.1 Definitions

aspect: One or more program modules that contain refinements to existing types, typically to implement a
specific feature.

attribute: A name, or name-value pair, associated with an object, typically used to classify or control object
behavior.

bucket: A range of values that are collapsed together (are not distinguished) for the purpose of coverage
measurement.

casting: The operation of changing the type associated with a value.

configuration: A data structure containing flags that control the operation of the runtime environment.

5IEC publications are available from the Central Office of the International Electrotechnical Commission, 3, rue de Varembé, P.O. Box
131, CH-1211, Geneva 20, Switzerland (http://www.iec.ch/). IEC publications are also available in the United States from the Sales
Department, American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://www.ansi.org/).
6IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854-
4141, USA (http://standards.ieee.org).
7The IEEE standards or products referred to in Clause 2 are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
8ISO publications are available from the ISO Central Secretariat, 1, ch. de la Voie-Creuse, Case Postale 56, CH-1211, Geneva 20,
Switzerland (http://www.iso.org/). IEC publications are available from the Central Office of the International Electrotechnical
Commission, 3, rue de Varembé, P.O. Box 131, CH-1211, Geneva 20, Switzerland (http://www.iec.ch/). ISO/IEC publications are also
available in the United States from the Sales Department, American National Standards Institute, 25 West 43rd Street, 4th Floor, New
York, NY 10036, USA (http://www.ansi.org/).
9The IEEE Standards Dictionary: Glossary of Terms & Definitions is available at http://shop.ieee.org/.
Copyright © 2015 IEEE. All rights reserved. 13

IEEE
Std 1647-2015 IEEE STANDARD
constraint: A language construct imposing some (optionally conditional) restrictions on the set of values
that can be assigned to an object or a scalar.

construct: A component of the language.

coverage (functional): A user-defined metric for measuring the thoroughness of functional verification.

coverage group: A set of coverage values that are sampled together each time an associated event is
emitted.

event: A keyword used to define a signaling entity. Events can be either present or absent during each tick.

extension: A refinement of a construct in an aspect.

field: A feature of struct, used to hold values or references to objects.

generation: A process of assigning pseudo-random values to object hierarchies, according to applicable
constraints.

global: A keyword referring to the top object in the runtime system.

inheritance: A property of a programming language, allowing a type to be defined as an extension to a
previously defined type. The newly defined type is said to inherit from the previously defined type.

keep: A keyword used to define constraints.

keyed list: A list containing members with fields designated as keys. Retrieval of list members using their
keys is implied to be efficient, typically utilizing hashing techniques.

list: A telescopic data structure used to hold ordered collections of objects of specific types.

macro: A construct used to define a syntactic extension to the language and an associated semantics, in
terms of the previously defined language.

method: A programming construct comprising a sequence of actions within an object context.

packing: The operation of marshaling a data structure, such as an object hierarchy, to a sequence of bits.

path (expression): An expression composed of names or expressions returning names concatenated with a
dot (.). A path expression allows reference to objects that are not in the immediate scope.

port: An interface feature of a unit.

pseudo-method: A construct that has a syntactic form of a method.

pseudo-routine: A construct that has a syntactic form of a routine.

sampling event: An event associated with a temporal expression (TE) that determines when the TE is
evaluated.

state machine: A programming style for implementing synchronous automation.

struct: A keyword used to define a new object type.
14 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
subtype: A type inheriting from some other type.

temporal expression (TE): An expression describing the behavior of a system in time, the system
comprising a set of variables.

tick: An instance in time. The execution of a runtime environment is comprised of a sequence of discrete
execution steps, one for each tick.

time-consuming method (TCM): A method containing actions that can block during execution. TCMs
have internal state that persists during execution.

unit: A keyword used to define a type that is optionally associated with a structural component (an HDL
module).

3.2 Acronyms and abbreviations

AO aspect-oriented

AOP aspect-oriented programming

API application programming interface

CRC cyclic redundancy check

CSP constraint satisfaction problem

DAG directed acyclic graph

DFS depth-first search

DUT design under test

EDA electronic design automation

ESI external simulator interface

FIFO first-in-first-out

HDL hardware description language

HEC header error control

IC integrated circuit

iff if and only if

I/O input/output

IP intellectual property

LHO left-hand operand

LHS left-hand side
Copyright © 2015 IEEE. All rights reserved. 15

IEEE
Std 1647-2015 IEEE STANDARD
LSB least significant bit

MSB most significant bit

MVL multi-value logic

OO object-oriented

OS operating system

RHO right-hand operand

RHS right-hand side

SCC strongly connected component

TCM time-consuming method

TE temporal expression

TLM transaction-level modeling

VHDL VHSIC hardware description language (see IEC/IEEE 61691-1-1)

VHSIC very high-speed integrated circuit
16 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4. e basics

This clause describes the structure of an e program, starting with the organization of e code into one or more
files and the four categories of e constructs, and ending with a description of the struct hierarchy. This
clause also describes the e operators.

4.1 Lexical conventions

The following subclauses describe the lexical conventions of e. This standard uses the ASCII character set
(see ISO/IEC 8859-1).

4.1.1 File structure

e code can be organized in multiple files. File names shall be legal e names. The default file extension is .e.
e code files are sometimes referred to as modules. Each module contains at least one code segment and can
also contain comments.

4.1.2 Code segments

A code segment is enclosed with a begin-code marker <' and an end-code marker '>. Both the begin-code
and the end-code markers shall be placed at the beginning of a line (left-most position), with no other text on
that same line. For example, the following three lines of code form a code segment:

<'
import cpu_test_env
'>

Several code segments can appear in one file. Each code segment consists of one or more statements.

4.1.3 Comments and white space

e files begin as a comment, which ends when the first begin-code marker <' is encountered.

Comments within code segments can be marked with double dashes (--) or double slashes (//), terminated by
an end-of-line character [a return (enter), line-feed, or any combination of the two].

a = 5; -- This is an inline comment
b = 7 // This is also an inline comment

The end-code '> and the begin-code <' markers can be used in the middle of code sections, to write several
consecutive lines of comment.

Example

Import the basic test environment for the CPU...
<'
import cpu_test_env
'>
This particular test requires the code that bypasses bug#72 as
well as the constraints that focus on the immediate instructions.

<'
import bypass_bug72;
import cpu_test0012
'>
Copyright © 2015 IEEE. All rights reserved. 17

IEEE
Std 1647-2015 IEEE STANDARD
White space is one or more consecutive white space characters, including a space, tab, return (enter), or line-
feed.

4.1.4 Literals and constants

Literals are numeric, character, and string values specified literally in e. Operators can be applied to literals
to create compound expressions. The following categories of literals and constants are supported in e:

— Unsized numbers

— Sized numbers

— Multi-value logic (MVL) literals

— Predefined constants

— Literal string

— Literal character

4.1.4.1 Unsized numbers

Unsized numbers are always positive and zero-extended, unless preceded by a hyphen (-). Decimal
constants are treated as signed integers and have a default size of 32 bits. Binary, hex, and octal constants are
treated as unsigned integers, unless preceded by a hyphen (-) to indicate a negative number, and have a
default size of 32 bits. If the number cannot be represented in 32 bits, then it is represented as an unbounded
integer (see 5.1.3).

The notations shown in Table 3 can be used to represent unsized numbers.

Table 3—Representing unsized numbers in expressions

Notation Legal characters Examples

Decimal integer Any combination of 0–9, possibly preceded by a
hyphen (-) for negative numbers. An underscore (_)
can be added anywhere in the number for readability.

12
55_32
-764

Binary integer Any combination of 0–1, preceded by 0b. An
underscore (_) can be added anywhere in the number
for readability.

0b100111
0b1100_0101

Hexadecimal integer Any combination of 0–9 and a–f, preceded by 0x. An
underscore (_) can be added anywhere in the number
for readability.

0xff
0x99_aa_bb_cc

Octal integer Any combination of 0–7, preceded by 0o. An
underscore (_) can be added anywhere in the number
for readability.

0o66_123

K (multiply by 1024) A decimal integer followed by a K or k. For example,
32K = 32 768.

32K
32k
128k

M (multiply by 1024*1024) A decimal integer followed by an M or m. For
example, 2m = 2 097 152.

1m
4m
4M
18 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.1.4.2 Sized numbers

A sized number is a notation that defines a literal with a specific size in bits. The syntax is:

width-number ' (b|o|d|h|x) value-number

where width-number is a decimal integer specifying the width of the literal in bits, and value-number is the
value of the literal, specified as one of four radixes, as shown in Table 4.

If value-number is more than the specified size in bits, its most significant bits (MSBs) are ignored. If value-
number is less that the specified size, it is padded on the left with zeros (0).

Sized numbers cannot contain M or K multipliers.

4.1.4.3 MVL literals

An MVL literal is based on the mvl type, which is a predefined enumerated scalar type in e. The mvl type is
defined as:

type mvl : [MVL_U,MVL_X,MVL_0,MVL_1,MVL_Z,MVL_W,MVL_L,MVL_H,MVL_N]

NOTE—MVL_N represents “don’t care.” 10

If a port is defined as type list of mvl, values can be assigned by using the $ access operator, e.g.,

sig$ = {MVL_X; MVL_X; MVL_X}

If the port is a numeric type (uint, int, and so on), mvl values can be assigned by using the predefined MVL
methods for ports, e.g.,

sig.put_mvl_list({MVL_X; MVL_X; MVL_X})

An MVL literal, which is a literal of type list of mvl, provides a more convenient syntax for assigning MVL
values. The syntax of an MVL literal is:

width-number ' (b|o|h) value-number

Table 4—Radix specification characters

Radix Represented by Example

Binary A leading 'b or 'B. An underscore (_) can be added
anywhere in the number for readability.

8'b1100_1010

Octal A leading 'o or 'O. An underscore (_) can be added
anywhere in the number for readability.

6'o45

Decimal A leading 'd or 'D. An underscore (_) can be added
anywhere in the number for readability.

16'd63453

Hexadecimal A leading 'h or 'H or 'x or 'X. An underscore (_) can be
added anywhere in the number for readability.

32'h12ff_ab04

10Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.
Copyright © 2015 IEEE. All rights reserved. 19

IEEE
Std 1647-2015 IEEE STANDARD
where width-number is an unsigned decimal integer specifying the size of the list and value-number is any
sequence of digits that are legal for the base, plus x, z, u, l, h, w, and n, as shown in Table 5.

A value-number can not be defined by using a decimal base.

4.1.4.3.1 Syntax rules

a) A single digit represents four bits in hexadecimal base, three bits in octal base, and one bit in binary
base. Similarly, the letters x, z, u, l, h, w, and n represent four identical bits (for hexadecimal), three
identical bits (for octal), or one bit (for binary). For example, 8’h1x is equivalent to
8’b0001xxxx.

b) If the size of the value is smaller than the width, the value is padded to the left. An MSB of 0 or 1
causes zero-padding (0). If the MSB of the literal is x, z, u, l, h, w, or n, that mvl value is used for
padding.

c) If the size of the value is larger than the size specified for the list, the value is truncated, leaving the
least significant bit (LSB) of the literal.

d) An underscore can be used for breaking up long numbers to enhance readability. It is legal inside the
size and inside the value. It is not legal at the beginning of the literal, between the size and the single
quote ('), between the base and the value, and between the single quote (') and the base.

e) Decimal literals are not supported.

f) White space shall not be used as a separator between the width number and base or between the base
and the value.

g) The base and the value are not case-sensitive.

h) Size and base values need to be specified.

i) In the context of a Verilog comparison operator (!== or ===) or HDL tick access (e.g., 'data' =
32'bx), only the 4-value subset is supported (0, 1, u, or x).

j) Verilog simulators support only the 4-value logic subset.

k) An MVL literal of size 1 is of type list of mvl that has one element. It is not of type mvl. Thus, an
MVL literal cannot be assigned to a variable or field of type mvl.

l) The type-casting operations as_a() and is a do not propagate the context.

Table 5—MVL values

Value Definition

U Uninitialized

X Forcing unknown

0 Forcing 0

1 Forcing 1

Z High impedance

W Weak unknown

L Weak 0

H Weak 1

N Don't care
20 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
m) If the type of the expression is numeric (based on its context) or if the type cannot be extracted from
the context, the default type remains uint.

n) Syntactically, the same expression can be a numeric type or MVL literal. For example, 1’b1 can
represent the number one (1) or a list of MVL with the value {MVL_1}.

4.1.4.3.2 Examples

32'hffffxxxx
32'HFFFFXXXX
//16'_b1100uuuuu --illegal because (_) is between (‘) and base
19'oL0001
14'D123 -- illegal because decimal literals are not supported
64'bz_1111_0000_1111_0000

4.1.4.3.3 Considerations

A literal is considered to be an MVL literal when it is:

— assigned to a list of mvl, e.g., var v2: list of mvl = 16'b1;

— passed to a method that receives a list of mvl

— assigned to a port of type list of mvl using the $ operator

— compared to list of mvl, e.g., check that v == 4'buuuu;

— compared using the === and !== operators, e.g., check that 's' === 4'bz;

— used in an HDL tick access assignment, e.g., 's' = 8'bx1z;

— an argument for a Verilog task, e.g., 'task1'(8'h1x)

— used in a list operation, e.g., var l: list of mvl; l.add(32'b0)

In those contexts where both numeral literals and MVL literals can be accepted, a numeric literal shall be
inferred, unless the literal contains the characters x, z, u, l, h, w, and n.

4.1.4.4 Predefined constants

The set of e predefined constants is shown in Table 6.

Table 6—Predefined constants

Constant Description

TRUE Used for Boolean variables and expressions.

FALSE Used for Boolean variables and expressions.

NULL Used for structs, this specifies a NULL pointer; within character strings, this specifies an
empty string.

UNDEF UNDEF signifies NONE where an index is expected. UNDEF has the value -1.

MAX_INT Represents the largest 32-bit int (231–1)

MIN_INT Represents the smallest 32-bit int (–231).

MAX_UINT Represents the largest 32-bit uint (232–1).
Copyright © 2015 IEEE. All rights reserved. 21

IEEE
Std 1647-2015 IEEE STANDARD
4.1.4.5 Literal string

A literal string is a sequence of zero or more ASCII characters enclosed by double quotes (" "). The escape
sequences shown in Table 7 can also be used to specify special characters, e.g., a tab (\t).

Any combination of escape characters that is not listed in Table 7 have no special meaning. In this case, the
backslash (\) character (and all the preceding characters) appear in the literal string.

4.1.4.6 Literal character

A literal character is a single ASCII character, enclosed in quotation marks and preceded by 0c. This
expression evaluates to the integer value that represents this character. For example, the following literal
character is the single ASCII character a and evaluates to 0x0061:

var u: uint(bytes:2) = 0c"a"

Without explicit casting, literal characters can only be assigned to integers or unsigned integers.

4.1.5 Names and keywords

The following subclauses describe the legal syntax for names.

4.1.5.1 Legal e names

User-defined names in e code consist of a case-sensitive combination of any length, containing the
characters A–Z, a-z, 0-9, and underscore (_). They shall begin with a letter. A field name, however, can
begin with an underscore (_); this makes the field private to the module (the e file in which it appears).

4.1.5.2 e file names

An e module name (a file name) can contain characters only from the Portable Filename Character Set (see
ISO/IEC/IEEE 9945), except that only one dot (.) is allowed in a file name.

4.1.5.3 e keywords

The keywords listed in Table 8 are the components of the e language. Some of the terms are keywords only
when used together with other terms, such as key in list(key:key) or before in keep gen x before y.

Table 7—Escape sequences in strings

Escape sequence Meaning

\n Newline

\t Tab

\f Form-feed

\” Quote

\\ Backslash

\r Return (enter)
22 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.1.5.4 Preprocessor names

e preprocessor names (declared by #define statements) consist of an identifier, possibly preceded by a
backtick (`). A preprocessor name with backtick is also called a Verilog-style define. See 21.3.

Table 8—Keywords

abort all of and as as_a

assert assume attribute before bits

break buffer_port bytes C export case

change check compute computed continue

const cover cross cycle default

define delay detach do down to

each edges else emit empty

event exclusive_start exec expect export

extend external fail fall file

final first of for force from

gen if ifdef ifndef in

index inout interface_port is is a

is also is an is C routine is empty is first

is instance is not a is not an is only is undefined

it item keep keeping key

like line list matching me

method_port method_type new none not

not in now of on only

or out package pass prefix

prev print private protected range

ranges release repeat return reverse

rise routine select set simple_port

soft start state machine step stop

struct suffix sync template that

then tlm_initator_socket tlm_target_socket to transition

true try type undefined unit

until using var when while

with
Copyright © 2015 IEEE. All rights reserved. 23

IEEE
Std 1647-2015 IEEE STANDARD
4.1.5.5 String matching pseudo-variables

A successful string match results in assigning the local pseudo-variables $1 to $27 with the substrings
corresponding to the non-blank meta-characters present in the pattern. For more details, see 4.11.

4.2 Syntactic elements

Every e construct belongs to a construct category that determines how the construct can be used. There are
four categories of e constructs, as shown in Table 9.

The syntax hierarchy roughly corresponds to the level of indentation shown, as follows:

statements

struct members

actions

expressions

4.2.1 Statements

Statements are the top-level syntactic constructs of the e language and perform the functions related to
extending the e language and interface with the simulator. Statements are valid within the begin-code <' and
end-code '> markers. They can extend over several lines and are separated by semicolons (;). For example,
the following code segment has two statements:

<'

import bypass_bug72;

struct foo{}

'>

In general, within a given e module, statements can appear in any order, except package statements shall
appear first, then import statements, and then all other statements. Preprocessor directives—including any
defines (#ifdef, #ifndef, define, or define as)—may precede import statements.

Table 10 shows the complete list of e statements.

Table 9—Construct categories

Category Description

Statements Statements are top-level constructs and are valid within the begin-code <' and end-
code '> markers. See 4.2.1 for a list and brief description of e statements.

Struct members Struct members are second-level constructs and are valid only within a struct
definition. See 4.2.2 for a list and brief description of e struct members.

Actions Actions are third-level constructs and are valid only when associated with a struct
member, such as a method or an event. See 4.2.3 for a list and brief description of
e actions.

Expressions Expressions are lower-level constructs that can be used only within another
e construct. See 4.2.4 for a list and brief description of e expressions.
24 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.2.2 Struct members

Struct member declarations are second-level syntactic constructs of the e language that associate the entities
of various kinds with the enclosing struct. Struct members can only appear inside a struct type definition
statement (see 6.2). They can extend over several lines and are separated by semicolons (;). For example,
the following struct packet has two struct members, len and data:

struct packet {

%len : int;

%data[len] : list of byte

}

A struct can contain multiple struct members of any type in any order. Table 11 gives a brief description of
each e struct member.

Table 10—Statements

Statement Description

struct Defines a new data structure (see 6.2).

type Defines an enumerated data type or scalar subtype (see 5.7.1, 5.7.2, or 5.7.3).

extend Modifies a previously defined struct or type (see 5.7.4 or 6.3).

define as Extends the e language by defining new statements, struct members, actions, or
expressions (see 15.2).

package Associates a module with a package (see 22.1).

#define, #ifdef,
#ifndef, #undef

Place conditions on the e parser (see Clause 21).

import Declares dependency between two e modules (see 21.1.1).

unit Defines a data struct associated with an HDL component or block (see 7.2.1).

C routine,
C export

Allows C code to be called from e (see 17.4).

Table 11—Struct members

Declaration Description

Field declaration Defines a data entity that is a member of the enclosing struct and has an explicit data
type.

Method declaration Defines an operational procedure that can manipulate the fields of the enclosing struct
and access runtime values in the DUT.

Subtype declaration Defines an instance of the parent struct in which specific struct members have
particular values or behavior.

Constraint declaration Influences the distribution of values generated for data entities and the order in which
values are generated.
Copyright © 2015 IEEE. All rights reserved. 25

IEEE
Std 1647-2015 IEEE STANDARD
4.2.3 Actions

e actions are lower-level procedural constructs that can be used in combination to manipulate the fields of a
struct or exchange data with the DUT. Actions can extend over several lines and are separated by
semicolons. An action block is a list of actions separated by semicolons and enclosed in braces ({}).

Actions shall be associated with a struct member, specifically a method or an event, or issued interactively
as commands at the command line.

The preprocessor commands #ifdef and #ifndef can be used as actions to control parsing (see 21.2).

Example

Here is an example of an action [an invocation of a method, transmit()] associated with an event,
xmit_ready. Another action, out() is associated with the transmit() method.

struct packet {
 event xmit_ready is rise(’top.ready’);

 on xmit_ready {
 transmit()
 };

 transmit() is {
 out("transmitting packet...")
 }
}

The following subclauses highlight particular types of actions.

Coverage declaration Defines functional verification goals and collects data on how well the verification is
meeting those goals.

Temporal declaration Defines e events and their associated actions.

#ifdef, #ifndef Place conditions on the e parser (see 21.2).

Table 11—Struct members (continued)

Declaration Description
26 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.2.3.1 Creating or modifying variables

4.2.3.2 Executing actions conditionally

4.2.3.3 Executing actions iteratively

Action Description

var Defines a local variable (see 18.2).

= Assigns or samples values of fields, local variables, or HDL objects (see 18.3).

op= Performs a complex assignment (such as add and assign, or shift and assign) of a field,
local variable, or HDL object (see 18.4).

force Forces an HDL net to a specified value, overriding the value driven from the DUT
(see 23.1).

release Releases the HDL net that was previously forced (see 23.2).

Action Description

if then else Executes an action block if a condition is met or a different action block if it is not (see
20.1.1).

case labeled-case-item Executes one action block out of multiple action blocks depending on the value of a
single expression (see 20.1.2).

case bool-case-item Evaluates a list of Boolean expressions and executes the action block associated with the
first expression that is TRUE (see 20.1.3).

Action Description

while Executes an action block repeatedly until a Boolean expression becomes FALSE
(see 20.2.1).

repeat until Executes an action block repeatedly until a Boolean expression becomes TRUE
(see 20.2.2).

for each in For each item in a list that is a specified type, executes an action block (see 20.2.3).

for each in set For each item in a set that is a specified type, executes an action block (see 20.2.5).

for from to Executes an action block for a specified number of times (see 20.2.5).

for Executes an action block for a specified number of times (see 20.2.6).

for each line in file Executes an action block for each line in a file (see 20.3.1).

for each file matching Executes an action block for each file in the search path (see 20.3.2).
Copyright © 2015 IEEE. All rights reserved. 27

IEEE
Std 1647-2015 IEEE STANDARD
4.2.3.4 Controlling program flow

4.2.3.5 Invoking methods and routines

4.2.3.6 Emitting an event

4.2.3.7 Performing time-consuming actions

Action Description

break Breaks the execution of the enclosing loop (see 20.4.1).

continue Stops execution of the enclosing loop and continues with the next iteration of the same
loop (see 20.4.2).

Action Description

method() Calls a regular method (see 17.2.3).

tcm() Calls a TCM (see 17.2.1).

start tcm() Launches a TCM as a new thread (a parallel process) (see 17.2.2).

calling predefined
routines

Calls an e predefined routine (see Clause 28).

compute method() or
tcm()

Calls a value-returning method without using the value returned (see 17.2.4).

return Returns immediately from the current method to the method that called it (see 17.2.5).

Action Description

emit Causes a named event to occur (see 11.1.3.2).

Action Description

sync Suspends execution of the current TCM until the TE succeeds (see 13.1.2).

wait Suspends execution of the current TCM until a given TE succeeds (see 13.1.3).

all of Executes multiple action blocks concurrently, as separate branches of a fork. The action
following the all of action is reached only when all branches of the all of have been fully
executed (see 13.2.1).

first of Executes multiple action blocks concurrently, as separate branches of a fork. The action
following the first of action is reached when any of the branches in the first of has been
fully executed. (see 13.2.2).

state machine action Defines a state machine (see 13.3.2).
28 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.2.3.8 Generating data item

4.2.3.9 Detecting and handling errors

4.2.3.10 Printing

4.2.4 Expressions

Expressions are constructs that combine operands and operators to represent a value. The resulting value is a
function of the values of the operands and the semantic meaning of the operators.

A few e expressions, such as expressions that restrict the range of valid values of a variable, evaluate to
constants at compile time. More typically, expressions are evaluated at runtime, resolved to a value of some
type, and assigned to a variable or field of that type. Strict type checking is enforced in e.

Each expression shall contain at least one operand, which can be the following:

— Literal value

— Constant

— e entity, such as a method, field, list, or struct

— HDL entity, such as a signal

A compound expression applies one or more operators to one or more operands.

Action Description

gen Generates a value for an item, while considering all relevant constraints (see 10.5.1).

Action Description

expect Checks the DUT for correct temporal behavior (see 11.4).

check that Checks the DUT for correct data values (see 16.2.1).

dut_error() Issues a DUT error message (see 16.2.2).

dut_errorf() Issues a formatted DUT error message (see 16.2.3).

assert Checks the verification environment for correct behavior (see 16.4).

warning() Issues a warning message (see 16.3.1).

error() Issues an error message when a user error is detected and halts all method execution
(see 16.3.2).

fatal() Issues an error message, halts all activities, and exits immediately (see 16.3.3).

try Catches errors and exceptions (see 16.3.4).

Action Description

print Prints e expressions (see 16.1).
Copyright © 2015 IEEE. All rights reserved. 29

IEEE
Std 1647-2015 IEEE STANDARD
4.3 Struct hierarchy and name resolution

The following subclauses explain the struct hierarchy of an e program and how to reference entities within
the program.

4.3.1 Struct hierarchy

Because structs can be instantiated as the fields of other structs, a typical e program has many levels of
hierarchy. Every e program contains several predefined structs, as well as user-defined structs. Figure 2
shows the partial hierarchy of a typical e program. The predefined structs are shown in bold.

4.3.1.1 Global struct

The predefined struct global is the root of all e structs. All predefined structs and most predefined methods
are part of the global struct. Verification environments shall be nested under sys. Extensions to the global
struct shall be reserved for the implementation of the e runtime engine.

The global struct shall not be extended.

4.3.1.2 Files struct

The files struct provides predefined methods for manipulating files.

4.3.1.3 Packing struct

Packing and unpacking are controlled by a predefined struct under global named packing. Packing and
unpacking prepare e data sent to or received from the DUT. Underneath the packing struct are five
predefined structs. To create a packing order, copy one of these structs and modify at least one of its
parameters.

4.3.1.4 Sys struct

The system struct is instantiated under global as sys. All fields and structs in sys not marked by an
exclamation point (!) are generated automatically during the generate_test phase. Any structs or fields
outside of sys that need generation shall be generated explicitly.

global

syspackingfiles session

switch

ctrl_stub port_stub port_stub2 port_stub3 port_stub4

sender listener

Figure 2—Diagram of struct hierarchy
30 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Time is stored in a 64-bit integer field named sys.time. When e is linked with an event-driven simulator,
sys.time shows the current simulator time. When e is linked with a cycle-based simulator, sys.time shows
the current simulator cycle. sys.time is influenced by the current timescale.

4.3.1.5 Session struct

The session struct holds the status of the current simulator session, related information, and events. Fields in
the session struct that are of general interest include the following:

— session.user_time

— session.system_time

— session.memory

— session.check_ok

— session.events

The first three fields listed help determine the time and memory used in a particular session. The next two
describe the check_ok and events fields.

4.3.1.5.1 session.check_ok

This field is of Boolean type and is set to TRUE after every check, if the check succeeds. Otherwise, it is set
to FALSE. This field permits behavior checks without the need to duplicate the if clause. For example:

post_generate() is also {
 check that mlist.size() > 0 else dut_error("Empty list");
 if session.check_ok then {
 check that mlist[0] == 0xa else dut_error("Error at index 0")
 }
}

4.3.1.5.2 session.events

This field contains the names of all user-defined events that occurred during the test and how many times
each user-defined event occurred. The name of the event is preceded by the struct type and a double
underscore, e.g., struct_type__event_name.

If an event is defined in a when subtype, the name of the event in the session.events field is prefixed by the
subtype and a double underscore, e.g., subtype__struct_type__event_name.

4.3.2 Referencing e entities

The following subclauses describe how to reference e entities.

4.3.2.1 Structs and fields

Any user-defined struct can be instantiated as a field of any struct. Thus, every instantiated struct and its
fields have a place in the struct hierarchy and their names include a path reflecting that place. The following
considerations also apply:

— The name of the global struct can be omitted from the path to a field or a struct.

— The name of the enclosing struct is not included in the path if the current struct is the enclosing
struct.
Copyright © 2015 IEEE. All rights reserved. 31

IEEE
Std 1647-2015 IEEE STANDARD
— In certain contexts, the implicit variables me or it can be used in the path to refer to the enclosing
struct. See 4.3.3 for more information.

— If the path begins with a period (.), the path is assumed to start with the implicit variable it. See also
4.16.3.

— A special syntax is required to reference struct subtypes and fields under struct subtypes (see 5.1.6).

4.3.2.2 Naming and referencing methods and routines

The names of all methods and routines shall be followed immediately by parentheses when a method is
defined or called. The predefined methods of any_struct, such as pre_generate() or init(), and all user-
defined methods, are associated with a particular struct. Thus, like structs and fields, every user-defined
method has a place in the struct hierarchy and its name includes a path reflecting that place. User-defined
routines, like predefined routines, are associated with the global struct. Thus, the term global can be omitted
from a path when the context is unambiguous (see 4.3.4). See also Clause 26, Clause 27, Clause 28, and
Clause 29.

Example 1

This example illustrates the names used to call user-defined and predefined methods.

<’
struct meth {
 %size : int;
 %taken : int;

 get_free(size: int, taken: int): int is inline {
 result = size - taken
 }
};

extend sys {
 !area : int;
 mi : meth;

 post_generate() is also {
 sys.area = sys.mi.get_free(sys.mi.size, sys.mi.taken);
 print sys.area
 }
}
’>

Some predefined methods, such as the methods used to manipulate lists, are pseudo-methods. They are not
associated with a particular struct. These methods are called by appending their name to the desired
expression.

Example 2

Here is an example of how to call the list pseudo-method .size().

<’
struct meth {
 %data : list of int;
 keep data.size() <= 10
}
’>
32 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.3.2.3 Enumerated type values

Names for enumerated type values shall be unique within each type. For example, defining a type as
my_type: [a, a, b] results in an error because the name a is not unique.

However, the same name can be used in more than one enumerated type. For example, the following two
enumerated types define the same value names:

type destination : [a, b, c, d];
type source : [a, b, c, d]

To refer to an enumerated type value in a struct where no values are shared between the enumerated types,
just use the value name. In structs where more than one enumerated field can have the same value, the
following syntax shall be used to refer to the value when the type is not clear from the context:

type_name'value

Example

In the following keep constraint, it is clear that the type of dest is destination, so the value name b
can unambiguously be used by itself:

type destination : [a, b, c, d];
type source : [a, b, c, d];
struct packet {
 dest : destination;
 keep me.dest == b

However, because the type of the following variable tmp is not specified, it is necessary to use the full name
for the enumerated type value destination'b:

type destination : [a, b, c, d];
type source : [a, b, e, f];
...
m() is {
 var tmp := destination’b
}

For more about var declaration using type inference, see 18.2.

4.3.3 Implicit variables

Many e constructs create implicit variables. The scope of these implicit variables is the construct that creates
them. Implicit variables can be used in pathnames when referencing e entities.

Except for the result variable (see 4.3.3.3), values cannot be assigned to implicit variables. An assignment
such as me = packet shall generate an error.

4.3.3.1 it

The implicit variable it always refers to the current item. The following constructs create the implicit
variable it:
Copyright © 2015 IEEE. All rights reserved. 33

IEEE
Std 1647-2015 IEEE STANDARD
— list pseudo-methods (see Clause 26)

— for each (see 20.2.3)

— for each in set (see 20.2.4)

— gen … keeping (see 10.5.1)

— keep for each (see 10.2.13.3.7)

— keep .is_all_iterations() (see 10.4.4)

— new with (see 4.16.2)

— list with key declaration (see 26.7.1)

Wherever an it.field can be used, the shorthand notation .field can be used in its place. For example,
it.len can be abbreviated to .len, with a leading dot (.). In many places it is legal to designate and use
a name other than the implicit it.

4.3.3.2 me

The implicit variable me refers to the current struct and can be used anywhere in the struct. When referring
to a field from another member of the same struct, the me. can be omitted.

4.3.3.3 result

The result variable refers to an implicit variable of the method’s returned type. It can be assigned within the
method body either implicitly or by using the return action (see 17.2.5). If no return action is encountered,
result is returned by default. A method that does not have a returned type does not have a result implicit
variable.

The following method returns the sum of a and b:

sum(a: int, b: int): int is {
 result = a + b
}

4.3.3.4 index

The index variable is a non-negative integer that holds the current index of the item referred to by it. The
scope of the index variable is limited to the action block. The following constructs create the implicit
variable index:

— list pseudo-methods (see Clause 26)

— for each (see 20.2.3)

— keep for each (see 10.2.13.3.7)

Example

The following loop assigns 5 to the len field of every item in the packets list and also assigns the index
value of each item to its id field:

for each in packets do {
 packets[index].len = 5;
 .id = index
}

34 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.3.3.5 prev

The following constraints create the implicit variable prev:

— keep for each (see 10.2.13.3.7)

— item … using also (see 14.6)

In a keep for each context, prev refers to the previous item in a list, unless another name is specified. Using
prev on the first item of the list shall cause an error.

The following shows a sample use of prev:

keep for each in lof_packet {
 (index > 0) => it.size == prev.size + 1
}

In an item … using also context, extending or changing a when, illegal, or ignore option automatically
creates the special variable named prev. This variable holds the results of all previous when, illegal, or
ignore options, so prev can be used as a shorthand to assert those previous options combined with a new
option value.

Example

If an original coverage item definition has when = size == 5
and an extension has using also when = (prev and size <= 10),

the result is the same as when = (size == 5 and size <= 10).

4.3.4 Name resolution rules

The following subclauses describe how names are resolved, depending on whether they include a path. A
path is a sequence of names or expressions (returning a string), concatenated with a dot (.).

4.3.4.1 Names that include a path

To resolve names that include a path, an entity of that name is searched for at the specified scope. An error
message shall be issued if the entity is not found. If the path begins with a period (.), the path is assumed to
begin with the implicit variable it.

4.3.4.2 Names that do not include a path

To resolve names that do not include a path, the following checks are performed, in order. The program
stops checking once the named object has been identified.

a) Check whether the name is matched by a macro. If there are two matching macro definitions, choose
the most recent one.

b) Check whether the name is one of the predefined constants. It shall not be the same as one of the
predefined constants.

c) Check whether the name is a value of an enumerated type. The value shall uniquely identify an
enumerated type.

d) Check whether the name identifies a variable used in the current action block. If not, and if the
action is nested, check whether the name identifies a variable in the enclosing action block. If not,
Copyright © 2015 IEEE. All rights reserved. 35

IEEE
Std 1647-2015 IEEE STANDARD
this search continues from the immediately enclosing action block outward to the boundary of the
method.

e) Check whether the name identifies a member of the current struct:

1) If the expression is inside a struct definition, the current struct is the enclosing struct.

2) If the expression is inside a method, the current struct is the struct to which the method belongs.

f) Check whether the name identifies a member of the global struct.

g) If the name is still unresolved, an error message shall be issued.

4.4 Ranges

Ranges are constructs that can be used in specific contexts to specify a range of valid values:

— set literals

— define scalar subtypes

— field declarations to specify constraints on the generation

— coverage declarations

— case action

— bit-slicing

— some expressions

Use the following syntax to restrict the range of valid values:

[range, ...]

where range is an expression or a range of expressions in the form:

low-value..high-value

Example

u : uint[5..7, 15]

NOTES

—In some of the above contexts, e.g., in scalar subtype definitions, a range must only contain constant expressions. In
other contexts a range may contain any expressions, not necessarily constant expressions; in those contexts they denote
expressions of the set type. Nevertheless, enumerated type ranges must always contain constant expressions only.

—The value items of an enumerated type are ordered according to their integer values rather than their respective order
in the type definition, for the purpose of determining range membership. So, for example, if type “color” is defined thus:

type color: [red =0, green =2, blue =1];

and variable “c” is defined thus:

var c: color[red..green];

then the value “blue” belongs to the generative range of “c.”

4.5 Operator precedence

Table 12 summarizes all e operators in order of precedence. The precedence is the same as in the
C language, with the exception of operators that do not exist in C. To change the order of computation, place
parentheses around the first expression to compute.
36 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
NOTE—Every operation in e is performed within the context of types and is carried out with 32-bit precision or
unbounded precision (see Clause 5).

4.6 Evaluation order of expressions

In e, and (&&) and or (||) use left-to-right lazy evaluation. Consider the following statement:

bool_1 = foo(x) && bar(x)

Table 12—Operators in order of precedence

Operator Operation type

[] List indexing (subscripting) (see 4.12.1)

[..] List slicing (see 4.12.3)

[:] Bit slicing (selection) (see 4.12.2)

f(...) Method and routine calls (see 4.2.3.5)

Dot operator (.) Field selection (see 4.16.3)

~, ! (not) Bitwise not, Boolean not (see 4.7.1, 4.8.1)

{... ; ...} List concatenation (see 4.12.4)

%{... , ...} Bit concatenation (see 4.12.5)

Unary + – Unary plus, minus (see 4.9.1)

*, /, % Binary multiply, divide, modulus (see 4.9.2)

+, – Binary add and subtract (see 4.9.2)

>> << Shift right, shift left (see 4.7.3)

< <= > >= Comparison (see 4.10.1)

is [not] a Subtype identification (see 4.16.1)

== != Equality, inequality (see 4.10.2)

=== !== Verilog four-state comparison (see 4.10.3)

~ !~ String matching (see 4.10.4)

in Range list operator (see 4.10.5)

& Bitwise and (see 4.7.2)

| Bitwise or (see 4.7.2)

^ Bitwise xor (see 4.7.2)

&& (and) Boolean and (see 4.8.2)

|| (or) Boolean or (see 4.8.3)

=> Boolean implication (see 4.8.4)

Conditional
operator (? :)

Conditional operator (a ? b : c means “if a then b else c”) (see 4.16.5)
Copyright © 2015 IEEE. All rights reserved. 37

IEEE
Std 1647-2015 IEEE STANDARD
If foo(x) returns TRUE, then bar(x) is evaluated as well, to determine whether bool_1 gets TRUE. If,
however, foo(x) returns FALSE, then bool_1 gets FALSE immediately and bar(x) is not executed.
The argument to bar(x) is not even evaluated.

Expressions containing || are likewise evaluated in a lazy fashion: If the sub-expression on the left of the or
operator is TRUE, then the sub-expression on the right is ignored. Left-to-right evaluation is only required
for the operators && or ||.

Now, consider the following statement:

bool_2 = foo(x) + bar(x)

If foo(x) or bar(x) has side effects [i.e., if foo(x) changes the value of x or bar(x) changes the
value of x], then the results of foo(x) + bar(x) might depend on which of the two sub-expressions,
foo(x) or bar(x), is evaluated first, so the results are not predictable based on the e language definition.

NOTE— Standard-compliant implementations may guarantee an evaluation order to assure predictable results.

4.7 Bitwise operators

The following subclauses describe the e bitwise operators. See also 23.3 and 28.4.

4.7.1 ~

This sets each 1 bit of an expression to 0 and each 0 bit to 1. Each bit of the resulting expression is the
opposite of the same bit in the original expression. When the type and bit-size of an HDL signal cannot be
determined from the context, the expression is automatically cast as an unsigned 32-bit integer.

Syntax example:

print ~x using hex;

Purpose Unary bitwise negation

Category Expression

Syntax ~exp

Parameters exp A numeric expression or an HDL pathname.
38 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.7.2 & | ^

This performs an AND, OR, or XOR of both operands, bit-by-bit. Operands that are of compatible types, but
different lengths, shall be converted to equal types (see 5.5).

Syntax example:

print (x & y)

4.7.3 >> <<

This shifts each bit of the first expression to the right or to the left of the number of bits specified by the
second expression.

— In a shift-right operation, the shifted bits on the right are lost, while on the left they are filled with 1,
if the first expression is a negative integer, or 0 in all other cases.

— In a shift-left operation, the shifted bits on the left are lost, while on the right they are filled with 0.

If the bit-size of the second expression is greater than 32 bits, it is first truncated to 32 bits and then the shift
is performed. Truncation removes the MSBs.

Shifting beyond the operand’s type (size in bits) is undefined.

Purpose Binary bitwise operations

Category Expression

Syntax exp1 operator exp2

Parameters

exp1, exp2 A numeric expression or an HDL pathname.

operator operator is one of the following:

& performs an AND operation.

| performs an OR operation.

^ performs an XOR operation.

Purpose Shift bits left or right

Category Expression

Syntax exp1 operator exp2

Parameters

exp1 A numeric expression or an HDL pathname.

operator operator is one of the following:

<< performs a shift-left operation.

>> performs a shift-right operation.

exp2 A numeric expression.
Copyright © 2015 IEEE. All rights reserved. 39

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

outf("%x\n", x >> 4)

4.8 Boolean operators

The following subclauses describe the e Boolean operators. See also 23.3.

4.8.1 ! (not)

This returns FALSE when the expression evaluates to TRUE and returns TRUE when the expression
evaluates to FALSE.

Syntax example:

out(!(3 > 2))

4.8.2 && (and)

This returns TRUE if both expressions evaluate to TRUE; otherwise, it returns FALSE.

Syntax example:

if (2 > 1) and (3 > 2) then {
 out("3 > 2 > 1")
}

Purpose Boolean not

Category Expression

Syntax !exp
not exp

Parameters exp A Boolean expression or an HDL pathname.

Purpose Boolean and

Category Expression

Syntax exp1 && exp2
exp1 and exp2

Parameters exp1, exp2 A Boolean expression or an HDL pathname.
40 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.8.3 || (or)

This returns TRUE if one or both expressions evaluate to TRUE; otherwise, it returns FALSE.

Syntax example:

if FALSE || (’top.a’ > 1) then {
 out("’top.a’ > 1")
}

4.8.4 =>

This returns TRUE when the first expression is FALSE or when the second expression is TRUE. This
construct is the same as:

(not exp1) or (exp2)

See also 10.4.7.

Syntax example:

out((2 > 1) => (3 > 2))

Purpose Boolean or

Category Expression

Syntax exp1 || exp2
exp1 or exp2

Parameters exp1, exp2 A Boolean expression or an HDL pathname.

Purpose Boolean implication

Category Expression

Syntax exp1 => exp2

Parameters exp1, exp2 A Boolean expression.
Copyright © 2015 IEEE. All rights reserved. 41

IEEE
Std 1647-2015 IEEE STANDARD
4.8.5 now

This evaluates to TRUE if the event occurs in the same cycle where the now expression is encountered, but
before the now expression is encountered. However, if the event is consumed later during the same cycle,
the now expression changes to FALSE, i.e., the event can be missed if it succeeds after the expression is
encountered. See also Clause 11.

Syntax example:

if now @sys.tx_set then {
 out("sys.tx_set occurred")
}

4.9 Arithmetic operators

The following subclauses describe the e arithmetic operators (see also 23.1).

4.9.1 Unary + –

This performs a unary plus or minus on the expression. The minus operation changes a positive integer to a
negative one and a negative integer to a positive one. The plus operation leaves the expression unchanged.

Syntax example:

out(5, " == ", +5)

Purpose Boolean event check

Category Boolean expression

Syntax now @event-name

Parameters event-name The event to check.

Purpose Unary plus and minus

Category Expression

Syntax
–exp
+exp

Parameters exp A numeric expression or an HDL pathname.
42 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.9.2 + – * / %

This performs binary arithmetic operations (see also 28.2).

Syntax example:

out(10 + 5)

4.10 Comparison operators

The following subclauses describe the e comparison operators (see also 23.3).

4.10.1 < <= > >=

This compares two expressions.

Purpose Binary arithmetic

Category Expression

Syntax exp1 operator exp2

Parameters

exp1, exp2 A numeric expression or an HDL pathname.

operator operator is one of the following:

+ performs addition.

– performs subtraction.

* performs multiplication.

/ performs division and returns the quotient, rounded down.

% performs division and returns the remainder.

Purpose Comparison of values

Category Expression

Syntax exp1 operator exp2

Parameters

exp1, exp2 A numeric expression or an HDL pathname.

operator operator is one of the following:

< returns TRUE if the first expression is smaller than the second
expression.

<= returns TRUE if the first expression is not larger than the second
expression.

> returns TRUE if the first expression is larger than the second
expression.

>= returns TRUE if the first expression is not smaller than the
second expression.
Copyright © 2015 IEEE. All rights reserved. 43

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

print 'top.a' >= 2

4.10.2 == !=

The equality operators compare the items and return a Boolean result. All types of items are compared by
value, except for structs that are compared by address. The following considerations also apply:

— Enumerated type values can be compared as long as they are of the same type.

— Do not use these operators to compare a string to a regular expression. Use the ~ or !~ operator
instead.

— See 4.10.3 for a description of using this operator with HDL pathnames.

Comparison methods for the various data types are listed in Table 13.

Syntax example:

print lob1 == lob2;
print p1 != p2

Purpose Equality of values

Category Expression

Syntax exp1 operator exp2

Parameters

exp1, exp2 A numeric, Boolean, string, list, or struct expression.

operator operator is one of the following:

== returns TRUE if the first expression evaluates to the same value
as the second expression.

!= returns TRUE if the first expression does not evaluate to the
same value as the second expression.

Table 13—Equality comparisons for various data types

Type Comparison method

integers, unsigned integers, Booleans,
HDL pathnames

Values are compared.

strings The strings are compared character-by-character (case-
sensitive).

lists The lists are compared item-by-item. The list item types need to
be compatible; otherwise, an error shall occur.

sets The sets are compared by the set of values contained in them;
they are equal if every value contained in one set is also
contained in the other set.

structs The structs’ addresses are compared
44 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.10.3 === !==

This compares four-state values (0, 1, x, and z) with the identity and non-identity operators (Verilog-style
operators). The regular equal and non-equal operators can also be used.

There are three ways to use the identity (===) and non-identity (!==) operators, as follows:

a) 'HDL-pathname' = = = literal-number-with-x-and-z values

This expression compares an HDL object to a literal number, e.g., 'top.reg' === 4'b11z0. It
checks that the bits of the HDL object match the literal number, bit-by-bit (considering all four
values 0, 1, x, and z).

b) 'HDL-pathname' = = = number-exp

This expression evaluates to TRUE if the HDL object is identical in each bit value to the integer
expression number-exp. Integer expressions in e cannot hold x and z values; thus, the whole
expression can be true only if the HDL object has no x or z bits and is otherwise equal to the integer
expression.

c) 'HDL-pathname' = = = 'second-HDL-pathname'

This expression evaluates to TRUE if the two HDL objects are identical in all their bits (considering
all four values 0, 1, x, and z).

As in Verilog, if the radix is not binary, the z and x values in a literal number are interpreted as more than
one bit wide and are left-extended when they are the left-most literal. The width they assume depends on the
radix, e.g., in a hexadecimal radix, each literal z counts as four z bits.

Syntax example:

// Test a single bit to determine its current state
case {
 ’TOP.write_en’ === 1’b0 : {out("write_en is 0")};
 ’TOP.write_en’ === 1’b1 : {out("write_en is 1")};

Purpose Verilog-style four-state comparison operators

Category Expression

Syntax 'HDL-pathname' [!== | ===] exp
exp [!= | ==] 'HDL-pathname'

Parameters

HDL-pathname The full pathname of an HDL object, this can also include expressions and
composite data. See 23.3 for more information.

!== Determines non-identity, as in Verilog. Returns TRUE if the left and right
operands differ in at least one bit (considering also the x and z values).

=== Determines identity, as in Verilog. Returns TRUE if the left and right operands
have identical values (considering also the x and z values).

!= Returns TRUE if the left and right operands are equal after translating all x
values to 0 and all z values to 1.

== Returns TRUE if the left and right operands are non-equal after translating all
x values to 0 and all z values to 1.

exp A literal with four-state values, a numeric expression, or another HDL
pathname.
Copyright © 2015 IEEE. All rights reserved. 45

IEEE
Std 1647-2015 IEEE STANDARD
 ’TOP.write_en’ === 1’bx : {out("write_en is x")};
 ’TOP.write_en’ === 1’bz : {out("write_en is z")}
}

4.10.4 ~ !~

This matches a string against a pattern. There are two styles of string matching: native e style, which is the
default, and AWK-style. See also 4.11.

After a match using either of the two styles, the local pseudo-variable $0 holds the whole matched string
and the pseudo-variables $1, $2, ..., $27 hold the substrings matched. The pseudo-variables are set only by
the ~ operator and are local to the function that does the string match. If the ~ operator produces fewer than
28 substrings, the unused variables are left empty.

Syntax example:

print s ~ "blue*";
print s !~ "/^Bl.*d$/"

Purpose String matching

Category Expression

Syntax “string” operator “pattern-string”

Parameters

string A legal e string.

operator operator is one of the following:

~ returns TRUE if the pattern string can be matched to the whole
string.

!~ returns TRUE if the pattern string cannot be matched to the
whole string.

pattern-string An AWK-style regular expression or a native e regular expression. If the
pattern string starts and ends with slashes (/), then everything inside the
slashes is treated as an AWK-style regular expression (see 4.11).
46 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.10.5 in

For a check, this evaluates TRUE if the first expression is included or contained in the second expression.
For a constraint, this designates the possible values for the first expression.

When two lists are compared and the first list has more than one repetition of the same value (e.g., in
{1;2;1}, 1 is repeated twice), then at least the same number of repetitions has to exist in the second list for
the operator to succeed. See also 4.13.2 and 5.1.8.

Syntax example:

keep x in [1..5];
check that x in {1; 2; 3; 4; 5}}

4.11 String matching

There are two styles of string matching: native e style, which is the default, and an AWK-like style. If the
pattern starts and ends with slashes (/), then everything inside the slashes is treated as an AWK-style regular
expression. See also 28.6.

4.11.1 Native e string matching

Native e string matching is attempted on all patterns that are not enclosed in slashes (/). Native style string
matching is case-insensitive.

Native style string matching always matches the full string to the pattern. For example: r does not match
Bluebird, but *r* does. A successful match results in assigning the local pseudo-variables $1 to $27
with the substrings corresponding to the non-blank meta-characters present in the pattern.

Native string matching uses the meta-characters shown in Table 14.

Purpose
Check or constrain if a value is included in a list or set, or if one list or set is contained in a second
list or set

Category Expression

Syntax exp1 in exp2

Parameters

exp1 Valid e expression. The value(s) represented by exp1 must match the type of
the value(s) represented by exp2.
When the second expression is of type set, then the type of the first
expression must be of a numeric type or of the type set.
When the second expression is a constant enumerated set literal, then the type
of the first expression must be of the same enumerated type.
When the second expression is a list, then the type of the first expression can
be one of the following:

— A type that is comparable to the element type of the second
expression

— A list of type that is comparable to the element type of the second
expression.

For a list, braces ({ }) are used.

exp2 A list or set expression, or a constant enumerated set literal.
Copyright © 2015 IEEE. All rights reserved. 47

IEEE
Std 1647-2015 IEEE STANDARD
Example

The following print statements:

m() is {
 var x := "pp kkk";

 print x ~ "* *";
 print $1; print $2;
 print x ~ "...";
 print $1
}

produce these results:

x ~ "* *" = TRUE
$1 = "pp"
$2 = "kkk"
x ~ "..." = TRUE
$1 = "pp kkk"

4.11.2 AWK-style string matching

In AWK-style string matching, a richer regular expression notation can be used to write complex patterns.
This notation uses the /.../ format for the pattern to specify AWK-style regular expression syntax. AWK
style supports the special characters shown in Table 15.

The shorthand notations shown in Table 16 (each representing a single character) can also be used in AWK-
style regular expressions.

Table 14—Meta-characters in native string matching

Character string Meaning

" " (blank) Any sequence of white space (blanks and tabs).

* Any sequence of non-white space characters, possibly empty (" "). a* matches a, ab,
and abc, but not "ab c".

... Any sequence of characters.

Table 15—Special characters

Character Meaning

. This matches any single character.

* The preceding item is matched zero or more times.

+ The preceding item is matched one or more times.

? The preceding item is optional and matches once, at most.

^ This matches the empty string at the beginning of a line.
48 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
After doing a match, the local pseudo-variables $1, $2, ..., $27 correspond to the parenthesized pieces of
the match. $0 stores the whole matched piece of the string.

Example

The following print statements:

m() is {
 var x := "pp--kkk";

 print (x ~ "/--/");
 print (x ~ "/^pp--kkk$/")
}

produce these results:

x ~ "/--/" = TRUE
x ~ "/^pp--kkk$/" = TRUE

4.12 Extraction and concatenation operators

The following subclauses describe the e extraction and concatenation operators.

$ This matches the empty string at the end of a line.

< This matches the empty string at the beginning of a word.

> This matches the empty string at the end of a word.

[] This is a list of options (enclosed in brackets) that matches any character in the list.
The list can contain ranges, specified by using a dash (-), e.g., [0-9]. The list can
also be negated by using a caret (^), e.g., [^0-9].

\ This is used to escape meta-characters.

Table 16—Shorthand notations

Shorthand notation Meaning

` A shortest match operator: ` (back tick)

\d Digit: [0–9]

\D Non-digit

\s Any white-space single char

\S Any non-white-space single

\w Word char: [a-z A-Z 0-9 _]

\W Non-word char

Table 15—Special characters (continued)

Character Meaning
Copyright © 2015 IEEE. All rights reserved. 49

IEEE
Std 1647-2015 IEEE STANDARD
4.12.1 []

This extracts or sets a single item from a list. Indexing is only allowed for lists. To get a single bit from a
scalar, use bit extraction (see 4.12.2). See also Clause 26.

Syntax example:

ints[size] = 8

4.12.2 [:]

This extracts or sets consecutive bits or slices of a scalar, a list of bits, or a list of bytes.

When used on the left-hand side (LHS) of an assignment operator, the bit extract operator sets the specified
bits of a scalar, a list of bits, or a list of bytes to the value on the right-hand side (RHS) of the operator. The
RHS value is chopped or zero/sign extended, if needed. When used in any context except the LHS of an
assignment operator, the bit extract operator extracts the specified bits of a scalar, a list of bits, or a list of
bytes.

NOTE—The [high : low] order of the bit extract operator is the opposite of the [low.. high] order of the list extract
operator.

Purpose List index operator

Category Expression

Syntax list-exp[exp]

Parameters
list-exp An expression that returns a list.

exp A numeric expression.

Purpose Select bits or bit slices of an expression

Category Expression

Syntax exp[[high-exp]:[low-exp][:slice]]

Parameters

exp A numeric expression, an HDL pathname, or an expression returning a list of
bit or a list of byte.

high-exp A non-negative numeric expression. The high expression shall be greater than
or equal to the low expression. To extract a single slice, use the same
expression for both the high expression and the low expression. The default
value depends on the size of the exp. For example, if exp is a 32-bit integer
and the slice is bit, the default value is 32.

low-exp A non-negative numeric expression, less than or equal to the high expression.
The default value is 0.

slice Can be bit, byte, int, or uint. The default is bit.
50 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

print u[15:0] using hex

4.12.2.1 Slice and size of the result

The slice parameter affects the size of the slice that is set or extracted. With the default slice (bit), the bit
extract operator always operates on a 1-bit slice of the expression. When extracting from a scalar expression,
by default, the bit extract operator returns an expression that is the same type and size as the scalar
expression. When extracting from a list of bit or a list of byte, by default, the result is a positive unbounded
integer.

The bit operator can operate on a larger number of bits when a different slice (byte, int, or uint) is set. For
example, the following first print statement displays the lower two bytes of big_i, 4096; the second
displays the higher 32-bit slice of big_i, -61440.

var big_i : int (bits:64) = 0xffff1000ffff1000;

print big_i[1:0:byte];
print big_i[1:1:int]

The bit extract operator has a special behavior in packing. Packing the result of a bit extraction uses the
exact size in bits (high – low + 1). The size of the following pack expression is (5-3 + 1)+(i-3 + 1):

pack(packing.low, A[5:3], B[i:3])

4.12.2.2 Accessing nonexistent bits

If the expression is a numeric expression or an HDL pathname, any reference to a non-existent bit shall
cause an error. However, for unbounded integers, all bits logically exist: 0 for positive numbers and 1 for
negative numbers.

See also 22.3.

4.12.3 [..]

This accesses the specified list items and returns a list of the same type as the expression. If the expression is
a list of bits, it returns a list of bits. If the expression is a scalar, it is implicitly converted to a list of bits.

The rules for the list slicing operator are as follows:

Purpose List slicing operator

Category Expression

Syntax exp[[low-exp]..[high-exp]]

Parameters

exp An expression returning a list or a scalar.

low-exp An expression evaluating to a non-negative integer. The default is 0.

high-exp An expression evaluating to a non-negative integer. The default is the
expression size in bits-1.
Copyright © 2015 IEEE. All rights reserved. 51

IEEE
Std 1647-2015 IEEE STANDARD
a) A list slice of the form a[m..n] requires that n>=m>=0 and n<a.size(). The size of the slice
in this case is n-m+1.

b) A list slice of the form a[m..] requires that m>=0 and m<=a.size(). The size of the slice in
this case is a.size()-m.

c) A list slice of the form a[..n] requires that 0<=n<=a.size()-1. The size of the slice in this
case is n+1.

d) When assigning to a slice, the size of the RHS shall be the same as the size of the slice; specifically,
when the slice is of form a[m..] and m==a.size(), then the RHS shall be an empty list.

e) The only times a list slice operation returns an empty list is

1) in using a[m..], where m==a.size().

2) when the list slice operation is performed on an empty list.

f) This operator is not supported for unbounded integers.

These rules are also true for the case of list slicing a numeric value. See also 23.3.

Syntax example:

print packets[0..14]

4.12.4 {... ; ...}

This returns a list built out of one or more elements or other lists. The result type is determined by the
following rules:

— The type is derived from the context.

— The type is derived from the first element type of the list.

See also 5.1.8.

Syntax example:

var x : list of uint = {1; 2; 3}; // list of uint

var y := {50’1; 2; 3} // list of int 50 bits wide

Purpose List concatenation

Category Expression

Syntax {exp; ...}

Parameters
exp Any legal e expression, including a list. All expressions need to be

compatible with the result type.
52 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.12.5 %{... , ...}

This creates a list of bits from two or more expressions, or creates two or more smaller lists of bits from a
given expression. Bit concatenations are untyped expressions. In many cases, the required type can be
deduced from the context of the expression. See also 5.2 and Clause 19.

The bit concatenation operator %{} can also be used for packing or unpacking operations that require the
packing.high order, e.g.,

value-exp = %{exp1, exp2,...} is equivalent to value-exp = pack(packing.high, exp1, exp2, ...)

%{exp1, exp2,...} = value-exp is equivalent to unpack(packing.high, value-exp, exp1, exp2, ...)

Syntax example:

num1 = %{num2, num3};
%{num2, num3} = num1

4.13 Scalar modifiers

A scalar subtype can be created by using a scalar modifier to specify the range or bit width of a scalar type.
Composing scalar modifiers is allowed. In case of multiple modifiers, the latest bit-size and range shall take
effect.

4.13.1 [range,...]

This creates a scalar subtype by restricting the range of valid values. Adding a range modifier is equivalent
to adding a constraint restricting the field’s value to the range.

Syntax example:

u : uint[5..7, 15]

Purpose Bit concatenation operator

Category Expression

Syntax %{exp1, exp2, ...}

Parameters exp1, exp2 Expressions that receive lists of bits (when on the LHS of an assignment
operator) or supply lists of bits (when on the RHS of an assignment operator).

Purpose Range modifier

Category Expression

Syntax [range, ...]

Parameters

range A constant expression or a range of constant expressions in the form:
low-value..high-value

If the scalar type is an enumerated type, it is ordered by the value associated
with the integer value of each type item.
Copyright © 2015 IEEE. All rights reserved. 53

IEEE
Std 1647-2015 IEEE STANDARD
4.13.2 (bits | bytes : width-exp)

A scalar subtype can be created by using a scalar modifier to specify bit width of a scalar type. This
expression defines a bit width for a scalar type. The actual bit width is exp * 1 for bits and exp * 8 for bytes.

In the following syntax example, both the word and address types have a bit width of 16:

Syntax example:

type word : uint(bits:16);

type address : uint(bytes:2)

4.14 Parentheses

Parentheses [()] can be used freely to group terms in expressions or to improve the readability of the code, as
has been done in some examples in this standard. Parentheses are only required in a few places in e code,
such as at the end of the method or routine name in all method definitions, method calls, or routine calls.
Required parentheses are shown in boldface in the syntax listings in this standard.

Parentheses are also required to invoke any method or routine.

4.15 list.method()

This executes a list pseudo-method on the specified list expression, item-by-item, as follows:

— When an item is evaluated, it stands for the item and index stands for its index in the list.

— When a parameter is passed, that expression is evaluated for each item in the list.

— List method calls can be nested within any expression, as long as the returned type matches the
context.

Purpose Define a sized scalar

Category Expression

Syntax (bits | bytes: width-exp)

Parameters width-exp A positive constant expression.

Purpose Execute list pseudo-method

Category Expression

Syntax list-exp. list-method([param,])...

Parameters
list-exp An expression that returns a list.

list-method One of the list pseudo-methods described in Clause 26.
54 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

print me.my_list.is_empty()

4.16 Special-purpose operators

The following special-purpose operators are supported.

4.16.1 is [not] a, is [not] an

This identifies whether a struct instance is a particular subtype or not at runtime. If a name is specified, a
local temporary variable of that name is created in the scope of the action containing the is a expression.
This local variable contains the result of struct-exp.as_a(type) when the is a expression returns TRUE. The
following considerations also apply:

— A compile-time error shall occur if there is no chance that the struct instance is of the specified type.

— Unlike other constructs with optional name variables, the implicit it variable is not created when the
optional name is not used in the is a expression.

See also 5.8.1.

NOTE—The is a and is an expressions can be used interchangeably (just as is not a and is not an can) to make e code
more like English.

Syntax example:

if me is a long packet (lp) then {

 print lp

};

if me is not an extra packet then {

 print kind

}

Purpose Identify the subtype of a struct instance

Category Boolean expression

Syntax struct-exp is (a | an) subtype [(name)]
struct-exp is not (a | an) subtype

Parameters

struct-exp An expression that returns a struct.

subtype A subtype of the specified struct type.

name The name of the local variable to create.
Copyright © 2015 IEEE. All rights reserved. 55

IEEE
Std 1647-2015 IEEE STANDARD
4.16.2 new

This creates a new struct, as follows:

a) It allocates space for the struct.

b) It assigns default values to struct fields.

c) It invokes the init() method for the struct, which initializes all fields of scalar type, including
enumerated scalar type, to zero (0). The initial value of a struct or list is NULL, unless the list is a
sized list of scalars, in which case it is initialized to the proper size with each item set to the default
value.

d) It invokes the run() method for the struct, unless the new expression is in a construct that is
executed before the run phase, e.g., if new is used in an extension to sys.init(), then the run()
method is not invoked.

e) It executes the action block, if one is specified.

The new struct is a shallow struct. The fields of the struct that are of type struct are not allocated. If no
subtype is specified, the type is derived from the context, e.g., if the new struct is assigned to a variable of
type packet, the new struct is of type packet.

If the optional with clause is used, the newly created struct can be referenced with the implicit variable it or
by using the (optional) name.

See also 27.2.2.1 and 27.2.2.4.

Syntax example:

var q : packet = new packet_s

Purpose Allocate a new initialized struct

Category Expression

Syntax new [struct-type [[(name)] with {action; ...}]]

Parameters

struct-type A struct type or struct subtype.

name An optional name, valid only within the action block, for the new struct. If no
name is specified, the implicit variable it can be used to reference the new
struct.

action A list of one or more actions.
56 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
4.16.3 Dot operator (.)

This refers to a field in the specified struct. If the struct-exp is a struct expression, it returns the field in the
specified struct. If the struct-exp is a list of structs expression, it returns a list containing the contents of the
specified field-name from all structs in the list. If the field-name is a list item, the expression returns a
concatenation of the lists in the field.

If the struct expression is missing, but the period exists, the implicit variable it is assumed. If both the struct
expression and the period (.) are missing, the field name is resolved according to the name resolution rules
(see 4.3).

When the struct expression is a list of structs, the expression cannot appear on the LHS of an assignment
operator.

Syntax example:

keep soft port.sender.cell.u == 0xFF

4.16.4 Apostrophes (')

The apostrophe (') is an important syntax element used in multiple ways in e source code. The actual context
of where it is used in the syntax defines its purpose. A single apostrophe is used in the following places:

— When accessing HDL objects (e.g., 'top.a')

— When defining the name of a syntactic construct in a macro definition
(e.g., show_time'command)

— When referring to struct subtypes (e.g., b'dest Ethernet packet)

— When referring to an enumerated value not in context of an enumerated variable
(e.g., color'green)

— In the begin-code marker <' and end-code marker '>

— In sized numbers (e.g., 2’b11)

— In MVL literals (e.g., 2’bxx)

See also 5.1.6 and Clause 15.

Purpose Refer to fields in structs

Category Expression

Syntax
[[struct-exp].] field-name
[[struct-exp].] event-name
[[struct-exp].] method-name

Parameters

struct-exp An expression that returns a struct or a list of structs.

field-name The name of the field to reference.

event-name The name of the event to reference.

method-name The name of the method to reference.
Copyright © 2015 IEEE. All rights reserved. 57

IEEE
Std 1647-2015 IEEE STANDARD
4.16.5 Conditional operator (? :)

This evaluates one of two possible expressions, depending on whether the Boolean expression evaluates to
TRUE or FALSE. If the Boolean expression is TRUE, the first expression is evaluated. If it is FALSE, the
second expression is evaluated.

See also 20.1.

Syntax example:

z = (flag ? 7 : 15)

Purpose Conditional operator

Category Expression

Syntax bool-exp ? exp1 : exp2

Parameters
bool-exp A legal e expression that evaluates to TRUE or FALSE.

exp1, exp2 A legal e expression.
58 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
5. Data types

The e language has a number of predefined data types, including the integer and Boolean scalar types
common to most programming languages. In addition, new scalar data types (enumerated types) that are
appropriate for programming, modeling hardware, and interfacing with hardware simulators can be created.
The e language also provides a powerful mechanism for defining OO hierarchical data structures (structs)
and ordered collections of elements of the same type (lists). The following subclauses provide a basic
explanation of e data types.

5.1 e data types

Most e expressions have an explicit data type, as follows:

— Scalar types

— Scalar subtypes

— Enumerated scalar types

— Casting of enumerated types in comparisons

— Struct types

— Struct subtypes

— Referencing fields in when constructs

— List types

— The set type

— The string type

— The real type

— The external_pointer type

— The “untyped” pseudo type

Certain expressions, such as HDL objects, have no explicit data type. See 5.2 for information on how these
expressions are handled.

5.1.1 Scalar types

Scalar types in e are one of the following: numeric, Boolean, or enumerated. Table 17 shows the predefined
numeric and Boolean types.

Both signed and unsigned integers can be of any size and, thus, of any range. See 5.1.2 for information on
how to specify the size and range of a scalar field or variable explicitly. See also Clause 4.

5.1.2 Scalar subtypes

A scalar subtype can be named and created by using a scalar modifier to specify the range or bit width of a
scalar type. Unbounded integers are a predefined scalar subtype. The following subclauses describe scalar
modifiers, named scalar subtypes, and unbounded integers in more detail.

5.1.2.1 Scalar modifiers

There are two types of scalar modifiers that can be used to modify predefined scalar types:

— Range modifiers

— Width modifiers
Copyright © 2015 IEEE. All rights reserved. 59

IEEE
Std 1647-2015 IEEE STANDARD
Range modifiers define the range of values that are valid. For example, the range modifier in the following
expression restricts valid values to those between 0 and 100, inclusive.

int [0..100]

Width modifiers define the width in bits or bytes. For example, the width modifiers in the following
expressions restrict the bit width to 8.

int (bits:8);
int (bytes:1)

Width and range modifiers can also be used in combination, e.g.,

int [0..100] (bits: 7)

5.1.2.2 Named scalar subtypes

Named scalar subtypes are useful in a context where it is desirable to declare a counter variable, such as the
variable count, in several places in the program, e.g.,

var count : int [0..100] (bits:7);

The type name can then be used to introduce new variables with this type, e.g.,

type int_count : int [0..99] (bits:7);
var count : int_count

See also 5.7.1.

5.1.2.3 Unbounded integers

Unbounded integers represent arbitrarily large positive or negative numbers. Unbounded integers are
specified as:

Table 17—Predefined scalar types

Type name Function Default size for
packing Default value

int Represents numeric data, both negative and non-
negative integers.

32 bits 0

uint Represents unsigned numeric data, non-negative
integers only.

32 bits 0

bit An unsigned integer in the range 0–1. 1 bit 0

byte An unsigned integer in the range 0–255. 8 bits 0

time An integer in the range 0–(263–1). 64 bits 0

bool Represents truth (logical) values, TRUE (1), and
FALSE (0).

1 bit FALSE (0)

real Represents double-precision floating-point numbers,
identical to the precision of a C type double.

64 bits 0
60 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
int (bits:*)

Use an unbounded integer variable when the exact size of the data is unknown. Unbounded integers can be
used in expressions just as signed or unsigned integers are, with the following exceptions:

— Fields or variables declared as unbounded integers shall not be generated, packed, or unpacked.

— Unbounded unsigned integers are not allowed, so a declaration of a type such as uint (bits:*)
shall generate a compile-time error.

5.1.3 Enumerated scalar types

The valid values for a variable or field can be defined as a list of symbolic constants, e.g., the following
declaration defines the variable kind as having two legal values:

var kind : [immediate, register]

These symbolic constants have associated unsigned integer values. By default, the first name in the list is
assigned the value zero (0). Subsequent names are assigned values based upon the maximum value of the
previously defined enumerated items +1. Explicit unsigned integer values can also be assigned to the
symbolic constants.

var kind : [immediate = 1, register = 2]

The associated unsigned integer value of a symbolic constant in an enumerated type can be obtained by
using the as_a() type casting operator (see 5.8.1). Similarly, an unsigned integer value that is within the
range of the values of the symbolic constants can be cast as the corresponding symbolic constant.

Value assignments can also be mixed; some can explicitly be assigned to symbolic constants and others can
be automatically assigned. The following declaration assigns the value 3 to immediate; the value 4 is
automatically assigned to register.

var kind : [immediate = 3, register]

NOTE—Explicitly assigning values to all enumerators aids in avoiding unexpected values.

An enumerated type can be named to facilitate its reuse throughout a program. In the following example, the
first statement defines a new enumerated type named instr_kind. The variable i_kind has the two
legal values defined by the instr_kind type.

type instr_kind : [immediate, register];
var i_kind : instr_kind

Enumerated types can also be sized.

type instr_kind : [immediate, register] (bits: 2)

Variables or fields with an enumerated type can also be restricted to a range. The following variable
declaration excludes foreign from its legal values:

type packet_protocol : [Ethernet, IEEE, foreign];
var p : packet_protocol [Ethernet..IEEE]

The default value for an enumerated type is zero (0), even if zero (0) is not a legal value for that type. For
example, the variable i_kind has the value zero (0) until it is explicitly initialized or generated.
Copyright © 2015 IEEE. All rights reserved. 61

IEEE
Std 1647-2015 IEEE STANDARD
type instr_kind : [immediate = 1, register = 2];
var i_kind : instr_kind

5.1.4 Casting of enumerated types in comparisons

Enumerated scalar types, like Boolean types, are not automatically converted to or from integers or unsigned
integers in comparison operations (i.e., comparisons using the <, <=, >, >=, ==, or != operators). This is
consistent with the strong typing in e and helps avoid the introduction of bugs if the order of symbolic names
in an enumerated type declaration is changed. To perform such comparisons, explicit casting or tick notation
(’) needs to be used to specify the type.

5.1.5 Struct types

Structs are the basis for constructing compound data structures (see also Clause 6). The default value for a
struct is NULL. A struct type can also be used to define a variable (var). For more information on vars, see
18.2.

The following statement creates a struct type called packet with a field protocol of type
packet_protocol.

struct packet {
protocol : packet_protocol

}

The struct type packet can then be used in any context where a type is required. For example, in this
statement, packet defines the type of a field in another struct.

struct port {
data_in : packet

}

5.1.6 Struct subtypes

When a struct field has a Boolean type or an enumerated type, a struct subtype can be defined for one or
more of the possible values for that field.

Example

The struct packet defined as follows has three possible subtypes based on its protocol field. The
gen_eth_packet method generates an instance of the legal Ethernet packet subtype, where
legal == TRUE and protocol == Ethernet.

type packet_protocol : [Ethernet, IEEE, foreign];

struct packet {
protocol : packet_protocol;
size : int [0..1k];
data[size] : list of byte;
legal : bool

};

extend sys {
gen_eth_packet () is {

var packet : legal Ethernet packet;
gen packet keeping {it.size < 10};
print packet
62 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
}
}

To refer to a Boolean struct subtype, in this case, legal packet, use this syntax:

field_name struct_type

To refer to an enumerated struct subtype in a struct where no values are shared between the enumerated
types, use this syntax:

value_name struct_type

In structs where more than one enumerated field can have the same value, use the following syntax instead
to refer to the struct subtype:

value'field_name struct_type

The extend, when, or like constructs can also be used to add fields, methods, or method extensions that are
required for a particular subtype. Use the when or extend construct (see Clause 6) to define struct subtypes
with very similar results. These constructs are appropriate for most modeling purposes (see also Annex C).

5.1.7 Referencing fields in when constructs

To refer to a field of a struct subtype outside of a when, like, or extend construct, assign a temporary name
to the struct subtype and then use that name. To reference a field in a when construct, first specify the
appropriate value for the when determinant (see Annex C).

5.1.8 List types

List types hold ordered collections of data elements, where each data element conforms to the same type.
Items in a list can be indexed with the subscript operator [], by placing a non-negative integer expression in
the brackets. List indexes start at zero (0). To select an item from a list, specify its index, e.g.,
my_list[0] refers to the first item in the list named my_list.

Lists are defined by using the list of keyword in a variable or a field definition. The following example
defines a list of bytes named lob and explicitly assigns five literal values to it. The print statement displays
the first three elements of lob: 15, 31, and 63.

var lob : list of byte = {15; 31; 63; 127; 255};
print lob[0..2]

The following considerations also apply:

— The default value of a list is an empty list.

— To set a size for lists that have variable sizes, use a keep constraint or the resize() list pseudo-
method.

5.1.9 Keyed lists

A keyed list data type is similar to hash tables or association lists found in other programming languages. If
the element type of the list is a scalar type or a string type, then the hash key shall be the predefined implicit
variable it. The only restriction on the type of the list elements is they shall not be lists or sets. However,
they can be struct types containing fields that are lists or sets.
Copyright © 2015 IEEE. All rights reserved. 63

IEEE
Std 1647-2015 IEEE STANDARD
See also 19.4.2 and Clause 26.

Syntax example:

struct location {
 address : uint;
 data : uint
};

struct holder {
 !locations : list(key:address) of location
}

5.1.10 The set type

The predefined type set is used to represent unordered sets of unbounded integer values.

Values of type set can be expressed using a set literal, which is specified by a range construct with numeric
value ranges (see 4.4). The actual values in the set shall be evaluated using the unbounded integer semantics,
regardless of the actual types of the expressions used inside the set type literal, and regardless of the context.
For example, this expression:

MAX_UINT in [-5..-1]

shall return FALSE, even though -1 would be the result of casting MAX_UINT to int.

An empty set can be expressed using an empty set type literal: []

The inclusion relation between a numeric value and a set, and the containment relation between two sets,
shall be determined by using the in operator (see 4.10.5). Operations between sets, such as union, intersect
and diff, and queries on sets, such as size, min and max, shall be performed by set pseudo-methods (see
27.4).

Fields or variables of type set shall not be generated, packed, or unpacked.

The canonical form representation of a value of type set shows it as a set literal, as follows:

— The minimum number of intervals is shown, meaning that there are no overlapping or neighboring
intervals. For example, the canonical form of both [1..5, 3..15] and [1..5, 6..15] is
[1..15].

— Single value intervals are shown with the single value. For example, the canonical form of [1..5,
10..10] is [1..5,10].

— The intervals are shown in ascending order. For example, the canonical form of [10..15, 1..5]
is [1..5,10..15].

5.1.11 The string type

The predefined type string is the same as the C NULL terminated (zero-terminated) string type. A series of
ASCII characters enclosed by quotes (" ") can be assigned to a variable or field of type string, for example:

var message : string;
message = "Beginning initialization sequence..."
64 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Bits or bit ranges of a string cannot be accessed, but the string can be converted to a list of bytes and that list
can be used to access a portion of the string, e.g., the following print statement displays /test1:

var dir : string = "/tmp/test1";
var tmp := dir.as_a(list of byte);

tmp = tmp[4..9];
print tmp.as_a(string)

The default value of a variable of type string is NULL.

See also 19.4.4 and Clause 28.

5.1.12 The real type

The real type in e is used to handle and manipulate non-integer numeric values. Real values are physically
represented as double-precision floating-point numbers, equivalent to the representation of double values in
C.

See 5.4.

5.1.13 The external_pointer type

The external_pointer type is used to hold a pointer into an external (non-e) entity, such as a C struct. Unlike
pointers to structs in e, external pointers are not changed during garbage collection.

Syntax example:

var c_handle : external_pointer // holds a foreign pointer

5.1.14 The “untyped” pseudo type

This is a type placeholder for untyped values that can be used when runtime values of different types need to
be manipulated in a generic way. For example, when objects are manipulated with the reflection API, their
types are typically unknown at compile-time; thus, untyped expressions need to be used (see 30.4). Values
of any type may be assigned to variables of the “untyped” pseudo type using the unsafe() operator (see
5.8.2). Similarly, “untyped” expressions may be used in typed contexts by using unsafe().

NOTE—Untyped variables are left unchanged during garbage collection, which allows struct references to be corrupted.

5.2 Untyped expressions

All e expressions have an explicit type, except for the following types:

— HDL objects, such as top.w_en

— pack() expressions, such as pack(packing.low, 5)

— bit concatenations, such as %{slb1, slb2}

The default type of HDL objects is a 32-bit uint, while pack() expressions and bit concatenations have a
default type of list of bit. However, due to implicit packing and unpacking, these expressions can be
converted to the required data type and bit-size in certain contexts, as follows:
Copyright © 2015 IEEE. All rights reserved. 65

IEEE
Std 1647-2015 IEEE STANDARD
a) When an untyped expression is assigned to a scalar or list of scalars, it is implicitly unpacked and
converted to the same type and bit-size as the expression on the LHS. Implicit unpacking is not sup-
ported for strings, structs, or lists of non-scalar types.

b) When a scalar or list of scalars is assigned to an untyped expression, it is implicitly packed before it
is assigned. Implicit packing is not supported for strings, structs, or lists of non-scalar types.

c) When the untyped expression is the operand of any binary operator (+, –, *, /, or %), the expression
is assumed to be a numeric type. The precision of the operation is determined by the expected type
and the type of the operands (see 5.5).

d) When a pack() expression includes the parameter or the return value of a method call, the expres-
sion takes the type and size as specified in the method declaration. The method parameter or return
value in the pack expression shall be a scalar type or a list of scalar type.

e) When an untyped expression appears in one of the following contexts, it is treated as a Boolean
expression:

if (untyped_exp) then {..}
while (untyped_exp) do {..}
check that (untyped_exp)
not untyped_exp
rise(untyped_exp), fall(untyped_exp), true(untyped_exp)

When the type and bit-size cannot be determined from the context, the expression is automatically cast
according to the following rules:

— The default type of an HDL signal is an unsigned integer; the default bit-size is 32.

— The default type of a pack expression and a bit concatenation expression is a list of bit.

When expressions are untyped, an implicit pack/unpack is performed according to the expected type. See
also 19.5.

5.3 Assignment rules

Assignment rules define what is a legal assignment and how values are assigned to entities. The following
subclauses describe various aspects of assignments.

5.3.1 What is an assignment?

There are several legal ways to assign values, as follows:

— Assignment actions

— Return actions

— Parameter passing

— Variable declaration

Here is an example of an assignment action, where a value is explicitly assigned to a variable x and to a field
sys.x.

extend sys {
 x : int;
 m() is {
 var x: int;
 sys.x = ’~/top/address’;
 x = sys.x + 1
66 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
 }
}

Here is an example of a return action, which implicitly assigns a value to the result variable:

extend sys {
 n(): int (bits:64) is {
 return 1
 }
}

Here is an example of assigning a value (6) to a method parameter (i):

extend sys {
 k(i: int) @sys.any is {
 wait [i] * cycle
 };

 run() is also {
 start k(6)
 }
}

Here is an example of how variables are assigned during declaration:

extend sys {
 b() is {
 var x : int = 5;
 var y := "ABC"
 }
}

Values shall not be assigned to fields during declaration, however.

5.3.2 Assignments create identical references

Assigning one struct, list, or value to another object of the same type results in two references pointing to the
same memory location, so that changes to one of the objects also occur in the other object immediately.

Example

data1 : list of byte;
data2 : list of byte;

run() is also {
 data2 = data1;
 data1[0] = 0
}

After generation, the two lists data1 and data2 are different lists. However, after the data2 = data1
assignment, both lists refer to the same memory location; therefore, changing the data1[0] value also
changes the data2[0] value immediately.

5.3.3 Assignment to different (but compatible) types

This subclause describes the assignment between different, yet compatible, types.
Copyright © 2015 IEEE. All rights reserved. 67

IEEE
Std 1647-2015 IEEE STANDARD
5.3.3.1 Assignment of numeric types

Any numeric type (e.g., uint, int, or one of their subtypes) can be assigned with any other numeric type.
Untyped expressions, such as HDL objects, can also appear in assignments of numeric types (see 5.2).

Automatic casting is performed when a numeric type is assigned to a different numeric type, and automatic
extension or truncation is performed if the types have a different bit-size (see 5.6; see also 5.5.)

5.3.3.2 Assignment of Boolean types

A Boolean type can only be assigned to another Boolean type.

var x : bool;
x = 'top.a' >= 16

5.3.3.3 Assignment of enumerated types

An enumerated type can be assigned with that same type or its scalar subtype. (The scalar subtype differs
only in range or bit-size from the base type.) The following example shows:

— An assignment of the same type

var x : color = blue

— An assignment of a scalar subtype

var y : color2 = x

To assign any scalar type (numeric, enumerated, or Boolean type) to any different scalar type, use the as_a()
operator (see 5.8.1).

5.3.3.4 Assignment of structs

An entity of type struct can be assigned with a struct of that same type or with one of its subtypes. The
following example shows:

— A same type assignment

p2 = p1

— An assignment of a subtype (Ether_8023 packet)

var p : Ether_8023 packet;
set_cell(p)

— An assignment of a derived struct (cell_8023)

set_cell(p:packet) is {
p.cell = new cell_8023;
...

Although a subtype can be assigned to its parent struct without any explicit casting, to perform the reverse
assignment (assign a parent struct to one of its subtypes), the as_a() method needs to be used (see 5.8.1).

5.3.3.5 Assignment of strings

A string can be assigned only with strings, as follows:
68 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
extend sys {
 m(): string is {
 return "aaa" // assignment of a string
 }
}

5.3.3.6 Assignment of lists

An entity of a type list can be assigned only with a list of the same type. In the following example, the
assignment of list1 to x is legal because both lists are lists of integers:

extend sys {
list1 : list of int;
m() is {

var x : list of int = list1;
}

}

However, an assignment such as var y: list of int (bits: 16) = list1; is not legal,
because list1 is not the same list type as y. y has a size modifier, so it is a subtype of list1.

Use the as_a() method to cast between lists and their subtypes (see 5.8.1).

5.3.3.7 Assignment of sets

A set can be assigned only with sets, as follows:

extend sys {
m(): set is {

return [1..10] // assignment of a set
}

}

5.4 Real data type

Objects of type real are double-precision floating-point numbers, the same as C type double. The
representation of real values and the semantics of arithmetic and cast operators uses the double-precision
floating-point implementation on the underlying machine, which should be compliant with IEEE Std 754™.

5.4.1 Real data type usage

A real object may be used (or is legal) in any context except in the following cases:

— Both operands of the shift operators (<<, >>)

— Bitwise operators (|, &, ^)

— Bitwise routines

— Modulo (%)

— odd()

— even()
Copyright © 2015 IEEE. All rights reserved. 69

IEEE
Std 1647-2015 IEEE STANDARD
5.4.2 Real literals

Real literals are numbers that have a decimal point or an exponential part or both. If a decimal point exists,
there must be digits on both sides of the decimal point. Underscores can be added for readability and are
ignored. See Table 18.

5.4.3 Real constants

The real constants in Table 19 and Table 20 are defined in both e code and in C code that includes a suitable
header file:

Table 18—Examples of real literals

Real constant Value

5.3876e4 53 876

4e–11 0.00000000004

1e+5 100 000

7.321E–3 0.007321

3.2E+4 32 000

0.5e–6 0.0000005

0.45 0.45

6.e10 60 000 000 000

Table 19—Mathematical constants

Constant Value

IEEE_1647_M_E e

IEEE_1647_M_LOG2E Logarithm base 2 of e

IEEE_1647_M_LOG10E Logarithm base 10 of e

IEEE_1647_M_LN2 Natural logarithm of 2
70 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
NOTE 1—All mathematical constants are prefixed by IEEE_1647_M_.

NOTE 2—All physical constants are prefixed by IEEE_1647_P_.

5.4.4 Real type limitations

— The key of a keyed list shall not be of type real.

IEEE_1647_M_LN10 Natural logarithm of 10

IEEE_1647_M_PI PI

IEEE_1647_M_TWO_PI 2*PI

IEEE_1647_M_PI_2 PI/2

IEEE_1647_M_PI_4 PI/4

IEEE_1647_M_1_PI 1/PI

IEEE_1647_M_2_PI 2/PI

IEEE_1647_M_2_SQRTPI 2/sqrt(PI)

IEEE_1647_M_SQRT2 sqrt(2)

IEEE_1647_M_SQRT1_2 sqrt(1/2)

Table 20—Physical constants

Constant Value

IEEE_1647_P_Q Charge of electron in coulombs

IEEE_1647_P_C Speed of light in vacuum in meters/second

IEEE_1647_P_K Boltzmann’s constant in joules/kelvin

IEEE_1647_P_H Planck’s constant in joules*second

IEEE_1647_P_EPS0 Permittivity of vacuum in farads/meter

IEEE_1647_P_U0 Permeability of vacuum in henrys/meter

IEEE_1647_P_CELSIUS0 Zero Celsius in kelvin

Table 19—Mathematical constants (continued)

Constant Value
Copyright © 2015 IEEE. All rights reserved. 71

IEEE
Std 1647-2015 IEEE STANDARD
5.5 Precision rules for numeric operations

For precision rules, there are two types of numeric expressions in e, as follows:

— context-independent expressions, where the precision of the operation (bit width) and numeric type
(signed or unsigned) depend only on the types of the operands

— context-dependent expressions, where the precision of the operation and the numeric type depend on
the precision and numeric type of other expressions involved in the operation (the context), as well as
the types of the operands

A numeric operation in e is performed in one of three possible combinations of precision and numeric type:

a) Unsigned 32-bit integer (uint)

b) Signed 32-bit integer (int)

c) Infinite signed integer (int (bits: *)

The e language has rules for determining the context of an expression or deciding the precision, and
performing data conversion and sign extension.

5.5.1 Determining the context of an expression

The rules for defining the context of an expression are applied in the following order:

a) In an assignment (lhs = rhs), the right-hand side (rhs) expression inherits the context of the left-hand
side (lhs) expression.

b) A sub-expression inherits the context of its enclosing expression.

c) In a binary-operator expression (lho OP rho), the right-hand operand (rho) inherits context from the
left-hand operand (lho), as well as from the enclosing expression.

Table 21 summarizes context inheritance for each type of operator that can be used in numeric expressions.

Table 21—Summary of context inheritance in numeric operations

Operator Function Context

* / % + –
< <= > >=
== !=
=== !==
& | ^

Arithmetic,
comparison, equality,
and bit-wise Boolean

The right-hand operand (rho) inherits context from the left-hand operand
(lho), as well as from the enclosing expression. lho inherits only from the
enclosing expression.

~ !
unary + –

Bit-wise not, Boolean
not, unary plus, minus

The operand inherits context from the enclosing expression.

[] List indexing The list index is context-independent.

[..] List slicing The indices of the slice are context-independent.

[:] Bit slicing The indices of the slice are context-independent.

f(...) Method or routine
call

The context of a parameter to a method is the type and bit width of the
formal parameter.

{...; ...} List concatenation Context is passed from the lhs of the assignment, but not from left-to-right
between the list members.
72 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
5.5.2 Deciding precision and performing data conversion and sign extension

The rules for deciding precision, and performing data conversion and sign extension are as follows:

Determine the context of the expression, which can be comprised of a maximum of two types:

a) If all types involved in an expression and its context are 32 bits in width or less:

1) The operation is performed in 32 bits.

2) If any of the types is unsigned, the operation is performed with unsigned integers.

Decimal constants are treated as signed integers, whether they are negative or not. All other
constants are treated as unsigned integers, unless preceded by a hyphen (−).

3) Each operand is automatically cast, if necessary, to the required type.

Casting of small negative numbers (signed integers) to unsigned integers produces large
positive numbers.

b) If any of the types is greater than 32 bits:

1) The operation is performed in infinite precision [int (bits:*)].

2) Each operand is zero-extended (if it is unsigned) or sign-extended (if it is signed) to infinite
precision.

%{..., ...} Bit concatenation The elements of the concatenation are context-independent.

>>, << Shift Context is passed from the enclosing expression to the left operand. The
context of the right operand is always a 32-bit uint.

in Inclusion and
containment operator

Both operands are context-independent.

 [i..j, ...] Set literal The elements are context-independent.

&&, || Boolean All operands are context-independent.

a ? b : c Conditional operator a is context-independent, b inherits the context from the enclosing
expression, c inherits context from b, as well as from the enclosing
expression.

as_a() Casting The operand is context-independent.

abs(), odd(),
even()

Arithmetic routine The parameter is context-independent.

min(), max() Arithmetic routine The right parameter inherits context from the left parameter (lp), as well
as from the enclosing expression. lp inherits only from the enclosing
expression.

ilog2(),
ilog10(),
isqrt()

Arithmetic routine The context of the parameter is always a 32-bit uint.

ipow() Arithmetic routine Both parameters inherit the context of the enclosing expression, but the
right parameter does not inherit context from the left.

Table 21—Summary of context inheritance in numeric operations (continued)

Operator Function Context
Copyright © 2015 IEEE. All rights reserved. 73

IEEE
Std 1647-2015 IEEE STANDARD
5.6 Automatic type casting

During assignment of a type to a different but compatible type, automatic type casting is performed in the
following contexts:

— Numeric expressions (unsigned and signed integers) of any size are automatically type cast upon
assignment to different numeric types. For example:

var x : uint;
var y : int;
x = y

— Untyped expressions are automatically cast on assignment. See 5.2 for more information.

— Sized scalars are automatically type cast to differently sized scalars of the same type.

— Struct subtypes are automatically cast to their base struct type.

There are three important ramifications to automatic type casting.

a) If the two types differ in bit-size, the assigned value is extended or truncated to the required bit-size.

b) Casting of small negative numbers (signed integers) to unsigned integers produces large positive
numbers.

c) There is no automatic casting to a reference parameter (see 17.3).

5.6.1 Conversion between real and integer data types

Automatic casting is performed between the real type and the other numeric types.

Converting a real type object to an integer type object uses the following process:

a) The object is first converted to type int (bits:*) with the value of the largest integer whose absolute
value is less than or equal to the absolute value of the real object.

b) The object is then converted to the expected integer type.

Additional rules apply to converting real objects to integer objects:

— If the object’s floating-point value is infinity (inf), negative infinity (−inf), or Not-a-Number (NaN),
an error will be emitted when trying to convert to an integer value.

— When converting an integer object to the real type, the object is converted to the value closest to the
integer value that can be represented in the double-precision format.

When converting from an integer data type to a real, the integer value is simply converted to its identical
value represented as a real.

Automatic casting of reals to integers or integers to reals is not performed in the context of constraints.
Explicit casting is required within constraints that involve both integer and real expressions so that all
resulting terms are of the same kind.

5.6.2 Real data type precision, data conversion, and sign extension

The rules for deciding precision, performing data conversion, and sign extension are as follows:

a) Determine the context of the expression. The context may be comprised of up to three types.

b) If all types involved in an expression, and its context is integer values of 32 bits in width or less:
74 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
1) The operation is performed in 32 bits.

2) If any of the types are unsigned, the operation is performed with unsigned integers.

NOTE—Decimal constants are treated as signed integers, whether they are negative or not. All other constants
are treated as unsigned integers unless preceded by a hyphen.

3) Each operand is automatically cast, if necessary, to the required type.

NOTE—Casting of small negative numbers (signed integers) to unsigned integers produces large positive
numbers.

c) If all types are integer types, and any of the types is greater than 32 bits:

1) The operation is performed in infinite precision [int(bits:*)].

2) Each operand is zero-extended if it is unsigned, or sign-extended if it is signed, to infinite
precision.

d) If any of the types is a real type, then the operation is done in double precision, and all objects
should first be converted according to the rules described above.

5.7 Defining and extending scalar types

The following constructs can be used to define and extend scalar types.

5.7.1 type enumerated scalar

This defines an enumerated scalar type consisting of a set of names or name-value pairs. If no values are
specified, the names get corresponding numerical values starting with 0 for the first name, and casting can
be done between the names and the numerical values.

Syntax example:

type PacketType : [rx=1, tx, ctrl]

Purpose Define an enumerated scalar type

Category Statement

Syntax type enum-type-name: [[name[=exp], ...]] [(bits | bytes: width-exp)]

Parameters

enum-type-name A legal e name. The name shall be unique in the global type-name space.

name A legal e name. Each name shall be unique within the same type.

exp A unique 32-bit constant expression. Names or name-value pairs can appear
in any order. By default, the first name in the list is assigned the integer value
zero (0). Subsequent names are assigned values based upon the maximum
value of the previously defined enumerated items +1.

width-exp A positive constant expression. The valid range of values for sized
enumerated scalar types is limited to the range 1 to 2n–1, where n is the
number of bits.
Copyright © 2015 IEEE. All rights reserved. 75

IEEE
Std 1647-2015 IEEE STANDARD
5.7.2 type scalar subtype

This defines a subtype of a scalar type by restricting the legal values that can be generated for this subtype to
the specified range. The default value for variables or fields of this type “size” is zero (0), which is the
default for all integers. The range only affects any generated values.

Syntax example:

type size : int [8, 16]

5.7.3 type sized scalar

This defines a scalar type with a specified bit width. The actual bit width is exp * 1 for bits and exp * 8 for
bytes.

When assigning any expression into a sized scalar variable or field, the expression’s value is truncated or
extended automatically to fit into the variable. An expression with more bits than the variable is chopped
down to the size of the variable. An expression with fewer bits is extended to the length of the variable. The
added upper bits are filled with zeros (0) if the expression is unsigned or with the appropriate sign bit (0 or
1) if the expression is signed.

Purpose Define a scalar subtype

Category Statement

Syntax type scalar-subtype-name: scalar-type [range, ...]

Parameters

scalar-subtype-
name

A unique e name. The name shall be unique in the global type-name space.

scalar-type Any previously defined enumerated scalar type, any of the predefined scalar
types, including int, uint, bool, bit, byte, or time, or any previously defined
scalar subtype.

range A constant expression or two constant expressions separated by two dots
(..). All constant expressions shall resolve to legal values of the named type.

Purpose Define a sized scalar

Category Statement

Syntax type sized-scalar-name: type (bits | bytes: exp)

Parameters

sized-scalar-
name

A unique e name. The name shall be unique in the global type-name space.

type Any previously defined enumerated type or any of the predefined scalar
types, including int, uint, bool, or time.

exp A positive constant expression. The valid range of values for sized scalars is
limited to the range 1 to 2n–1, where n is the number of bits.
76 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

type word : uint(bits:16);
type address : uint(bytes: 2)

5.7.4 extend type

This extends the specified enumerated scalar type to include the specified names or name-value pairs.

Syntax example:

type PacketType : [rx, tx, ctrl];
extend PacketType : [status]

5.8 Type-related constructs

The as_a() expression is used to convert an expression from one data type to another. The unsafe()
expression casts the expression to the type that is required by the context. The all_values() pseudo-routine
returns a list of all of the legal values of a specified scalar type. Information about how different types are
converted, such as strings to scalars or lists of scalars, is contained in Table 22 and Table 23.

5.8.1 as_a()

This returns the expression converted into the specified type. Although some casting is done automatically
(see 5.6), explicit casting is required to make assignments between different but compatible types.

Following are assignment compatible types requiring explicit casting:

Purpose Extend an enumerated scalar type

Category Statement

Syntax extend enum-type: [name[= exp], ...]

Parameters

enum-type Any previously defined enumerated type.

name A legal e name. Each name shall be unique within the type.

exp A unique 32-bit constant expression. Names or name-value pairs can appear
in any order. By default, the first name in the list is assigned the integer value
zero (0). Subsequent names are assigned values based upon the maximum
value of the previously defined enumerated items +1.

Purpose Casting operator

Category Expression

Syntax exp.as_a(type: type name): type

Parameters
exp Any e expression.

type Any legal e type.
Copyright © 2015 IEEE. All rights reserved. 77

IEEE
Std 1647-2015 IEEE STANDARD
— Scalars and lists of scalars

— Strings and scalars or lists of scalars

— Structs and list of structs

— Simple lists and keyed lists

Syntax example:

print (b).as_a(uint)

5.8.2 unsafe()

This casts the expression to the type that is required by the context, regardless of any static or dynamic type
rules. This operator may be used only in contexts where the required type is explicit, such as assignment and
parameter passing to methods.

Syntax example:

var value : int = param.unsafe()

5.8.2.1 Type conversion between scalars and lists of scalars

Numeric expressions (unsigned and signed integers) of any size are automatically type cast upon assignment
to different numeric types.

For other scalars and lists of scalars, there are a number of ways to perform type conversion, including the
as_a() method, the pack() method, the %{} bit concatenation operator, and various string routines. Table 22
shows how to convert between scalars and lists of scalars.

In Table 22, int represents int/uint of any size, including bit, byte, and any user-created size. If a solution is
specific to bit or byte, then bit or byte is explicitly stated. int(bits:x) means x as any constant; variables shall
not be used as the integer width.

The solutions presume variables are declared as follows:

var int : int;
var bool : bool;
var enum : enum;
var list_of_bit : list of bit;
var list_of_byte : list of byte;
var list_of_int : list of int

Any conversions not explicitly shown might have to be accomplished in two stages.

Purpose Force casting

Category Expression

Syntax exp.unsafe()

Parameters exp Any e expression.
78 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
5.8.2.2 Type conversion between strings and scalars or lists of scalars

There are a number of ways to perform type conversion between strings and scalars or lists of scalars,
including the as_a() method, the pack() method, the %{} bit concatenation operator, and various string
routines. Table 23 shows how to convert between strings and scalars or lists of scalars.

Table 22—Type conversion between scalars and lists of scalars

From To Solutions

int list of bit list_of_bit = int[..]

int list of
int(bits:x)

list_of_int = %{int}
list_of_int = pack(packing.low, int)
(LSB of int goes to list[0] for either choice)

list of bit
list of byte

int int = list_of_bit[:]

list of
int(bits:x)

int int = pack(packing.low, list_of_int)
(use packing.high for list in the other order)

int(bits:x) int(bits:y) intx = inty
(truncation or extension is automatic)
intx.as_a(int(bits:y))

bool int int = bool.as_a(int)
(TRUE becomes 1, FALSE becomes 0)

int bool bool = int.as_a(bool)
(0 becomes FALSE, non-0 becomes TRUE)

int enum enum = int.as_a(enum)
(no checking is performed to make sure the int value is valid for the range of the
enum)

enum int int = enum.as_a(int)
(truncation is automatic)

enum bool enum.as_a(bool)
[enumerated types with an associated unsigned integer value of 0 become
FALSE; those with an associated non-0 values become TRUE (see 5.1.3)]

bool enum bool.as_a(enum)
(Boolean types with a value of FALSE are converted to the enumerated type
value that is associated with the unsigned integer value of 0; those with a value
of TRUE are converted to the enumerated type value that is associated with the
unsigned integer value of 1; no checking is performed to make sure the Boolean
value is valid for the range of the enum)

enum enum enum1 = enum2.as_a(enum1)
(no checking is performed to make sure the int value is valid for the range of the
enum)

list of
int(bits:x)

list of
int(bits:y)

listx.as_a(list of int(bits:y))
(the same number of items, each padded or truncated)
listy = pack(packing.low, listx)
(concatenated data, different number of items)
Copyright © 2015 IEEE. All rights reserved. 79

IEEE
Std 1647-2015 IEEE STANDARD
In Table 23, int represents int/uint of any size, including bit, byte, and any user-created size. If a solution is
specific to bit or byte, then bit or byte is explicitly stated. int(bits:x) means x as any constant; variables shall
not be used as the integer width.

The solutions presume variables are declared as follows:

var int : int;

var list_of_byte : list of byte;

Table 23—Type conversion between strings and scalars or lists of scalars

From To ASCII
convert? Solutions

list of int
list of byte

string Yes list_of_int.as_a(string)
(each list item is converted to its ASCII character and the
characters are concatenated into a single string; int[0]
represents left-most character; if a list item is not a printable
ASCII character, the string returned is empty)

string list of int
list of byte

Yes string.as_a(list of int)
(each character in the string is converted to its numeric value
and assigned to a separate element in the list; the left-most
character becomes int[0])

string list of int Yes list_of_int = pack(packing.low, string)
list_of_int = %{string}
(the numeric values of the characters are concatenated before
assigning them to the list; any pack option gives same result;
the null byte, 00, is the last item in the list)

string int Yes int = %{string}
int = pack(packing.low, string)
(any pack option gives the same result)

int string Yes unpack(packing.low, %{8’b0, int}, string)
(any pack option with scalar_reorder={} gives the
same result)

string int No string.as_a(int)
(converts to decimal)
append(“0b”, string).as_a(int)
(converts to binary)
append(“0x”, string).as_a(int)
(converts to hexadecimal)

int string No int.as_a(string)
(uses the current print radix)
append(int)
(converts int according to the current print radix)
dec(int), hex(int), bin(int)
(converts int according to a specific radix)

string bool No bool = string.as_a(bool)
(only TRUE and FALSE can be converted to Boolean; all
other strings return an error)

bool string No string = bool.as_a(string)

string enum No enum = string.as_a(enum)

enum string No string = enum.as_a(string)
80 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
var list_of_int : list of int;
var bool : bool;
var enum : enum;
var string : string

Any conversions not explicitly shown might have to be accomplished in two stages.

5.8.2.3 Type conversion between structs, struct subtypes, and lists of structs

Struct subtypes are automatically cast to their base struct type, so for example, a variable of type Ethernet
packet can be assigned to a variable of type packet without using as_a(). as_a() can be used to cast a base
struct type to one of its subtypes; if a mismatch occurs, then NULL is assigned. For example, the print
pkt.as_a(foreign packet) action results in pkt.as_a(foreign packet) = NULL if pkt is not a
foreign packet.

When the expression to be converted is a list of structs, as_a() returns a new list of items whose type
matches the specified type parameter. If no items match the type parameter, an empty list is returned. The
list can contain items of various subtypes, but all items shall have a common parent type, i.e., the specified
type parameter shall be a subtype of the type of the list.

Assigning a struct subtype to a base struct type does not change the declared type. Thus, as_a() needs to be
used to cast the base struct type as the subtype and access any of the subtype-specific struct members.

Subtypes created through like inheritance exhibit the same behavior as subtypes created through when
inheritance.

5.8.2.4 Type conversion between simple lists and keyed lists

Simple lists can be converted to keyed lists and vice versa. The hash key is dropped in converting a keyed
list to a simple list. However, a key needs to be specified first to convert a simple list to a keyed list.

Example

To convert a simple list of packets sys.packets to a keyed list, where the len field of the packet struct
is the key:

var pkts : list (key:len) of packet;
pkts = sys.packets.as_a(list (key:len) of packet)

Using the as_a() method returns a copy of sys.packets, so the original sys.packets is still a simple
list, not a keyed list. Thus, print pkts.key_index(130) returns the index of the item that has a len
field of 130, while print sys.packets.key_index(130)shall return an error.

If a conversion between a simple list and a keyed list also involves a conversion of the type of each item, that
conversion of each item follows the standard rules, e.g., when as_a() is used to convert an integer to a string,
no ASCII conversion is performed. Similarly, if as_a() is used to convert a simple list of integers to a keyed
list of strings, no ASCII conversion is performed.

No checking is performed to ensure the value is valid when casting from a numeric or Boolean type to an
enumerated type, or when casting between enumerated types.

— The as_a() pseudo-method, when applied to a scalar list, creates a new list whose size is the same as
the original size and then casts each element separately.
Copyright © 2015 IEEE. All rights reserved. 81

IEEE
Std 1647-2015 IEEE STANDARD
— When the as_a() operator is applied to a list of structs, the list items for which the casting failed are
omitted from the list.

— as_a() can be used to convert a string to an enumerated type. The string has to exactly match one of
the possible values of that type, using a case-sensitive string comparison, or a runtime error shall be
issued.

See also 4.16.1.

5.8.2.5 Type conversion between reals and non-numeric scalars

Converting a non-numeric scalar type object to a real type object using the as_a() operator uses the
following process:

a) The scalar type object is first converted to an integer value.

b) The object is then converted to a real value according to process and rules listed in 5.5.

Additional rules apply to converting non-numeric scalar objects to real objects using the as_a() operator:

— When converting a string value to real using the as_a() operator, the string is parsed as if it was a
real literal, and the value of the real literal is returned.

— If the string does not conform to the definition of a real literal, an error is emitted.

5.8.2.6 Type conversion between numeric lists and sets

Numeric lists (including keyed lists) can be converted to sets and vice versa using the as_a() operator.

When a numeric list is converted to a set, as_a() returns a set that contains the numeric values of all and only
items of the list. The order of items in the list and the number of their appearances are disregarded. An empty
list is converted to an empty set.

For example, {1;5;3;2;1}.as_a(set) returns [1..3,5].

Converting a set to a numeric list uses the following process:

a) All the numeric values are retrieved from the set from the lower bound to upper bound, i.e., in the
increasing order.

a) Each numeric value is then automatically cast to the type of list elements, according to rules listed in
5.6

An empty set is converted to an empty list.

For example; [-1..1].as_a(list of int) returns {-1;0;1}, and [-1..1].as_a(list of
uint) returns {MAX_UINT;0;1}.
82 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
5.8.3 all_values()

This returns a list that contains all the legal values of the specified scalar type. The order of the items is from
the smallest to the largest. When the type is an enumerated type, this order is determined by the numeric
values of the items.

Syntax example:

print all_values(reg_address)

5.8.4 set_of_values()

This returns a set of all the legal values of the specified numeric type. For example,
set_of_values(uint(bits:4)) returns the set [0..15], and
set_of_values(int[1..10]) returns the set [1..10].

Syntax example:

print set_of_values(reg_address)

5.8.5 full_set_of_values()

This returns a set of all possible values of the specified numeric type. It is determined by the bit width and
signedness of the type only, and any range restriction specified by a range modifier is disregarded. The
resulting set may include values that are not legal values of the type, provided that they are possible values.

Purpose Access all values of a scalar type

Category Pseudo-routine

Syntax all_values(scalar-type: type name): list of scalar type

Parameters scalar-type Any legal e scalar type.

Purpose Access the set of all legal values of a numeric type

Category Pseudo-routine

Syntax set_of_values(numeric-type: type name): set

Parameters
numeric-type Any legal e numeric type, except unbounded integer types that have no range

restriction.

Purpose Access the set of all possible values of a numeric type

Category Pseudo-routine

Syntax full_set_of_values(numeric-type: type name): set

Parameters numeric-type Any legal e numeric type, except unbounded integer types that have no range
restriction.
Copyright © 2015 IEEE. All rights reserved. 83

IEEE
Std 1647-2015 IEEE STANDARD
For example, set_of_values(uint(bits:4)[1..10]) returns [1..10], but
full_set_of_values(uint(bits:4)[1..10]) returns [0..15].

For types that have no range restrictions, the result of full_set_of_values() is equivalent to the result of
set_of_values().

Syntax example:

print full_set_of_values(reg_address)
84 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
6. Structs, subtypes, and fields

The basic organization of an e program is a tree of structs. A struct is a compound type that contains data
fields, procedural methods, and other members. It is the e equivalent of a class in other OO languages. A
base struct type can be extended by adding members. Subtypes can be created from a base struct type, which
inherit the base type’s members and contain additional members. A field is a feature of a struct that can hold
data. Fields can be scalars or references to structs or lists.

An extension can reside in a module outside of where it was originally defined, in which case, the extending
module shall be loaded after the original module. For more details about load ordering, see Annex B.

6.1 Structs overview

Structs are used to define data elements and behavior of components of a test environment.

— A struct can hold all types of data and methods.

— All user-defined structs inherit from the predefined base struct type, any_struct.

— For reusability of e code, use extend to add struct members or change the behavior of a previously
defined struct.

Inheritance is implemented in e by using either of the following mechanisms:

a) “when” inheritance is specified by defining subtypes with when struct members.

b) “like” inheritance is specified with the like clause in new struct definitions.

The best inheritance methodology for most applications is when inheritance (see 30.2.4 and Annex C). Note
that struct types can also be defined implicitly through the instantiation of templates. Template instances can
be extended, inherited from, or used as variable types, just like explicitly defined struct types. See Clause 8.
Copyright © 2015 IEEE. All rights reserved. 85

IEEE
Std 1647-2015 IEEE STANDARD
6.2 Defining structs: struct

Structs are used to define the data elements and behavior of components and the test environment. Structs
contain struct members of the types listed in the preceding Parameters description. Struct members can be
conditionally defined (see 6.6).

The optional like clause is an inheritance directive. All struct members defined in base-struct-type are
implicitly defined in the struct subtype, struct-type. New struct members can also be added to the inheriting
struct subtype, and methods of the base struct type can be extended in the inheriting struct subtype.

Additional subtypes can, in turn, be derived from a subtype. In the following example, the subtype
agp_transaction is derived from the (previously defined) pci_transaction subtype. Each
subtype can add fields to its base type and place its own constraints on fields of its base type.

Syntax example:

type AGPModeType : [AGP_2X, AGP_4X];

struct agp_transaction like pci_transaction {
 block_size : uint;
 mode : AGPModeType;

 when AGP_2X agp_transaction {
 keep block_size == 32
 };

 when AGP_4X agp_transaction {
 keep block_size == 64
 }
}

Purpose Define a data struct

Category Statement

Syntax struct struct-type [like base-struct-type] {
[struct-member; ...]}

Parameters

struct-type The name of the new struct type.

base-struct-type The type of the struct from which the new struct inherits its members.

struct-member;
...

The contents of the struct. The following are types of struct members:

— data fields for storing data

— methods for procedures

— events for defining temporal triggers

— coverage groups for defining coverage points

— when, for specifying inheritance subtypes

— declarative constraints for describing relations between data fields

— on, for specifying actions to perform upon event occurrences

— expect, for specifying temporal behavior rules

The definition of a struct can be empty, containing no members.
86 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
6.3 Extending structs: extend type

This adds struct members to a previously defined struct or struct subtype. Members added to the base struct
type in extensions apply to all other extensions of the same struct, e.g., if a method in a base struct is
extended using is only, it overrides that method in every one of the like children.

If like inheritance has been used on a struct type, there are limitations on further extending the original base
struct type definition; see 6.4.

Syntax example:

type packet_kind : [atm, eth];

struct packet {
 len : int;
 kind : packet_kind
};

extend packet {
 keep len < 256
}

6.4 Restrictions on inheritance

The following restrictions shall apply when using inheritance:

— Generation of a parent does not create like children.

— when subtypes shall not be added to a struct with like children. Similarly, a like child shall not be
created from a struct that has when subtypes.

Purpose Extend an existing data struct

Category Statement

Syntax extend [struct-subtype] base-struct-type {
[struct-member; ...]}

Parameters

struct-subtype Adds struct members to the specified subtype of the base struct type only. The
added struct members are known only in that subtype, not in other subtypes.

base-struct-type The base struct type to extend.

struct-member;
...

The contents of the struct. The following are types of struct members:

— data fields for storing data

— methods for procedures

— events for defining temporal triggers

— coverage groups for defining coverage points

— when, for specifying inheritance subtypes

— declarative constraints for describing relations between data fields

— on, for specifying actions to perform upon event occurrences

— expect, for specifying temporal behavior rules

The definition of a struct can be empty, containing no members.
Copyright © 2015 IEEE. All rights reserved. 87

IEEE
Std 1647-2015 IEEE STANDARD
6.5 Extending subtypes

A struct subtype is an instance of the struct in which one of its fields has a particular value. For example, the
packet struct defined in the following example has atm packet and eth packet subtypes,
depending on whether the kind field is atm or eth.

Example

type packet_kind : [atm, eth];

struct packet {
 len : int;
 kind : packet_kind
};

extend atm packet {
 keep len == 53
}

Similar to structs, a struct subtype can be extended; the extension shall only apply to that subtype.

6.6 Creating subtypes with when

The when struct member creates a conditional subtype of the current struct type when a particular field of
the struct has a given value. This is called “when” inheritance and is one of two techniques that e provides
for implementing inheritance. The other is called “like” inheritance. When inheritance is described in this
subclause. Like inheritance is described in 6.2.

When inheritance is the recommended technique for modeling in e. Like inheritance is more appropriate for
procedural test bench programming. When and like inheritance are compared in Annex C.
88 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
6.6.1 when

Use the when construct to create families of objects, in which multiple subtypes are derived from a common
base struct type. A subtype is a struct type in which specific fields of the base struct have particular values,
e.g.,

a) If a struct type named packet has a field named kind that can have a value of eth or atm, then
two subtypes of packet are eth packet and atm packet.

b) If the packet struct has a Boolean field named good, two subtypes are FALSE’good packet
and TRUE’good packet.

c) Subtypes can also be combinations of fields, such as eth TRUE’good packet and
eth FALSE’good packet.

Struct members defined in a when construct shall only be accessed in the subtype, not in the base struct.
This provides a way to define a subtype that has some struct members in common with the base type and all
of its other subtypes, but has other struct members that belong only to the current subtype.

If like inheritance is used to create a subtype of a base struct type, the base type shall not be extended by
using when.

Syntax example:

struct packet {

 len : uint;

 good : bool;

 when FALSE’good packet {

 pkt_msg() is {

 out("bad packet")

 }

 }

}

Purpose Define a struct subtype

Category Struct member

Syntax when determinant …[base-struct-type] {
struct-member; …}

Parameters

determinant One or more subtype determinants separated by a space. A subtype
determinant is in one of the following two forms:

a) value[‘field-name]—where value is a legal value of one of the
context struct’s enumerated fields, and field-name is the name of the
corresponding field. When field-name is omitted, value must be
associated with one of the struct's fields unambiguously.

b) [(TRUE|FALSE)’]field-name—where field-name is the name of a
Boolean field of the context struct. If a Boolean value is omitted, it is
taken to be TRUE.

base-struct-type The name of the context base struct type to which the when determinants
apply. Providing this parameter is optional (it is inferred from the syntactic
context if omitted).

struct-member;
...

Definition of one or more struct members for the struct subtype.
Copyright © 2015 IEEE. All rights reserved. 89

IEEE
Std 1647-2015 IEEE STANDARD
6.7 Extending when subtypes

There are two general rules governing the extensions of when subtypes:

a) If a struct member is declared in the base struct, it shall not be re-declared in any when subtype, but
it can be extended.

b) With the exception of coverage groups and the events associated with them, any struct member
defined in a when subtype does not apply or is unknown in other subtypes, including the following:

1) fields

2) constraints

3) events

4) methods

5) on

6) expect

7) assume

6.7.1 Coverage and when subtypes

All coverage events shall be defined in the base struct. Attempts to do so within a subtype, however, shall
result in a load time error. Coverage groups shall be defined in the base struct or in the subtype.

6.7.2 Extending methods in when subtypes

A method defined or extended within a when construct is executed in the context of the subtype and can
freely access the unique struct members of the subtype with no need for any casting.

When a method is declared in a base type, each extension of the method in a subtype shall have the same
parameters and return type as the original declaration. Attempts to do otherwise shall result in a load time
error. However, if a method is not declared in the base type, each definition of the method in a subtype can
have different parameters and return type.

If more than one method of the same name is known in a when subtype, any reference to that method is
ambiguous and shall result in a load-time error. To remove the ambiguity from such a reference, use the
as_a() type casting operator (see 5.8.1) or the when subtype qualifier syntax.

Method calls are checked when the e code is parsed. If there is no ambiguity, the method to be called is
selected and all similar references are resolved in the same manner.

See also 30.3.2.
90 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
6.8 Defining fields: field

This defines a field to hold data of a specific type. It can be a constant value (const), a physical field (%) or
a virtual field (the default), and generated (the default) or not generated (!). For scalar data types, the size of
the field can also be specified in bits or bytes.

Syntax example:

private const %packet : packet_t

6.8.1 Constant values

const identifies a field whose value is kept constant throughout the lifetime of the object and enforces this
constant value. The e compiler may take advantage of const declarations to optimize memory use. A
significant reduction in memory consumption may result from declaring a when determinant field (see 6.6)
as const.

6.8.1.1 Initializing const fields

Initialization of fields declared as const shall be completed during the creation phase of a struct.

a) A value for a const field can be generated during the generation of the enclosing struct.

b) A value can be assigned to a const field:

1) During generation, if the field is also marked as do-not-generate, using pre_generate()
(see 10.5.2) or post_generate() (see 10.5.3);

2) During unpacking, using do_unpack() (see 19.4.1.1.2);

Purpose Define a struct field

Category Struct member

Syntax [package | protected | private] [const] [!] [%] field-name[: type] [[min-val .. max-val]]
[((bits | bytes):num)]

Parameters

package | pro-
tected | private

Sets any access restriction: which code, at what scope, can access this struct
member. Otherwise, the default setting is: all code has access to this struct
member. See 22.3 for the keyword definitions.

const Denotes this field shall retain a constant value throughout its lifetime.

! Denotes an ungenerated field. The ! and % options can be used together, in
either order.

% Denotes a physical field. The ! and % options can be used together, in either
order.

field-name The name of the field being defined.

type The type for the field. This can be any scalar type, string, struct, or list.
If the field name is the same as an existing type, the :type part of the field
definition can be omitted. Otherwise, the type specification is required.

min-val..max-val An optional range of values for the field. If no range is specified, the range is
the default range for the field’s type.

(bits: | bytes:
num)

The width of the field in bits or bytes. This syntax can be used for any scalar
field, even if the field has a type with a known width.
Copyright © 2015 IEEE. All rights reserved. 91

IEEE
Std 1647-2015 IEEE STANDARD
3) By using an assignment action while creating an object, with a new…with action block (see
4.16.2) or the init() method (see 27.2.2.1).

In these contexts, a const field of the newly created struct may be used on the left side of an
assignment operator.

c) A const field can also be initialized by using a built-in initialization mechanism, such as the copy()
(see 27.4.1) or read_binary_struct() method (see 29.5.2).

d) A const field can only be assigned a value once.

6.8.1.2 Restrictions

— Fields of list type (see 6.9) shall not be declared const.

— Fields declared under when subtypes with a non-constant determinant shall not be declared const.

— Fields of enum types (see 5.7) that are declared const have no default value upon creation of the
struct [even if zero (0) is a possible enumerated value]; they need to be initialized as specified in
6.8.1.1.

— Constant fields shall not be passed by reference.

— A const field shall only be initialized with one of the constructs listed in 6.8.1.1.

6.8.2 Physical fields

A field defined as a physical field (with the % option) is packed when the struct is packed. Fields that
represent data to be sent to the HDL device in the simulator or that are to be used for memories need to be
physical fields. Nonphysical fields are called virtual fields and are not packed automatically when the struct
is packed, although they can be packed individually.

If no range is specified, the width of the field is determined by the field’s type. For a physical field, use the
(bits : num or bytes : num) syntax to specify the width when the field’s type does not have a known width.

6.8.3 Ungenerated fields

A field defined as ungenerated (with the ! option) is not generated automatically. This is useful for fields
that are to be explicitly assigned during a test or whose values involve computations that cannot be
expressed in constraints.

Ungenerated fields have default initial values (0 for scalars, NULL for structs, and an empty list for lists). An
ungenerated field whose value is a range (such as [0..100]) gets the first value in the range. If the field is
a struct, its values remains NULL; therefore, the referenced struct is not allocated and none of the fields in it
are generated.

6.8.4 Assigning values to fields

Unless a field is defined as ungenerated, a value is generated for it when the struct is generated, subject to
any constraints that exist for the field. However, even for generated fields, values can be assigned in user-
defined methods or predefined methods, such as init(), pre_generate(), or post_generate(). The ability to
assign a value to a field is not affected by either the ! option or any generation constraints.
92 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
6.9 Defining list fields

This subclause defines list fields.

6.9.1 list of

This defines a list of items of the specified type.

An initial size can be specified for the list; the list initially contains that number of items. The size shall
conform to the initialization rules, the generation rules, and the packing rules. Even if an initial size is
specified, the list size can change during a test if the list is operated on by a list method that changes the
number of items.

All list items are initialized to their default values when the list is created. For a generated list, the initial
default values are replaced by generated values. For information about initializing list items to particular
values, see 5.3.3.6 and 10.2.8.

Syntax example:

packets : list of packet

Purpose Define a list field

Category Struct member

Syntax [!][%]list-name[[length-exp]]: list of type

Parameters

! Do not generate this list. The ! and % options can be used together, in either
order.

% Denotes a physical list. The ! and % options can be used together, in either
order.

list-name The name of the list being defined.

length-exp An expression that gives the initial size for the list. The expression shall
evaluate to a non-negative integer.

type The type of items in the list. This can be any scalar type, string, or struct. It
shall not be a list.
Copyright © 2015 IEEE. All rights reserved. 93

IEEE
Std 1647-2015 IEEE STANDARD
6.9.2 list(key) of

Keyed lists are used to enable faster searching of lists by designating a particular field or value to use during
the search. A keyed list can be used, for example, in the following ways:

— As a hash table, in which searching only for a key avoids the overhead of reading the entire contents
of each item in the list.

— For a list that has the capacity to hold many items, but only contains a small percentage of its
capacity, randomly spread across the range of possible items, e.g., a sparse memory implementation.

Besides the key parameter, the keyed list syntax differs from the regular list syntax in the following ways:

a) The list shall be declared with the ! do-not-generate operator. This means a keyed list needs to be
built item-by-item, since it cannot be generated.

b) The [exp] list size initialization syntax is not allowed for keyed lists, i.e., list[exp]: list(key: key) of
type is not legal. Similarly, keep shall not be used to constrain the size of a keyed list.

c) A keyed list is a distinct type, different from a regular list. This means a keyed list cannot be
assigned to a regular list or vice versa, e.g., if list_a is a keyed list and list_b is a regular list,
list_a = list_b shall result in an error.

If the same key value exists in more than one item in a keyed list, the keyed list pseudo-methods use the
latest item in the list (the one with the highest list index number). Other items with the same key value are
ignored. The keyed list pseudo-methods (see 26.7) only work on lists that were defined and created as keyed
lists. Conversely, restrictions apply when using regular list pseudo-methods or other operations on keyed
lists (see 26.7.4).

Syntax example:

!locations : list(key:address) of location

Purpose Define a keyed list field

Category Struct member

Syntax ![%]list-name: list(key: key-field) of type

Parameters

! Do not generate this list. For a keyed list, the ! is required, not optional.

% Denotes a physical list. The % option can precede or follow the !.

list-name The name of the list being defined.

key-field The key of the list. For a list of structs, it is the name of a field of the struct.
For a list of scalar or string items, it is the item itself, represented by the it
variable.
This is the field or value that the keyed list pseudo-methods check when they
operate on the list.

type The type of items in the list. This can be any scalar type, string, or struct. It
shall not be a list.
94 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
6.10 Projecting list of fields

This returns a list containing the contents of the specified field-name for each item in the list. If the list is
empty, it returns an empty list. This syntax is the same as list.apply(field) (see 26.4.1).

An error shall be issued if the list is not a list of structs or the struct type does not have a field named field-
name.

Syntax example:

s_list.fld_nm

6.11 Defining attribute fields

Defining attributes controls how a field behaves when it is copied or compared. These attributes are used by
deep_copy(), deep_compare(), and deep_compare_physical(). For a full description of the behavior
specified by each expression, see 28.1.1, 28.1.2, or 28.1.3, respectively.

Purpose Specifying a field from all items in a list

Category Pseudo-method

Syntax list.field-name

Parameters
list A list of structs.

field-name A name of a field or list in the struct type.

Purpose Define the behavior of a field when copied or compared

Category Unit member

Syntax attribute field-name attribute-name = exp

Parameters

field-name The name of a field in the current struct.

attribute-name attribute-name is one of the following:

a) deep_copy—controls how the field is copied by the deep_copy()
routine.

b) deep_compare—controls how the field is compared by the
deep_compare() routine.

c) deep_compare_physical—controls how the field is compared by
the deep_compare_physical() routine.

d) deep_all—controls how the field is copied by the deep_copy()
routine or compared by the deep_compare()
or deep_compare_physical() routines.

exp exp is one of the following:

a) normal—performs a deep (recursive) copy or comparison.

b) reference—performs a shallow (non-recursive) copy or comparison.

c) ignore—do not copy or compare.
Copyright © 2015 IEEE. All rights reserved. 95

IEEE
Std 1647-2015 IEEE STANDARD
To determine which attributes of a field are valid, all extensions to a unit or struct are scanned in the order
they were loaded. If several values are specified for the same attribute of the same field, the last attribute
specification loaded is the one that is used.

The attribute construct can appear anywhere, including inside a when construct or an extend construct.

Syntax example:

attribute channel deep_copy = reference
96 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
7. Units

This clause describes the constructs used to define units and their use in a modular verification methodology
(see also Clause 6).

7.1 Overview

Units are the basic structural blocks for creating verification modules (verification cores) that can easily be
integrated to test larger and larger portions of an HDL design as it develops. Units, like structs, are
compound data types that contain data fields, procedural methods, and other members. Unlike structs,
however, a unit instance is bound to a particular component in the DUT (an HDL path). Furthermore, each
unit instance has a unique and constant place (an e path) in the runtime data structure of an e program. Both
the e path and the complete HDL path associated with a unit instance are determined during pre-run
generation.

The basic runtime data structure of an e program is a tree of unit instances whose root is sys, the only
predefined unit in e. Additionally there are structs that are dynamically bound to unit instances. The runtime
data structure of a typical e program is similar to that of the XYZ_router program shown in Figure 3.

Each unit instance in the unit instance tree of the XYZ_router matches a module instance in the Verilog
DUT, as shown in Figure 4. The one-to-one correspondence in this particular design between e unit
instances and DUT module instances is not required for all designs. In more complex designs, there can be
several levels of DUT hierarchy corresponding to a single level of hierarchy in the tree of e unit instances.

sys

XYZ_router

kind addr len data parity

chan2chan1chan0 current_packet

unit instance

struct instance

field

key

Figure 3—Runtime data structure of the XYZ_Router

top

router_i

chan2chan1chan0

Figure 4—DUT router hierarchy
Copyright © 2015 IEEE. All rights reserved. 97

IEEE
Std 1647-2015 IEEE STANDARD
By binding an e unit instance to a particular component in the DUT hierarchy, signals can be referenced
within that DUT component using relative HDL pathnames. When the units are integrated into a unit
instance tree during pre-run generation, the complete pathname for each referenced HDL object is
determined by concatenating the complete HDL path of the parent unit to the path of the unit containing the
referenced object. This ability to use relative pathnames to reference HDL objects means the combination of
verification cores can be changed as the HDL design and the verification environment evolve; regardless of
where the DUT component is instantiated in the final integration, the HDL pathnames in the verification
environment remain valid.

7.1.1 Units versus structs

Modeling a DUT component with a unit or struct often depends on which verification strategy is employed.
Compelling reasons for using a unit instead of a struct include the following:

— The DUT component will be tested both as a stand-alone and integrated into a larger system.

Modeling the DUT component with a unit allows the use of relative pathnames when referencing
HDL objects. When integrating the component with the rest of the design, simply change the HDL
path associated with the unit instance and all the HDL references it contains are updated to reflect
the component’s new position in the design hierarchy. This methodology eliminates the need for
computed HDL names (e.g., ‘(path_str).sig’), which can impact runtime performance.

— Methods that access many signals at runtime will be used.

The correctness of all signal references within units is determined and checked during pre-run gen-
eration. If an e program does not contain user-defined units, the absolute HDL references within
structs are also checked during pre-run generation. However, if it does contain user-defined units,
the relative HDL references within structs are checked at runtime. In this case, using units rather
than structs can enhance runtime performance.

On the other hand, using a struct to model abstract collections of data, such as packets, allows more
flexibility in generating the data. With structs, the data can be generated during pre-run generation, at
runtime, or on-the-fly (possibly in response to conditions in the DUT). Unit instances, however, can only be
generated during pre-run generation, because each unit instance has a unique and constant place (an e path)
in the runtime data structure of an e program, just as an HDL component instance has a constant place in the
DUT hierarchical tree. Thus, the unit tree cannot be modified by generating unit instances on-the-fly.

NOTE—An allocated struct instance automatically establishes a reference to its parent unit. If this struct is generated
during pre-run generation, it inherits the parent unit of its parent struct. If the struct is dynamically allocated by the new
or gen action, then the parent unit is inherited from the struct belonging to the enclosing method.

7.1.2 HDL paths and units

Relative HDL paths are essential in creating a verification module that can be used to test a DUT
component. Once an e unit instance is bound to a particular component in the DUT hierarchy, regardless of
where the DUT component is instantiated in the final integration, the HDL pathnames are still valid.

Example

The XYZ_router shown in Figure 3 can be bound to the DUT router shown in Figure 4 as follows:

a) Use the hdl_path() method within a keep constraint to associate a unit or unit instance with a DUT
component. The following code extends sys by creating an instance of the XYZ_router unit and
binds the unit instance to the router_i instance in the DUT.

extend sys {
 unit_core : XYZ_router is instance;
 keep unit_core.hdl_path() == "top.router_i"
}

98 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
b) Similarly, the following code creates three instances of XYZ_channel in XYZ_router and con-
strains the HDL path of the instances to be chan0, chan1, and chan2. These are the names of the
channel instances in the DUT relative to the router_i instance.

unit XYZ_router {
 channels : list of XYZ_channel is instance;
 keep channels.size() == 3;
 keep for each in channels {
 .hdl_path() == append("chan", index)
 }
}

The full path for a unit instance is used to resolve any internal HDL object references that contain relative
HDL paths. It is determined during generation by appending the HDL path of the child unit instance to the
full path of its parent, starting with sys. sys has the empty full path " ". The full path for the XYZ_router
instance is top.router_i and that for the first channel instance is top.router_i.chan0.

NOTE—By default, the do_print() method of any_unit prints two predefined lines, as well as the user-defined fields.
The predefined lines display the e path and the full HDL path for that unit. The e path line contains a hyperlink to the
parent unit.

7.1.3 Methodology limitations and recommendations

Fields of type unit can be generated dynamically. However, the field shall be constrained to only refer to an
existing unit instance.

The following limitations are implied by the nature of unit instances and fields of type unit:

— Unit instances cannot be the object of a new or gen action or a call to copy().

— Unit instances cannot be placed on the LHS of the assignment operator.

— List methods that alter the original list, like list.add() or list.pop(), cannot be applied to lists of unit
instances.

— Units are intended to be used as structural components and not as data carriers. Therefore, using
physical fields in unit instances, as well as packing or unpacking into unit instances, is not
recommended. Unpacking into a field of type unit when the field is NULL shall cause a runtime error.

To create a modular verification environment, the following recommendations are also important:

a) For numeric settings, use set_config_max() for any global configuration options.

b) Avoid global changes to the default packing options. Instead, define unit-specific options in the top-
level unit and access them from lower-level units with get_enclosing_unit().

c) Place references to HDL objects in unit methods. To access HDL objects from struct methods,
declare additional methods in a unit. When these access methods are one line of e code, declare them
as inline methods for maximum efficiency.

d) Use computed pathnames in structs that can be dynamically associated with more than one unit.

e) Pre-run generation is performed before creating the stubs file (see Clause 23). To minimize the
time required to create a stubs file, move any pre-run generation that is not related to building the
tree of unit instances into the procedural code, preferably as an extension of the run() method of the
appropriate structs.

7.2 Defining units and fields of type unit

The following subclauses describe the constructs for defining units and fields of type unit.
Copyright © 2015 IEEE. All rights reserved. 99

IEEE
Std 1647-2015 IEEE STANDARD
7.2.1 unit

Because the base unit type (any_unit) is derived from the base struct type (any_struct), user-defined units
have the same predefined methods. A unit type can be extended or used as the basis for creating unit
subtypes. Extended unit types or unit subtypes inherit the base type’s members and contain additional
members (see also 7.1.1).

Syntax example:

unit XYZ_channel {

 event external_clock;

 event packet_start is rise(’valid_out’)@sim;

 event data_passed;

 data_checker() @external_clock is {

 while ’valid_out’ == 1 do {

 wait cycle;

 check that ’data_out’ == ’data_in’

 };

 emit data_passed

 };

 on packet_start {

 start data_checker()

 }

}

Purpose Define a data struct associated with an HDL component or block

Category Statement

Syntax unit unit-type [like base-unit-type] {
[unit-member; ...]}

Parameters

unit-type The name of the unit.

base-unit-type The name of the unit from which the new unit inherits its members.

unit-member; ... The contents of the unit. Like structs, units can have the following types of
members:

— data fields for storing data

— methods for procedures

— events for defining temporal triggers

— coverage groups for defining coverage points

— when, for specifying inheritance subtypes

— declarative constraints for describing relations between data fields

— on, for specifying actions to perform upon event occurrences

— expect, for specifying temporal behavior rules

A unit can be empty, containing no members.
100 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
7.2.2 field: unit-type is instance

This defines a field of a unit to be an instance of a unit type. Units can be instantiated within other units, thus
creating a unit tree. The root of the unit tree is sys, the only predefined unit in e. The do-not-generate
operator (!) is not allowed with fields of type unit instance. The physical field operator (%) is not allowed
with fields of type unit instance. Instantiating a unit in a struct shall cause a compile-time error; units can
only be instantiated within another unit.

Syntax example:

cpu : XYZ_cpu is instance

7.2.3 field: unit-type

This defines a field of unit type. A field of unit type is always either NULL or a reference to a unit instance of
a specified unit type. If a field of type unit is generated, it shall be constrained to an existing unit instance.

Do not use the physical field operator (%) with fields of type unit.

Syntax example:

extend XYZ_router {

 !current_chan : XYZ_channel

}

Purpose Define a unit instance field

Category Unit member

Syntax field-name[: unit-type] is instance

Parameters

field-name The name of the unit instance being defined.

unit-type The name of a unit type.
If the field name is the same as an existing type, the : unit-type part of the
field definition can be omitted. Otherwise, the type specification is required.

Purpose Define a field of type unit

Category Struct or unit member

Syntax [!] field-name[: unit-type]

Parameters

! Denotes an ungenerated field. If this field is generated on-the-fly, it needs to
be constrained to an existing unit instance or a runtime error shall occur.

 field-name The name of the field being defined.

unit-type The name of a unit type.
If the field name is the same as an existing type, the : unit-type part of the
field definition can be omitted. Otherwise, the type specification is required.
Copyright © 2015 IEEE. All rights reserved. 101

IEEE
Std 1647-2015 IEEE STANDARD
7.2.4 field: list of unit instances

This defines a list field of unit instances. A list of unit instances can only be created during pre-run
generation and cannot be modified after it is generated. List operations, such as list.add() or list.pop(), that
alter the list created during pre-run generation are not allowed for lists of unit instances.

Do not use the physical field operator (%) with lists of unit instance.

Syntax example:

channels : list of XYZ_channel is instance

7.2.5 field: list of unit-type

This defines a list field of type unit. An item of a list field of type unit is always either NULL or a reference
to a unit instance of the specified unit type. If a list field of type unit is generated, either the entire list shall
be constrained to an existing list of unit instances or each item in the list shall be constrained to an existing
unit instance.

Do not use the physical field operator (%) with lists of unit type.

Syntax example:

var currently_valid_channels : list of XYZ_channel

Purpose Define a list field of unit instances

Category Struct or unit member

Syntax name[[length-exp]]: list of unit-type is instance

Parameters

name The name of the list being defined.

length-exp An expression that gives the initial size for the list.

unit-type A unit type.

Purpose Define a list field of type unit

Category Struct or unit member

Syntax [!]name[[length-exp]]: list of unit-type

Parameters

! Do not generate this list.

name The name of the list being defined.

length-exp An expression that gives the initial size for the list.

unit-type A unit type.
102 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
7.3 Unit attributes

Units have attributes that affect their binding to a particular component in the DUT. Use the attribute()
syntax to assign unit attributes in constraints, as follows:

keep [soft] [unit-exp.]attribute() == value

Use soft constraints for attributes that can be overridden.

Unit attributes can also be called as methods, in which case they shall return the value assigned to them in
the pre-run generation phase.

7.3.1 hdl_path()

Specifies the HDL path of a unit instance. The most important role of this method is to bind a unit instance
to a particular component in the DUT hierarchy. Binding an e unit or unit instance to a DUT component
enables the referencing of signals within that component using relative HDL pathnames.

Regardless of where the DUT component is instantiated in the final integration, the HDL pathnames are still
valid. The binding of unit instances to HDL components is a part of the pre-run generation process and
needs to be done by using keep constraints. The HDL path for sys cannot be constrained.

NOTE—Although absolute HDL paths are allowed, relative HDL paths are recommended for using a modular verifica-
tion strategy.

Syntax example:

extend dut_error_struct {

 write() is first {

 var channel : XYZ_channel =

 source_struct().try_enclosing_unit(XYZ_channel);

 if channel != NULL then {

 out("Error in XYZ channel: instance ", channel.hdl_path())

 }

 }

}

Purpose Specify a relative HDL path for a unit instance

Category Unit attribute

Syntax [unit-exp.]hdl_path(): string

Parameters unit-exp An expression that returns a unit instance. If no expression is specified, the
current unit instance is assumed.
Copyright © 2015 IEEE. All rights reserved. 103

IEEE
Std 1647-2015 IEEE STANDARD
7.3.2 agent()

Specifying an agent by constraining the agent() attribute identifies the simulator and/or the HDL that is used
to simulate the corresponding DUT component. Once a unit instance has an explicitly specified agent name
then all other unit instances instantiated within it are implicitly bound to the same agent name, unless
another agent is explicitly specified.

The following considerations also apply:

— The list of legal values to which the agent() attribute can be constrained is implementation-
dependant, but the list needs to describe the various simulators and HDL languages supported by the
implementation. It is suggested the values verilog and vhdl be part of this list.

— An agent name can be omitted in a single HDL environment, but it needs to be defined implicitly or
explicitly in a mixed HDL environment for each unit instance that is associated with a non-empty
hdl_path(). If an agent name is not defined for a unit instance with a non-empty hdl_path() in a
mixed HDL environment, an error message shall be issued.

— Given the hdl_path() and agent() constraints, a correspondence map is established between the unit
instance HDL path and its agent name. Any HDL path below the path in the map is associated with
the same agent, unless otherwise specified. This map is further used internally to pick the right
adapter for each accessed HDL object.

— It is possible to access Verilog signals from a VHDL unit instance code and vice versa. Every signal
is mapped to its HDL domain according to its full path, regardless of the specified agent of the unit
from which the signal is accessed.

— When the agent() method is called procedurally, it returns the agent of the unit. The spelling of the
agent string is exactly as specified in the corresponding constraint. An unsupported agent name shall
cause an error message during the test phase.

NOTE—Agents are bound to unit instances during the generation phase. Consequently, there is no way to map between
HDL objects and agents before generation. As a result of this limitation, HDL objects in a mixed Verilog/VHDL envi-
ronment cannot be accessed before generation from sys.setup().

Syntax example:

router : XYZ_router is instance;

 keep router.agent() == "verilog"

7.4 Predefined methods of any_unit

There is a predefined generic type any_unit, which is derived from any_struct. any_unit is the base type
implicitly used in user-defined unit types, so all predefined methods for any_unit are available for any user-
defined unit. The predefined methods for any_struct are also available for any user-defined unit.

Purpose Maps the DUT’s HDL partitions into e code

Category Unit attribute

Syntax [unit-exp.]agent():string

Parameters unit-exp An expression that returns a unit instance. If no expression is specified, the
current unit instance is assumed.
104 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
7.4.1 full_hdl_path()

Returns the absolute HDL path for the specified unit instance. This method is used mainly in informational
messages.

Syntax example:

out("Mutex violation in ", get_unit().full_hdl_path())

7.4.2 e_path()

Returns the location of a unit instance in the unit tree. This method is used mainly in informational
messages.

Syntax example:

out("Started checking ", get_unit().e_path())

7.4.3 get_parent_unit()

Returns a reference to the unit containing the current unit instance.

Syntax example:

out(sys.unit_core.channels[0].get_parent_unit())

Purpose Return an absolute HDL path for a unit instance

Category Predefined method of any_unit

Syntax [unit-exp.]full_hdl_path(): string

Parameters unit-exp An expression that returns a unit instance. If no expression is specified, the
current unit instance is assumed.

Purpose Returns the location of a unit instance in the unit tree

Category Predefined method of any_unit

Syntax [unit-exp.]e_path(): string

Parameters unit-exp An expression that returns a unit instance. If no expression is specified, the
current unit instance is assumed.

Purpose Return a reference to the unit containing the current unit instance

Category Predefined method of any_unit

Syntax [unit-exp.]get_parent_unit(): any_unit

Parameters unit-exp An expression that returns a unit instance. If no expression is specified, the
current unit instance is assumed.
Copyright © 2015 IEEE. All rights reserved. 105

IEEE
Std 1647-2015 IEEE STANDARD
7.5 Unit-related predefined methods of any_struct

This subclause describes the predefined methods of any_struct.

7.5.1 get_unit()

When applied to an allocated struct instance, this method returns a reference to the parent unit—the unit to
which the struct is bound. When applied to a unit, it returns the unit itself.

Any allocated struct instance automatically establishes a reference to its parent unit. If this struct is
generated during pre-run generation, it inherits the parent unit of its parent struct. If the struct is dynamically
allocated by the new or gen action, then the parent unit is inherited from the struct to which the enclosing
method belongs.

This method is useful to determine the parent unit instance of a struct or unit. It can also be used to access
predefined unit members, such as hdl_path() or full_hdl_path(). To access user-defined unit members, use
7.5.2.

Syntax example:

out("Mutex violation in ", get_unit().full_hdl_path())

7.5.2 get_enclosing_unit()

Returns a reference to the nearest higher-level unit instance of the specified type, so fields of the parent unit
can be accessed in a typed manner. The parent unit can be used to store shared data or options such as
packing options that are valid for all its associated subunits or structs.

Purpose Return a reference to the unit

Category Predefined method of any_struct

Syntax [exp.]get_unit(): any_unit

Parameters
exp An expression that returns a struct or unit. If no expression is specified, the

current struct or unit is assumed.

Purpose Return a reference to the nearest unit of a specified type

Category Predefined pseudo-method of any_struct

Syntax [exp.]get_enclosing_unit(unit-type): unit-type

Parameters

exp An expression that returns a struct or unit. If no expression is specified, the
current struct or unit is assumed. a

aIf get_enclosing_unit() is called from within a unit of the same type as exp, it returns the present unit instance and
not the parent unit instance.

unit-type The name of a unit type or unit subtype.
106 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
The unit type is recognized according to the same rules used for the is a operator (see 4.16.1), i.e., if a base
unit type is specified and an instance of a unit subtype exists, the unit subtype is found. If a unit instance of
the specified type is not found, a runtime error shall be issued.

Syntax example:

unpack(p.get_enclosing_unit(XYZ_router).pack_config,
 ’data’, current_packet)

7.5.3 try_enclosing_unit()

Like get_enclosing_unit() (see 7.5.2), this method returns a reference to the nearest higher-level unit
instance of the specified type, so fields of the parent unit can be accessed in a typed manner.

Unlike get_enclosing_unit(), this method does not issue a runtime error if no unit instance of the specified
type is found. Instead, it returns NULL. This feature makes the method suitable for use in extensions to
global methods, such as dut_error_struct.write(), which can be used with more than one unit type.

Syntax example:

var MIPS := source_struct().try_enclosing_unit(MIPS)

7.5.4 set_unit()

Changes the parent unit of a struct to the specified unit instance. This method shall emit an error for units
because the unit tree cannot be modified.

Syntax example:

p.set_unit(sys.unit_core)

Purpose Return a reference to the nearest unit of a specified type or NULL

Category Predefined pseudo-method of any_struct

Syntax [exp.]try_enclosing_unit(unit-type): unit-type

Parameters

exp An expression that returns a struct or unit. If no expression is specified, the
current struct or unit is assumed. a

aIf try_enclosing_unit() is called from within a unit of the same type as exp, it returns the present unit instance and
not the parent unit instance.

unit-type The name of a unit type or unit subtype.

Purpose Change the parent unit of a struct

Category Predefined method of any_struct

Syntax [struct-exp.]set_unit(parent: exp)

Parameters

struct-exp An expression that returns a struct. If no expression is specified, the current
struct is assumed.

parent An expression that returns a unit instance.
Copyright © 2015 IEEE. All rights reserved. 107

IEEE
Std 1647-2015 IEEE STANDARD
7.6 Unit-related predefined routines

The predefined routines that are useful for units include set_config_max() and get_all_units().

7.6.1 set_config_max()

This routine sets the numeric options of a particular category to the specified maximum values.

NOTE—When working in a modular verification environment, it is recommended to use set_config_max() instead of
set_config() (see 28.9) in order to avoid possible conflicts that can happen in an integrated environment.

Syntax example:

set_config_max(memory, gc_threshold, 100M)

7.6.2 get_all_units()

This routine receives a unit type as a parameter and returns a list of instances of this unit type, as well as any
unit instances of any subtype of this unit type.

Purpose Increase values of numeric global configuration parameters

Category Predefined routine

Syntax set_config_max(category: keyword, option: keyword, value: exp [, option: keyword, value:
exp...])

Parameters

category Is one of the following: cover, gen, memory, and run, or any additional
implementation-dependent categories.

option The valid cover option is: absolute_max_buckets.
The valid generate options are:

— absolute_max_list_size

— max_depth

— max_structs

The valid memory options are:
— gc_threshold

— gc_increment

— max_size

— absolute_max_size

The valid run option is: tick_max.
The implementation can also introduce additional options.

value The valid values for each option are implementation specific.

Purpose Return a list of instances of a specified unit type

Category Pseudo-routine

Syntax get_all_units(unit-type): list of unit-type

Parameters unit-type The name of a unit type. The type needs to be defined or an error shall occur.
108 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

print get_all_units(XYZ_channel)
Copyright © 2015 IEEE. All rights reserved. 109

IEEE
Std 1647-2015 IEEE STANDARD
110 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
8. Template types

This clause describes the principles and usage of e template types. Template types in e define generic structs
and units that are parameterized by type. They can then be instantiated, giving specific types as actual
parameters.

NOTE— Because units are a special case of structs, templates can be defined for both structs and units. In general, a
template instance is a struct type. Provided it is legal, a template instance becomes a struct as soon as it is referenced. It
can be used in any context, and in any way in which a regular struct can be used.

8.1 Defining a template type

NOTE— Template names share the namespace with types, so these names cannot be the same as any other type or
template name in the same package. Templates are treated the same as types with respect to the following:

— Name resolution

— Access control

Template definition example

The following example defines a template struct that maps keys to values. The template has two type
parameters. The first parameter, <key'type>, is the map key type, and the second parameter, <value'type>, is
the value type. When this template is instantiated, the occurrences of the two parameters inside the template
body are replaced by the actual types for that instance. The second parameter has a default type: int. If the
second parameter is not provided at instantiation, the int type is used by default.

Purpose Define a template type

Category Action

Syntax
[package] template (struct|unit) template-name of (param-list)

[like base-type] {[member;...]}

Parameters

package Denotes package access restriction to this template.

struct or unit Denotes whether the instances of this template are structs or units.

template-name The name of the template.

param-list A list of (at least one) template type parameters template type parameters,
separated by commas. Each parameter is of the form:
 <[tag']type> [= default-type]
tag is an optional tag, unique for this template definition.
default-type, if specified, must be any legal type, possibly deriving from one
of the previous parameters.
If there is exactly one parameter, the parentheses may be omitted.
(see 8.1.1).

base-type The base struct from which instances of the template inherit.
The base type can itself be parameterized over one or more of the template
parameters, in which case each template instance inherits from a different
type (see 8.1.2).

member;... The body of the template, which contains fields, methods, events, and other
struct members.
The template parameters can be used within the members as appropriate (see
8.1.3).
Copyright © 2015 IEEE. All rights reserved. 111

IEEE
Std 1647-2015 IEEE STANDARD
template struct map of (<key'type>, <value'type>=int) {
keys: list of <key'type>;
values: list of <value'type>;
put(k: <key'type>, v: <value'type>) is {
...
};
get(k: <key'type>): <value'type> is {
...
}

}

See 8.2 for an example of how this template would be used.

8.1.1 About template type parameters

A template definition contains a comma-separated list of template parameters. A parameter name must have
the form <[tag']type>, and it can have an optional default type value. A default type can be any legal type.
Defaults may be specified only for consecutive parameters at the end of the parameter list. A default may not
be specified for a parameter that is followed by a parameter without a default.

The default for a parameter may be derived from one or more previous parameters. For example:

template struct map of (<key'type>, <value'type>=<key'type>) {
 ...
}

Here the second parameter is, by default, the same type as the first parameter.

When the template is instantiated, a specific type is substituted for each such parameter. Inside the template
body, a type parameter can occur at any place where a type is allowed or expected. In the template definition
example in 8.1, both <key'type> and <value'type> are used to specify the types of fields, method parameters,
and method return values.

8.1.2 Specifying a template base type

A template base type can be a concrete type, so that all of the template instances inherit from the same type,
or it can itself be parameterized over template parameters. Examples:

struct s { … };
template struct t1 of <type> like s { … };
template struct t2 of <type> like t1 of int { … }
template ordered_set of <type> like map of (<type>,<type>) {…}

As for units in general, template units cannot derive from non-unit types, either regular or template.

As for regular structs and units, the default base type for struct templates is any_struct, and the default base
type for unit templates is any_unit.

8.1.3 Template body

The template body consists of struct members. It can contain fields, methods, events, coverage groups,
constraints, and any other kind of struct members. A template parameter can be used wherever a type is
allowed.

Template body example
112 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
template struct packet of (<kind'type>, <data'type>) {
size: uint;
data1: <data'type>;
data2: <data'type>;
kind: <kind'type>;
keep size < 256;
sum_data(): <data'type> is {

return data1 + data2
}

}

8.1.4 Template types and when subtypes

A when subtype can be defined within a template in the same way that a when subtype can be defined
within a regular struct. For example, the following can be added to the packet template in the template
definition example in 8.1, assuming that <kind'type> is an enumerated type and the name of one of its items
is “red”:

Example—when subtype

template struct packet of (<kind'type>, <data'type>) {
...
when red {

red_data: <data'type>
}

}

8.2 Instantiating a template type

A template instance creates a new struct, by substituting an actual parameter for the corresponding template
parameter within the template body. This substitution also occurs in the definition of the base type.

Parameters at the end of the parameter list may be omitted in the instantiation if defaults exist for them.
There is no way in to provide a value to a parameter without providing values to all parameters preceding it.
If no value is provided for a parameter, the default is used.

NOTE— All instances of a template are considered to be defined where the template is defined, regardless of where they
are instantiated. This applies, in particular, to name resolution and access control issues: each template instance belongs
to the package in which the template was declared.

Purpose Instantiate a template

Category Type

Syntax template-name of (actual-param-list)

Parameters

template-name The name of the template.

actual-param-list A comma-separated list of actual type parameters for the template. A legal
type name must be specified for each type parameter, but it may be omitted
for parameters that have defaults. If only one parameter is specified, the
parentheses around the single actual parameter can be omitted. If no
parameters are specified, the keyword of can also be omitted.
Copyright © 2015 IEEE. All rights reserved. 113

IEEE
Std 1647-2015 IEEE STANDARD
In general, any legal type can be used as an actual type parameter, including another template instance, or
another instance of the same template. For example, given the map template in the template definition
example in 8.1, the following instances can be created:

map of (int, int)

map of (s1, s2)

map of (s, map of (string, int))

map of string

Given the packet template in the template definition example in 8.1, the following instances can be created:

packet of (color, int)

packet of (color, uint(bits: 64))

Not every template instance is legal. A template instance is illegal if, after substituting the actual template
parameters in the template body, the template body code becomes illegal. An attempt to refer to an illegal
template instance will result in a compilation error. For example, the following two instances are illegal,
because the code in the template body implies that <kind'type> must be an enum that has the value “red”:

-- Illegal template instances

packet of (int, int)

packet of ([green, blue], int)

Any two instances of a template, if their actual parameters refer to exactly the same types, are considered to
be the same instance, even if they are syntactically different. For example, in the following code, fields x
and y have the same type:

#define N 32;

type color: [red, green];

struct s {

x: packet of (color, int(bits: 64));

y: packet of (color, int(bits: N*2))

}

Because a template instance becomes a struct, its name can be used anywhere in the code where a struct
name is allowed or expected.

8.2.1 Template subtype instances

If a template definition includes when subtypes, they are referenced in the same way as regular when
subtypes. For example, given the packet template in the when subtype example in 8.1.4, the following is a
legal type name, because it denotes the red'kind subtype of the “packet of (color, int)” template instance.

red packet of (color, int)
114 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9. e ports

This clause describes ports, e unit members that enhance the portability and interoperability of verification
environments by making separation between an e unit and its interface possible.

9.1 Introduction to e ports

A port is an e unit member that makes a connection between an e unit and its interface to another internal or
external entity. There are two ways to use ports:

— Internal ports (e2e ports) connect an e unit to another e unit.

— External ports connect an e unit to a simulated object.

External ports are a generic way to access simulated objects of various kinds. An external port is bound to a
simulated object, e.g., an HDL signal in the DUT. Then all access to that signal is made via the port. The
port can be used to access a different signal simply by changing the binding; all the code that reads or writes
to the port remains the same. Similarly, port semantics remain the same, regardless of what simulator is
used. A simulator is any hardware or software agent that runs in parallel with an e program and models the
behavior of any part of the DUT or its environment.

9.1.1 Creating port instances

A port type is defined by the following aspects:

a) The kind of port: simple port, buffer port, event port, or method port.

1) Simple ports access data directly.

2) Buffer ports implement an abstraction of queues, with blocking get() and put().

3) Event ports transfer events between e units or between an e unit and a simulator.

4) Method ports enable a regular or TCM defined in an e unit or a foreign programming language
module to be called from another e unit or foreign programming language module.

b) Direction, either input or output (or inout for simple and event ports).

c) Data element, the e type that can be passed through this port.

Ports can only be instantiated within units using a unique instance name and the port type (direction, port
kind, and a kind-specific type specifier). Like units, port instances are generated during pre-run generation
and cannot be created, modified, or removed during a run.

The generic syntax for ports is:

port-instance-name : [direction] port-kind [of type-specifier] is instance

Event ports do not have a type specifier.

Examples

The following unit member creates a port instance:

data_in : in buffer_port of packet is instance

where

— The port instance name is data_in.

— The port kind is a buffer port.
Copyright © 2015 IEEE. All rights reserved. 115

IEEE
Std 1647-2015 IEEE STANDARD
— The port direction is input.

— The data element the port accepts is packet.

As another example, the following line creates a list of simple ports that each pass data of type bit:

ports : list of simple_port of bit is instance

9.1.2 Using ports

A port’s behavior is influenced by port attributes, such as hdl_path() or bind(), that are applied to port
instances using pre-run generation keep constraints. For example, the following lines of code create a port
named data and connect (bind) it to an external simulator-related object whose HDL pathname is data.

data : inout simple_port of list of bit is instance;
 keep bind(data, external);
 keep data.hdl_path() == "data"

Each port kind has predefined methods that can be used to access the port values. For example, buffer ports
have a predefined method put(), which writes a value onto an output port, as follows:

data_out : out buffer_port of cell is instance;

drive_all() @sys.any is {
 var stimuli : cell;
 var counter : int = 0;

 while counter < cells do {
 wait [1]*cycle;
 gen stimuli;
 data_out.put(stimuli);
 counter += 1
 }
}

9.1.3 Using port values and attributes in constraints

Like units, port instances can be created only during pre-run generation. They cannot be created by using
new or generated at runtime. Consequently, a port value cannot be initialized or sampled in pre-run
generation constraints. Port values can be used in on-the-fly generation constraints, in accordance with the
basic constraint principles, such as the bidirectional nature of constraints.

9.2 Using simple ports

Simple ports can be used to transfer one data element at a time to or from an external simulated object, such
as a Verilog register, a VHDL signal, a SystemC field, or an internal object (another e unit). A simple port’s
direction can be either input, output, or inout.

Use the $ port access operator to read or write port values. To access MVL on simple ports, either declare a
port’s data element to be mvl or list of mvl, or use the MVL methods. See 9.2.1 and 9.2.2 for more
information.

Internal and external ports shall have a bind() attribute that defines how they are connected. In addition, the
delayed() attribute can be used to control whether new values are propagated immediately or at the next
tick.
116 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
An external simple port needs to have an hdl_path() attribute to specify the name of the object to which it is
connected. In addition, an external simple port can have several additional attributes that enable continuous
driving of external signals (see 9.7).

9.2.1 Accessing simple ports and their values

Ports are containers, and the values they hold are separate entities from the port itself. The $ access operator
distinguishes port value expressions from port reference expressions.

The $ operator, e.g., p$, can also be used to access or update the value held in a simple port p. When used
on the RHS, p$ refers to the port’s value. On the LHS of an assignment, p$ refers to the value’s location, so
an assignment to p$ changes the value held in the port.

Without the $ operator, an expression of any type port refers to the port itself, not to its value. In particular,
an expression without the $ operator can be used for operations involving port references.

Examples

Accessing port values

Accessing a port

9.2.2 MVL on simple ports

There are two ways to read and write MVL on simple ports, as follows:

— Define a port and use the predefined MVL methods described in 9.9 to read and write values to the
port.

— Define ports of type mvl or list of mvl and use the $ access operator to read and write the port values.

Ports of type mvl or list of mvl (MVL ports) allow easy transformation between exact e values and MVL,
which is useful for communicating with objects that sometimes model bit values other than 0 or 1 during a
test. Otherwise, using non-MVL ports is preferable, since they allow keeping the port values in a bit-by-bit
representation, while MVL ports require having an e list for an MVL vector. MVL type definition and MVL
functions are described in 9.9.

print p$ Prints the value of a simple port, p. a

aCompare with print p, which prints information about port p.

p$ = 0 Assigns the value 0 to a simple port, p. b

bCompare p$ = 0;with pref = NULL, which modifies a port reference so it does not
point to any port instance.

force p$= 0 Forces a simple external port to 0.

print q$[1:0] Prints the two lists of the value of q.

print p Prints the information about port p. Port p is defined as:
p: simple_port of int (bits:8) is instance

keep q == p q refers to the port instance p. Port reference q is defined as:
!q: simple_port of int (bits:8)
Copyright © 2015 IEEE. All rights reserved. 117

IEEE
Std 1647-2015 IEEE STANDARD
The Verilog comparison operators (=== or !==) cannot be used with numeric ports or MVL ports. These
operators can be used only with the tick access syntax.

9.2.3 @sim temporal expressions with external simple ports

Specifying an event port causes e to be sensitive to the corresponding HDL signal during the entire
simulation session. This might result in some unnecessary runtime performance cost if e only needs to be
sensitive in certain scenarios. In such cases, use an external simple port in TEs with @sim instead. The
syntax is:

[change | rise | fall] (simple-port$)@sim

Typically, this syntax is used in wait actions.

Example
transaction_complete : in simple_port of bit is instance;
 keep bind(transaction_complete, external);

write_transaction(data: list of byte) @clk$ is {
 //...
 data_port$ = data;
 wait rise(transaction_complete$)@sim
}

Trying to apply the @sim operator to a bound internal port shall cause an error when the corresponding TE
is evaluated, which occurs at runtime.

9.3 Using buffer ports

Buffer ports can be used to insert data elements into a queue or extract elements from a queue. Data is
inserted and extracted from the queue in first-in-first-out (FIFO) order. When the queue is full, write-access
to the port is blocked. When the queue is empty, read-access to the port is blocked. The queue size is fixed
during generation by the buffer_size() attribute and cannot be changed at runtime. The queue size can be set
to 0 for rendezvous ports. See 9.7.2.2 and 9.3.1 for more information.

A buffer port’s direction can be either input or output. Use the buffer port’s predefined get() and put()
methods to read or write port values. These methods are time-consuming methods (TCMs). The $ port
access operator cannot be used with buffer ports.

Buffer ports shall have a bind() attribute that defines how they are connected. In addition, the delayed()
attribute can be used to control whether new values are propagated immediately or at the next tick. The
pass_by_pointer() attribute controls how data elements of composite type are passed. See also 9.7.

9.3.1 Rendezvous-zero size buffer queue

In rendezvous-style handshaking protocol, access to a port is blocked after each put() until a subsequent
get() is performed, and access is blocked after each get() until a subsequent put() is performed.

This style of communication is easily achieved by using buffer ports with a data queue size of 0. The
following example shows how this is done.

Example

unit consumer {
 in_p : in buffer_port of atm_cell is instance
118 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
}
unit producer {

out_p : out buffer_port of atm_cell is instance
};
extend sys {

consumer : consumer is instance;
producer : producer is instance;
keep bind(producer.out_p, consumer.in_p);
keep producer.out_p.buffer_size() == 0

}

9.4 Using event ports

Event ports can be used to transfer events between two e units or between an e unit and an external object.
An internal event port’s direction can be either input, output, or inout. Use the $ port access operator to read
or write port values (see 9.4.1).

Internal and external ports need to have a bind() attribute that defines how they are connected. An external
port needs to have an hdl_path() attribute to specify the name of the object to which it is connected. The
edge() attribute for an external input event port specifies the edge on which an event is generated. See also
9.7.

9.4.1 Accessing event ports

Use the $ access operator to access the event associated with an event port. An expression of type
event_port without the $ operator refers to the port itself and not to its event.

Example

This example shows how to connect event ports [using a bind() constraint] and use the $ operator to access
event ports in event contexts.

unit u1 {
 in_ep : in event_port is instance;
 tcm1()@in_ep$ is {
 // ...
 }
};

unit u2 {
 out_ep : out event_port is instance;
 counter : uint;
 event clk is @sys.any;

 on clk {
 counter = counter + 1;
 if counter %10 == 0 then {
 emit out_ep$
 }
 }
};

extend sys {
 u1 : u1 is instance;
 u2 : u2 is instance;
 keep bind(u1.in_ep, u2.out_ep)
}

Copyright © 2015 IEEE. All rights reserved. 119

IEEE
Std 1647-2015 IEEE STANDARD
9.5 Using method ports

Method ports can be used to either call or export methods and TCMs defined in other e units or in foreign
programming language modules. The advantages of method ports are:

— A transaction-level interface can be implemented between e and a high-level model described in a
foreign language.

— The decision about which method to call (e.g., an e method or a foreign function) can be postponed
from compile time to pre-run generation.

9.5.1 Method types

A method port shall be parameterized by a type of a special kind—a method type. The method type specifies
the prototype (signature) of the method and implies specific user-defined semantics. For example, the
following declares a method type for a method that accepts two integer arguments and returns an integer:

method_type adder_method_t(arg1:int, arg2:int): int

The following method type declaration has the same prototype as adder_method_t, but implies different
user-defined semantics:

method_type local_adder_method_t(arg1:int, arg2:int): int

A method type that is associated with a TCM shall be defined with the @sys.any sampling event, e.g.,

method_type send_packet_method_t(p:packet)@sys.any

Method types shall be defined with a unique name; this name shall be explicitly specified in the instance
declaration of the method port (see 9.6.4). For example, the following associates the add method port with
the adder_method_t method type:

add : out method_port of adder_method_t is instance

The method type has semantic implications for a port beyond the simple matching of parameters and result
types; it is also used to clarify runtime messages related to a particular method port. Thus, two method ports
cannot be bound just because they have the same signature; they also need to be associated with the same
method type.

9.5.2 Input method ports

An input method port declares an e method as callable from another e unit or from a foreign agent. The
method port instance shall:

a) Reside in the same unit as its associated method;

b) Have an instance name that matches the name of the associated method;

c) Have a method type that matches the prototype of the associated method.

The method type and its prototype match if:

1) They have the same number of parameters.

2) Any parameters are of the same types (and in the right order).

3) Any return values are of the same type.

d) Include the @sys.any sampling event (in the method type declaration) if the method type is
associated with a TCM.
120 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.5.3 Output method ports

Output method ports can be used to call regular or time-consuming methods defined in other e units or
written in foreign programming languages.

9.5.4 Invoking method ports

The $() access operator can be used to call the method port (see also 9.6.9). The rules for parameter type
checking, TCM call requirements, etc., are the same as those for invoking an e method directly. In
particular, TCM method ports can only be called from inside a TCM scope.

The parameter passing semantics are the same as in direct calls to e methods. Scalar parameters are passed
by value, while composite parameters (struct or list types) are passed by reference.

Other considerations:

— Do not rely on the ability to modify separate fields or list elements of the incoming parameter in the
actual method. Instead, use the return value (or explicit passing of parameters by reference).

— All ports are elaborated after the end of post_generate(). Thus, method ports cannot be invoked
before generation or from constraints.

— Calling an empty-bound method port is equivalent to calling an empty e method.

9.5.5 Binding method ports

If a set of input and output ports are bound, all the ports are connected (no matter how the binding pairs were
specified) and a change on any output port affects all input ports. While this makes sense for simple ports,
which are used to emulate wires, it does not for method ports. For example, if there are two output method
ports, Ao and Bo, three input method ports, Ai, Bi, and ABi, and the binding looks like:

bind(Ao, Ai);
bind(Bo, Bi);
bind(Ao, ABi);
bind(Bo, ABi)

the intention probably is that a call to Ao causes a call of Ai and ABi, while a call to Bo causes a call of Bi
and ABi. This intention is implemented; however, a call to Ao also causes a call of Bi, and a call to Bo also
causes a call of Ai.

To bind multiple output ports to a common input, define the common input as a list of in method ports (see
9.6.4). Then, each of the input method ports is associated with the method via the list name.

Example

The list of in method ports is

type src_t : [A, B];
method_type p_t(s:src_t);

extend sys {
 Ao : out method_port of p_t is instance;
 Bo : out method_port of p_t is instance;

 ABi : list of in method_port of p_t is instance;
 keep ABi.size() == 2;

 ABi(src: src_t) is {
 out("AB(", src, ")")
 }
Copyright © 2015 IEEE. All rights reserved. 121

IEEE
Std 1647-2015 IEEE STANDARD
and the binding is:

// each output also invokes the common input

 keep bind(Ao, ABi[0]);

 keep bind(Bo, ABi[1]);

 run() is also {

 Ao$(A);

 Bo$(B)

 }

}

9.6 Defining and referencing ports

This subclause details how to define or reference a port.

9.6.1 simple_port

Simple ports can be used to transfer one data element at a time to or from an external simulated object or
internal object (another e unit). External ports can transfer scalar types and lists of scalar types, including
MVL data elements. Structs or lists of structs cannot be passed through external simple ports.

The port can be configured to access a different signal simply by changing the binding; all the code that
reads or writes to the port remains the same. Similarly, port semantics remain the same, regardless of what
simulator is used. Binding is fixed during generation.

A simple port’s direction can be either in, out, or inout. Omitting the direction is the same as writing inout.
Port types with different directions are not equivalent. The following types are fully equivalent:

data : simple_port of byte is instance;

data : inout simple_port of byte is instance

Syntax example:

data : in simple_port of byte is instance

Purpose Access other port instances or external simulated objects directly

Category Unit member

Syntax port-instance-name : [list of] [direction] simple_port of element-type is instance

Parameters

port-instance-
name

A unique identifier used to reference the port or access its value.

direction One of in, out, or inout. The default is inout, which means values can be read
from and written to this port. For an in port, values can only be read from the
port; for an out port, values can only be written to the port.

element-type Any predefined or user-defined e type, except a port type or unit type.
122 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.6.2 buffer_port

Buffer ports can be used to insert data elements into a queue or extract elements from a queue. Data is
inserted and extracted from the queue in FIFO order. When the queue is full, write-access to the port is
blocked. When the queue is empty, read-access to the port is blocked.

The queue size is fixed during generation by the buffer_size() attribute and cannot be changed at runtime.
The queue size can be set to 0 for rendezvous ports.

Use the buffer port’s predefined get() and put() methods to read or write port values. These methods are
TCMs. The $ port access operator cannot be used with buffer ports.

A typical usage of a buffer port is in a producer and consumer protocol, where one object puts data on an
output port at possibly irregular intervals, and another object with the corresponding input port reads the
data at its own rate.

Syntax example:

rq : in buffer_port of bool is instance

9.6.3 event_port

Event ports can be used to transfer events between two e units or between an e unit and an external object.
Use the $ port access operator to read or write port values (see 9.4.1).

Purpose Implement an abstraction of queues with blocking get and put

Category Unit member

Syntax port-instance-name : [list of] direction buffer_port of element-type is instance

Parameters

port-instance-
name

A unique identifier used to reference the port or access its value.

direction One of in or out. There is no default. For an in port, values can only be read
from the port; for an out port, values can only be written to the port. See 9.8
for information on how to read and write buffer ports.

element-type Any predefined or user-defined e type, except a port type or a unit type.

Purpose Transfer events between units or between simulators and units

Category Unit member

Syntax event-port-field-name : [list of] [direction] event_port is instance

Parameters

event-port-field-
name

A unique identifier used to reference the port or access its value.

direction One of in, out, or inout. The default is inout, which means events can be
emitted and sampled on the port. For a port with direction in, events can only
be sampled. For a port with direction out, events can only be emitted.
Copyright © 2015 IEEE. All rights reserved. 123

IEEE
Std 1647-2015 IEEE STANDARD
An event port’s direction can be either in, out, or inout. Omitting the direction is the same as writing inout.
Port types with different directions are not equivalent. The following types are fully equivalent:

clk : event_port is instance;
clk : inout event_port is instance

In addition, the following are not allowed:

— Using the on struct member for event ports

— Coverage on event ports

— Specifying a temporal formula (e.g., out event_port is ...) to define an out event port

It is possible, however, to define an additional event and connect it to the event port, e.g.,

ep : in event_port is instance;
 keep bind(ep, external);
event e is @ep$

Syntax example:

clk : in event_port is instance

9.6.4 method_port

Method ports implement an abstraction of the calling methods (time-consuming or not) in other units or
external agents, while delaying the binding from compile time to pre-run generation time.

Syntax example:

convert_string : out method_port of str2uint_method_t is instance

Purpose Enable invocation of abstract functions

Category Unit member

Syntax port-instance-name : [list of] direction method_port of method-type is instance

Parameters

port-instance-
name

A unique identifier used to reference the method port or invoke the actual
method. For input method ports, this name shall be the same as that of the
associated method.

direction One of in or out. There is no default. For an in port, only the method to
activate can be specified; for an out port, the method can be invoked.

method-type A method type that specifies the port semantics (see also 9.6.5).
124 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.6.5 method_type method-type-name

A method port (see 9.6.4) shall be parameterized by a method type, which specifies the prototype (signature)
of the method. The method type name can also be included in any runtime messages related to a specific
method port.

Syntax example:

method_type str2uint_method_t(s:string): uint

9.6.6 Port reference

If a port reference is a field, then it shall be marked as non-generated or it needs to be constrained to an
existing port instance. Otherwise, a generation error shall result.

Syntax example:

!in_int_buffer_port_ref : in buffer_port of int

Purpose Associate method prototype with type name and enable notification

Category Statement

Syntax method_type method-type-name ([param-list]) [:return-type] [@sys.any]

Parameters

method-type-
name

A unique identifier used to reference the method type.

param-list This needs to match the parameter list of the e method or external function.

return-type This needs to match the return type of the e method or external function.

@sys.any If the method type declaration includes the @sys.any sampling event, this
method type can only be used for method ports associated with a TCM.

Purpose Reference a port instance

Category Unit field, variable, or method parameter

Syntax [! | var] port-reference-name: [direction] port-kind [of element-type]

Parameters

port-reference-
name

A unique identifier.

direction One of in or out; for simple ports and event ports, this can also be inout.

port-kind One of simple_port, buffer_port, or event_port.

element-type Required if port-kind is simple_port or buffer_port.
Copyright © 2015 IEEE. All rights reserved. 125

IEEE
Std 1647-2015 IEEE STANDARD
9.6.7 Port: $

The $ access operator can be used to access or update the value held in a simple port or event port. When
used on the RHS, p$ refers to the port’s value. On the LHS of an assignment, p$ refers to the value’s
location, so an assignment to p$ changes the value held in the port.

Without the $ operator, an expression of any type port refers to the port itself, not to its value. In particular,
an expression without the $ operator can be used for operations involving port references.

Syntax example:

p$ = 32'bz // Assigns an mvl literal to the port 'p'

9.6.8 Method port reference

Method port instances may be referenced by a field, variable, or method parameter of the same port type.

If a port reference is a field, it shall be marked as non-generated, or it needs to be constrained to an existing
port instance. Otherwise, a generation error shall result. Also, port binding is allowed only for port instance
fields, not for port reference fields (see also 9.5.5).

Syntax example:

!in_method_port_ref : in method_port of burst_method_t

Purpose Read or write a value to a simple port or event port

Category Operator

Syntax exp$

Parameters exp An expression that returns a simple port or event port instance.

Purpose Reference a method port instance

Category Unit field, variable, or method parameter

Syntax [! | var] port-reference-name: direction method_port of method-type

Parameters

port-reference-
name

A unique identifier used to reference the method port.

direction One of in or out.

method-type A method type that specifies the port semantics (see also 9.6.5).
126 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.6.9 Method port: $

The $ access operator can be used to call an output method port. An attempt to call a method via the port
without using the $ operator shall result in a syntax error. Without the $ operator, an expression of any type
port refers to the port itself, not to its value. In particular, an expression without the $ operator can be used
for operations involving port references.

Syntax example:

u = convert_string$("32") //calls the convert_string out method port

9.7 Port attributes

Ports have attributes that affect their behavior and how they can be used. Use the attribute() syntax to assign
port attributes in pre-generation constraints, as follows:

keep [soft] port_instance.attribute() == value

Use soft constraints for attributes that can be overridden.

Most port attributes are ignored, unless the port is an external port, but it does no harm to specify attributes
for ports that are not external ports. Attributes intended for external ports do not have to be supported for a
particular simulator.

9.7.1 Generic port attributes

Port attributes that are potentially valid for all simulators are described in Table 21. However, a particular
simulator adapter might not implement some of these attributes. Depending on the simulator adapter, port
attributes might cause additional code to be written to the stubs file (see Clause 23). In that case, if an
attribute is added or changed, the stubs file needs to be rewritten.

Purpose Call an out method port

Category Operator

Syntax port-exp$(out-method-port-param-list)

Parameters

port-exp An expression that returns an output method port instance.

out-method-port-
param-list

A list of actual parameters to the output method port. The number and type of
the parameters, if any, shall match the method type (see also 9.6.5).
Copyright © 2015 IEEE. All rights reserved. 127

IEEE
Std 1647-2015 IEEE STANDARD
Table 21—Generic port attributes

Attribute Description Applies to

bind() Connects two internal ports or connect a port to an
external object.
Type: bool
Default: none
See also 9.7.2.1.

All kinds of internal and
external ports

buffer_size() Specifies the maximum number of elements for a buffer
port queue.
Type: uint
Default: none
See also 9.7.2.2.

Buffer ports

declared_range() Specifies the bit width of an external multi-bit object.
Type: string
Default: none
See also 9.7.2.3.

External output simple ports
that are bound to some kinds
of multi-bit objects

delayed() Specifies whether propagation of a new port value
assignment occurs immediately or is delayed to the tick
boundary.
Type: bool
Default: TRUE
See also 9.7.2.4.

Internal and external simple
ports

driver() When TRUE, an additional resolved HDL driver is
created for the corresponding simulator item, and that
driver is written to instead of the port.
Type: bool
Default: FALSE
See also 9.7.2.5.

External output simple ports

driver_delay() Specifies the delay time for all assignments from e to the
port.
Type: time
Default: 0
See also 9.7.2.6.

External output simple ports

edge() Specifies the edge on which an event is generated.
Type: event_port_edge
Default: change
See also 9.7.2.8.

External input event ports

hdl_convertor() Specifies the rules for converting method port arguments
between e and a foreign language, such as SystemVerilog
or VHDL. The syntax of the string value associated with
hdl_convertor() is defined by the language adapter itself.
Type: string
Default: none

Method ports

hdl_path() Specifies a relative path of the corresponding simulated
item as a string.
Type: string
Default: none
See also 9.7.2.9.

External ports
128 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.7.2 Port attributes for HDL simulators

Port attributes that are potentially valid for all HDL simulators are described in Table 22. However, a
particular simulator adapter might not implement some of these attributes. The port attributes in Table 22
enable extended functionality. They cause additional information to be written into the HDL stubs file to
enhance user control over the driving of HDL signals. For this reason, any attribute shown in Table 22 is
added or changed, the stubs file needs to be rewritten.

Example

The following attributes define a port that is eight bits wide; read operations occur with one-unit delay; drive
operations have a five-unit delay:

data : inout simple_port of uint(bits:8) is instance;
 keep bind(data, external);
 keep data.hdl_path() == "sig";
 keep data.declared_range() == "[7:0]";
 keep data.verilog_strobe() == "#1";
 keep data.verilog_drive() == "#5"

pack_options() Specifies how the port’s data element is implicitly packed
and unpacked.
Type: pack_options
Default: NULL
See also 9.7.2.10.

External simple ports

pass_by_pointer When TRUE, composite data (structs or lists) are passed
by reference.
Type: bool
Default: FALSE (pass by value)
See also 9.7.2.11.

Internal simple or buffer
ports whose data element is a
composite type (lists and
structs)

Table 22—Port attributes for Verilog or VHDL agents

Attribute Description Applies to

driver_initial_value() Applies an initial mvl value to the port.
Type: list of mvl
Default: {} (empty list)
See also 9.7.2.7.

External output simple
ports

verilog_drive() Specifies the event on which the data is driven to the
Verilog object.
Type: string
Default: none
See also 9.7.2.12.

External output simple
ports

verilog_drive_hold() Specifies an event after which the port data is set to Z.
Type: string
Default: none
See also 9.7.2.13.

External output simple
ports

Table 21—Generic port attributes (continued)

Attribute Description Applies to
Copyright © 2015 IEEE. All rights reserved. 129

IEEE
Std 1647-2015 IEEE STANDARD
9.7.2.1 bind()

Ports are connected to other e ports or to external simulated objects, such as Verilog registers, VHDL
signals, or SystemC methods, using a pre-run generation constraint on the bind() attribute. Ports can also be
left explicitly disconnected by using empty or undefined.

verilog_forcible() Allows forcing of Verilog wires.
Type: bool
Default: FALSE
See also 9.7.2.14.

External output simple
ports

verilog_strobe() Specifies the sampling event for the Verilog signal that is
bound to the port.
Type: string
Default: none
See also 9.7.2.15.

External output simple
ports

verilog_wire() Binds an external out port to a Verilog wire.
Type: bool
Default: FALSE
See also 9.7.2.16.

External output simple
ports

vhdl_delay_mode() Specifies whether pulses whose period is shorter than the
delay are propagated through the driver.
Type: vhdl_delay_mode
Default: TRANSPORT (all pulses, regardless of length,
are propagated)
See also 9.7.2.17.

External output simple
ports

vhdl_driver() This is an alias for the driver() attribute.
Type: bool
Default: FALSE
See also 9.7.2.5.

External output simple
ports

Purpose Connect two internal ports or connect a port to an external object

Category Generic port attribute

Syntax
bind(exp1, exp2)
bind(exp1, (external | empty | undefined))

Parameters

exp1, exp2 One or more expressions of port type. If two expressions are given and the
port types are compatible, the two port instances are connected.

external Defines a port as connected to a simulated object, such as a Verilog register,
VHDL signal, or SystemC object.

empty Defines a disconnected port. Runtime accessing of a port with an empty
binding is allowed.

undefined Defines a disconnected port. Runtime accessing of a port with an undefined
binding shall cause an error.

Table 22—Port attributes for Verilog or VHDL agents (continued)

Attribute Description Applies to
130 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.7.2.1.1 Rules

a) All ports shall be bound in one of the following ways:

1) A set of bound ports must include at least two ports, one of which is an input or inout port, and
the other an output or inout port.

2) Bound to an external simulated item.

3) Explicitly disconnected (empty or undefined).

b) Only ports of the same kind can be bound together. A simple port cannot be bound to a buffer port or
an event port, and a buffer port cannot be bound to an event port.

c) Dangling ports [ports without bind() attributes] shall cause an error during elaboration (see
9.7.2.1.2).

d) A port can be explicitly disconnected and then overridden with a binding to an internal or external
object.

e) All ports connected together shall have the exact same element type.

9.7.2.1.2 Checking of ports

Binding and checking of ports takes place automatically at the end of the predefined generate_test() test
method. This process, called elaboration of ports, includes checking for dangling ports and binding
consistency (directions, buffer sizes, and so on).

A port that has no bind() constraint is a dangling port. Since all ports need to be bound, a dangling port shall
cause an elaboration-time error.

9.7.2.1.3 Disconnected ports

A port that is bound using the empty or undefined keyword is called a disconnected port. The empty or
undefined keyword can only appear as the second argument of the bind() constraint, in place of a second
port instance name.

Empty binding can be used to define a port that is connected to nothing. Runtime accessing of an empty-
bound port is allowed. Its effect depends on the operation and type of the port.

— Reading from an empty-bound simple port returns the last written value or the default of the port
element type, if no value has been written so far.

— Writing to an empty-bound output or inout simple port stores the new value internally.

— Reading from an empty-bound buffer port causes the thread to halt.

— Writing to an empty-bound buffer port causes the thread to halt if the buffer is full.

— Waiting for an empty-bound event port causes the thread to halt. If the port direction is inout, then
emitting the port resumes the thread.

— An empty-bound event port can be emitted.

A subsequent constraint can be used to overwrite the empty binding constraint.

Like empty binding, undefined binding can define a port that is connected to nothing. The difference is
runtime accessing of a port with an undefined binding shall cause an error.

A subsequent constraint can be used to overwrite the undefined binding constraint.

Syntax example:

buf_in1 : in buffer_port of int(bits:16) is instance;
Copyright © 2015 IEEE. All rights reserved. 131

IEEE
Std 1647-2015 IEEE STANDARD
 keep bind(buf_in1, empty)

9.7.2.2 buffer_size()

This attribute determines the number of put() actions that can be performed before a get(). A get() action is
required to remove data and make more room in the queue. Specifying a buffer size of 0 means rendezvous-
style synchronization.

No default buffer size is provided. If a buffer size is not specified in a constraint, an error shall occur. It is
only necessary to specify a buffer size for one of the two ports in a pair of connected ports. That size applies
to both ports. If the two ports have different buffer sizes specified, then both of them get the larger of the two
sizes.

Syntax example:

keep u.p.buffer_size() == 20

9.7.2.3 declared_range()

This string attribute is meaningful for external simple ports that are bound to multi-bit objects. Because it is
legal to bind a port to an HDL object with a different size, the range information is not extracted from the
port declaration. In order to implement access to multi-bit signals correctly in the stubs file (see
Clause 23), this attribute is required when using the verilog_wire(), verilog_drive(), verilog_strobe(), or
driver() attributes.

The interpretation of the string is simulator-specific.

Syntax example:

keep u.p.declared_range() == "[31:0]"

Purpose Specify the size of a buffer port queue

Category Buffer port attribute

Syntax exp.buffer_size() == num

Parameters
exp An expression of type [in | out] buffer_port of type.

num An integer specifying the maximum number of elements for the queue.

Purpose Specify the bit width of a multi-bit external object

Category External port attribute

Syntax exp.declared_range() == string

Parameters

exp An expression of a simple port type.

string A string that is a valid range expression, e.g.,
"[msb:lsb]"
132 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.7.2.4 delayed()

This Boolean attribute specifies whether propagation of a new port value assignment occurs immediately or
is delayed. When the delayed() attribute is TRUE (the default), propagation of external ports is delayed until
the next tick. Propagation of internal ports is delayed until the next tick when the sys.time value changes.
This behavior is consistent with the definition of delayed assignments in e and matches temporal e semantics
with regard to the multiple ticks occurring at the same simulator time.

To make assigned values on ports visible immediately, constrain this attribute to be FALSE.

Syntax example:

keep not u.p.delayed()

9.7.2.5 driver()

This Boolean attribute is meaningful only for external out ports. When this attribute is set to TRUE, an
additional resolved HDL driver is created for the corresponding simulator item and that driver is written to
instead of the port.

Every port instance associated with the same simulator can create a separate driver, thus allowing HDL
resolution to be applied for multiple e resources.

Syntax example:

keep u.p.driver()

Purpose Specify immediate or delayed propagation of new values

Category Simple port attribute

Syntax
exp.delayed()
not exp.delayed()
exp.delayed() == bool

Parameters
exp An expression of a simple port type.

bool Either TRUE or FALSE. The default is TRUE.

Purpose Create a resolved driver for an external object

Category External out port attribute

Syntax
exp.driver()
not exp.driver()
exp.driver() == bool

Parameters
exp An expression of a simple port type.

bool Either TRUE or FALSE. The default is FALSE.
Copyright © 2015 IEEE. All rights reserved. 133

IEEE
Std 1647-2015 IEEE STANDARD
9.7.2.6 driver_delay()

This attribute is meaningful only for external out ports. It specifies the delay time for all assignments from
e to the port. This attribute is silently ignored, unless the driver() attribute or the vhdl_driver() attribute is
set to TRUE.

Syntax example:

keep u.p.driver_delay() == 2

9.7.2.7 driver_initial_value()

This mvl-list type attribute applies an initial mvl value to an external Verilog or VHDL object. This attribute
is silently ignored, unless the driver() attribute or the vhdl_driver() attribute is set to TRUE.

The default value of this attribute is MVL_X.

Syntax example:

keep u.p.driver_initial_value() == {MVL_X; MVL_X; MVL_1; MVL_1}

Purpose Specify the delay for assignments to a port

Category External out simple port attribute

Syntax exp.driver_delay() == time

Parameters
exp An expression of a simple port type.

time A value of type time (64 bits). The default is 0.

Purpose Specify an initial value for an HDL object

Category HDL port attribute

Syntax exp.driver_initial_value() == mvl-list

Parameters
exp An expression that returns a port instance.

mvl-list A lists of mvl values. The default is {} (an empty list).
134 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.7.2.8 edge()

This attribute of type event_port_edge (for an external event port) specifies the edge on which an event is
generated. The possible values are as follows:

a) change, rise, fall—equivalent to the behavior of @sim TEs. This means that transitions between x
and 0, z, and 1 are not detected; x to 1 is considered a rise; z to 0 a fall, and so on.

b) any_change—any change within the supported MVL values is detected, including transitions from
x to 0 and 1 to z.

c) MVL_0_to_1—transitions from 0 to 1 only.

d) MVL_1_to_0—transitions from 1 to 0 only.

e) MVL_X_to_0—transitions from X to 0 only.

f) MVL_0_to_X—transitions from 0 to X only.

g) MVL_Z_to_1—transitions from Z to 1 only.

h) MVL_1_to_Z—transitions from 1 to Z only.

The default is change.

Syntax example:

keep e.edge() == any_change

9.7.2.9 hdl_path()

This attribute specifies a path for accessing an external, simulated object. The path is a concatenation of the
partial paths for the port itself and its enclosing units. The partial paths can use any supported separator. To
allow portability between simulators, use the e canonical path notation.

Syntax example:

clk : in event_port is instance;
 keep clk.hdl_path() == "clk"

Purpose Specify the edge on which an event is generated

Category Event port attribute

Syntax exp.edge() == edge-option

Parameters
exp An expression of a buffer_port type.

edge-option A value of type event_port_edge.

Purpose Map port instance to an external object

Category Generic port attribute

Syntax exp.hdl_path() == string

Parameters

exp An expression of a port type.

string A string specifying the path to the external object. The default is an empty
string.
Copyright © 2015 IEEE. All rights reserved. 135

IEEE
Std 1647-2015 IEEE STANDARD
9.7.2.10 pack_options()

This attribute can be used to specify the way that data element of external ports is implicitly packed and
unpacked. This attribute exists both for units and ports, and can be propagated downwards from an enclosing
unit instance to its ports and other unit instances.

Syntax example:

keep u.p.pack_options() == packing.low_big_endian

9.7.2.11 pass_by_pointer()

This Boolean attribute specifies how composite data (structs or lists) is transferred by internal simple ports
or buffer ports. By default, this attribute is FALSE and complex objects are deep-copied upon an internal
port access operation. To pass data by reference and speed up the test, set this attribute to TRUE (and verify
no test-correctness violations exist).

Syntax example:

keep u.p.pass_by_pointer();
keep not u.p.pass_by_pointer()

Purpose Specify how an external port’s data element is implicitly packed and unpacked

Category External simple port attribute

Syntax exp.pack_options() == pack-option

Parameters
exp An expression of a simple or buffer port type.

pack-option A predefined or user-defined pack option. The default is NULL.

Purpose Specify how composite data is transferred by internal ports

Category Internal port attribute

Syntax
exp.pass_by_pointer()
not exp.pass_by_pointer()
exp.pass_by_pointer() == bool

Parameters exp An expression of a simple or buffer port type.
136 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.7.2.12 verilog_drive()

This string attribute tells an external output port to drive its data to a Verilog signal when the specified
timing occurs. This can be a Verilog TE, such as @(posedge top.clk), or a simple unit delay, e.g., #1.

Syntax example:

keep u.p.verilog_drive() == "@posedge clk2"

9.7.2.13 verilog_drive_hold()

On the first occurrence of the specified event after the port data is driven, the value of the corresponding
Verilog signal is set to Z. The event is a string specifying any legal Verilog timing control. The
verilog_drive() attribute (see 9.7.2.12) needs to be specified before using this attribute.

Syntax example:

keep u.p.verilog_drive_hold() == "@negedge clk2"

Purpose Specify timing control for data driven to a Verilog object

Category Verilog port attribute

Syntax exp.verilog_drive() == timing-control

Parameters
exp An expression of a simple port type.

timing-control A string specifying any legal Verilog timing control (event or delay).

Purpose Specify when to set the port to Z

Category Verilog port attribute

Syntax exp.verilog_drive_hold() == string

Parameters
exp An expression of a simple port type.

string A string specifying any legal Verilog timing control.
Copyright © 2015 IEEE. All rights reserved. 137

IEEE
Std 1647-2015 IEEE STANDARD
9.7.2.14 verilog_forcible()

By default, Verilog wires are not forcible. This Boolean attribute allows forcing of Verilog wires. The
verilog_wire() attribute (see 9.7.2.16) needs to be specified before using this attribute.

Syntax example:

keep u.p.verilog_forcible()

9.7.2.15 verilog_strobe()

This string attribute specifies the sampling event for the Verilog signal that is bound to an external input
port. This attribute is equivalent to the verilog variable ... using strobe declaration.

Syntax example:

keep u.p.verilog_strobe() == "@posedge clk1"

Purpose Specify a Verilog object can be forced

Category Verilog port attribute

Syntax
exp.verilog_forcible()
not exp.verilog_forcible()
exp.verilog_forcible() == bool

Parameters
exp An expression of a simple port type.

bool Either TRUE or FALSE. The default is FALSE.

Purpose Specify the sampling event for a Verilog object

Category Verilog port attribute

Syntax exp.verilog_strobe() == string

Parameters
exp An expression of a simple port type.

string A string specifying any legal Verilog timing control.
138 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.7.2.16 verilog_wire()

This Boolean attribute allows an external out port to be bound to a Verilog wire. The main difference
between this attribute and the driver() attribute is the verilog_wire() attribute merges all of the ports
containing this attribute into a single Verilog driver, while the driver() attribute creates a separate driver for
each port.

Syntax example:

keep u.p.verilog_wire()

9.7.2.17 vhdl_delay_mode()

This attribute specifies whether pulses whose period is shorter than the delay specified by the
driver_delay() attribute are propagated through the driver. INERTIAL specifies such pulses are not
propagated, TRANSPORT that all pulses, regardless of length, are propagated.

This attribute also influences what happens if another driver (either VHDL or another unit) schedules a
signal change, and before that change occurs, this driver schedules a different change. With INERTIAL, the
first change never occurs.

This attribute is silently ignored, unless the driver_delay() attribute is also specified.

Syntax example:

keep u.p.vhdl_delay_mode() == INERTIAL

9.8 Buffer port methods

The following methods are used to read from or write to buffer ports, and to check whether a buffer port
queue is empty or full.

Purpose Create a single driver for a port (or multiple ports)

Category Verilog port attribute

Syntax
exp.verilog_wire()
not exp.verilog_wire()
exp.verilog_wire() == bool

Parameters
exp An expression of a simple port type.

bool Either TRUE or FALSE. The default is FALSE.

Purpose Specify whether short pulses are propagated through the driver

Category HDL port attribute

Syntax exp.vhdl_delay_mode() == mode-option

Parameters
exp An expression of a simple port type.

mode-option Either TRANSPORT (the default) or INERTIAL.
Copyright © 2015 IEEE. All rights reserved. 139

IEEE
Std 1647-2015 IEEE STANDARD
9.8.1 get()

Reads a data item from the buffer port queue and removes the item from the queue. Since buffer ports use a
FIFO queue, get() returns the first item that was written to the port.

The thread blocks upon get() when there are no more items in the queue. If the queue is empty, or if it has a
buffer size of 0 and no put() has been done on the port since the last get(), then the get() is blocked until a
put() is done on the port.

The number of consecutive get() actions that is possible is limited to the number of items inserted by put().

Syntax example:

rec_cell = in_port.get()

9.8.2 put()

Writes a data item to the output buffer port queue. The sampling event of this TCM is sys.any. The new data
item is placed in a FIFO queue in the output buffer port.

The thread blocks upon put() when there is no more room in the queue, i.e., when the number of consequent
put() operations exceeds the buffer_size() of the port instance. If the queue is full, or if it has a buffer size of
0 and no get() has been done on the port since the last put(), then the put() is blocked until a get() is done on
the port.

The number of consecutive put() actions that is possible is limited to the buffer size.

Syntax example:

out_port.put(trans_cell)

Purpose Read and remove data from an input buffer port queue

Category Predefined TCM for buffer ports

Syntax in-port-instance-name.get(): port element type

Parameters in-port-instance-
name

An expression that returns an input buffer port instance.

Purpose Write data to an output buffer port queue

Category Predefined TCM for buffer ports

Syntax out-port-instance-name.put()(data: port element type)

Parameters

out-port-
instance-name

An expression that returns an output buffer port instance.

data A data item of the port element type.
140 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.8.3 is_empty()

Returns TRUE if the input port queue is empty. Returns FALSE if the input port queue is not empty.

Syntax example:

var readable : bool;
readable = not cell_in.is_empty()

9.8.4 is_full()

Returns TRUE if the output port queue is full. Returns FALSE if the output port queue is not full.

Syntax example:

var overflow : bool;
overflow = cell_out.is_full()

9.9 MVL methods for simple ports

The predefined port methods in this subclause are for reading and writing MVL data between ports, to
facilitate communication with objects where MVL values occur. These methods operate on data of type mvl,
which is defined as follows:

type mvl : [MVL_U, MVL_X, MVL_0, MVL_1, MVL_Z, MVL_W, MVL_L, MVL_H, MVL_N]

The enumeration literals are the same as those of VHDL, except for MVL_N, which corresponds to the
VHDL-(“don’t care”) literal.

The MVL methods are applicable according to the port direction. Methods that write a value to a port are
accessible for output and inout simple ports, while methods that read a value from a port are accessible for
input and inout simple ports.

Purpose Check if an output buffer port queue is empty

Category Pseudo-method for buffer ports

Syntax
in-port-instance-name.is_empty()
not in-port-instance-name.is_empty()
in-port-instance-name.is_empty() == bool

Parameters
in-port-instance-
name

An expression that returns an input buffer port instance.

Purpose Check if an output buffer port queue is full

Category Pseudo-method for buffer ports

Syntax
out-port-instance-name.is_full()
not out-port-instance-name.is_full()
out-port-instance-name.is_full() == bool

Parameters out-port-
instance-name

An expression that returns an output buffer port instance.
Copyright © 2015 IEEE. All rights reserved. 141

IEEE
Std 1647-2015 IEEE STANDARD
Accessing a port with MVL methods and accessing it through the $ operator is allowed (mixed access).

9.9.1 MVL four-value logic

Some MVL methods operate on a subset of the enumeration in 9.9, MVL_X, MVL_Z, MVL_0, and MVL_1,
which corresponds to the four-value logic of Verilog. To convert from nine-value logic to four-value logic,
the mapping shown in Table 23 is used.

9.9.2 MVL string

Several functions allow specifying the MVL value or returning an MVL value expressed as string. A format
of MVL string is the number of bits followed by the ' sign, the radix, and then the MVL literals. When an
MVL list is converted into a string, the mapping shown in Table 24 is used.

The mapping is done in the following way:

When a string is converted to a list of mvl, the mapping is case-insensitive.

Table 23—MVL logic mapping

Nine value Four value

MVL_U, MVL_W, MVL_X, MVL_N MVL_X

MVL_L, MVL_0 MVL_0

MVL_H, MVL_1 MVL_1

MVL_Z MVL_Z

Table 24—MVL string conversion

MVL value String

MVL_U u

MVL_X x

MVL_0 0

MVL_1 1

MVL_Z z

MVL_W w

MVL_L L

MVL_H h

MVL_N n
142 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.9.3 put_mvl()

Places an mvl value on an output or inout simple port, e.g., to initialize an object to a “disconnected” value.
Placing an mvl value on a port whose element type is wider than one bit places the value in the LSB of the
element.

Syntax example:

p.put_mvl(MVL_Z)

9.9.4 get_mvl()

Reads an mvl value from an input or inout simple port, e.g., to check that there are no undefined x bits.
Getting an mvl value on a port whose element type is wider than one bit returns the value in the LSB of the
element.

Syntax example:

check that pbi.get_mvl() != MVL_X else dut_error("Bad value")

9.9.5 put_mvl_list()

Writes a list of mvl values to an output or inout simple port. Putting a list of mvl values on a port whose
element type is a single bit writes only the LSB of the list.

Purpose Put an mvl data on a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.put_mvl(value: mvl)

Parameters
exp An expression that returns a simple port instance.

value An mvl value.

Purpose Read mvl data from a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.get_mvl(): mvl

Parameters exp An expression that returns a simple port instance.

Purpose Put a list of mvl values on a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.put_mvl_list(values: list of mvl)

Parameters
exp An expression that returns a simple port instance.

values A list of mvl values.
Copyright © 2015 IEEE. All rights reserved. 143

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

pbo.put_mvl_list({MVL_H; MVL_0; MVL_L; MVL_0})

9.9.6 get_mvl_list()

Reads a list of mvl values from an input or inout simple port.

Syntax example:

check that not pbil.get_mvl_list().has(it == MVL_U)
else dut_error("Bad list")

9.9.7 put_mvl_string()

Writes a string representing a list of mvl values to a simple output or inout port. See also 9.9.2.

Syntax example:

pbol.put_mvl_string("32'hxxxxllll")

Purpose Get a list of mvl values from a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.get_mvl_list(): list of mvl

Parameters exp An expression that returns a simple port instance.

Purpose Put an mvl value on a port of a non-mvl type when a value is represented as a string

Category Predefined method for simple ports

Syntax exp.put_mvl_string(value: string)

Parameters

exp An expression that returns a simple port instance.

value An mvl value in the form of a base and one or more characters, entered as a
string. The mvl values in the string shall be lowercase. Use 1 for MVL_1, 0
for MVL_0, z for MVL_Z, and so on.
144 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.9.8 get_mvl_string()

Returns a string in which each character represents an mvl value. See also 9.9.2.

Syntax example:

print pbis.get_mvl_string(BIN)

9.9.9 get_mvl4()

Reads a nine-value mvl value from an input simple port and converts it to four-value subset mvl. See also
9.9.1.

Syntax example:

check that pbi.get_mvl4() != MVL_Z else dut_error("Bad value")

9.9.10 get_mvl4_list()

Reads a list of nine-value mvl values from an input simple port and converts them to four-value mvl. See
also 9.9.1.

Syntax example:

check that not pbi4l.get_mvl4_list().has(it == MVL_X)

else dut_error("Bad list")

Purpose Get a value in form of a string from a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.get_mvl_string(radix: radix): string

Parameters
exp An expression that returns a simple port instance.

radix One of BIN, OCT, or HEX.

Purpose Get an mvl value from a port, converting nine-value logic to four-value logic

Category Predefined method for simple ports

Syntax exp.get_mvl4(): mvl

Parameters exp An expression that returns a simple port instance.

Purpose Get a list of mvl value from a port, converting nine-value logic to four-value logic

Category Predefined method for simple ports

Syntax exp.get_mvl4(): list of mvl

Parameters exp An expression that returns a simple port instance.
Copyright © 2015 IEEE. All rights reserved. 145

IEEE
Std 1647-2015 IEEE STANDARD
9.9.11 get_mvl4_string()

Returns a string representing a four-value logic value. The mvl are first converted into four-value logic (see
9.9.1) and then converted to a string (see 9.9.2).

The returned string always includes all the bits, with no implicit extensions. For example, a port of type int
returns a string of 32 characters, since an int is a 32-bit data type.

Syntax example:

print pbi4s.get_mvl4_string(BIN)

9.9.12 has_x()

Returns TRUE if at least one bit of the port is MVL_X.

Syntax example:

print pbi4s.has_x()

9.9.13 has_z()

Returns TRUE if at least one bit of the port is MVL_Z.

Syntax example:

print pbi4s.has_z()

Purpose Get a four-state value in form of a string from a port of a non-mvl type

Category Predefined method for simple ports

Syntax exp.get_mvl4_string(radix: radix): string

Parameters
exp An expression that returns a simple port instance.

radix One of BIN, OCT, or HEX.

Purpose Determine if a port has X

Category Predefined method for simple ports

Syntax exp.has_x(): bool

Parameters exp An expression of a simple port type.

Purpose Determine if a port has Z

Category Predefined method for simple ports

Syntax exp.has_z(): bool

Parameters exp An expression of a simple port type.
146 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.9.14 has_unknown()

Returns TRUE if at least one bit of the port is one of the following: MVL_U, MVL_X, MVL_Z, MVL_W, or
MVL_N.

Syntax example:

print pbi4s.has_unknown()

9.10 Global MVL routines

The subclause describes the global routines for manipulating MVL values.

9.10.1 string_to_mvl()

Converts a string into a list of mvl (see 9.9.2).

Syntax example:

mlist = string_to_mvl("8'bxz1")

9.10.2 mvl_to_string()

Converts a list of mvl values to a string (see 9.9.2). A sized number shall always be returned as a string.

Purpose Determine if a port has an unknown value

Category Predefined method for simple ports

Syntax exp.has_unknown(): bool

Parameters exp An expression of a simple port type.

Purpose Convert a string to a list of mvl values

Category Predefined routine

Syntax string_to_mvl(value-string: string): list of mvl

Parameters value-string A string representing mvl values.

Purpose Convert a list of mvl values to a string

Category Predefined routine

Syntax mvl_to_string(mvl-list: list of mvl, radix: radix): string

Parameters
mvl-list A list of mvl values.

radix One of BIN, OCT, or HEX.
Copyright © 2015 IEEE. All rights reserved. 147

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

mstring = mvl_to_string({MVL_Z; MVL_Z; MVL_Z; MVL_Z;
 MVL_X; MVL_X; MVL_X; MVL_X}, BIN)

9.10.3 mvl_to_int()

Converts each value in a list of mvl values into a bit (1 or 0), using a list of mvl mask values to determine
which mvl values are converted to 1.

When the list is less than 32 bits, it is padded with 0’s. When it is greater than 32 bits, it is truncated, leaving
the 32 least-significant bits.

Syntax example:

var ma : uint = mvl_to_int(l, {MVL_X})

9.10.4 int_to_mvl()

Maps each bit that has the value 1 to the mask mvl value, retains the 0 bits as MVL_0, and returns a list of 32
mvl values. The returned list always has a size of 32.

Syntax example:

var mlist : list of mvl = int_to_mvl(12, MVL_X)

Purpose Convert a list of mvl to an integer

Category Predefined routine

Syntax mvl_to_int(mvl-list: list of mvl, mask: list of mvl): uint

Parameters
mvl-list A list of mvl values to convert to an integer value.

mask A list of mvl values that are to be converted to 1.

Purpose Convert an integer value to a list of mvl values

Category Predefined routine

Syntax int_to_mvl(value: uint, mask: mvl): list of mvl

Parameters
value An integer value to convert to a list of mvl values.

mask An mvl value that replaces each bit in the integer that has the value 1.
148 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.10.5 mvl_to_bits()

Converts a list of mvl values to a list of bits, using a mask of mvl values to indicate which mvl values are
converted to 1 in the list of bits.

Syntax example:

var bl : list of bit = mvl_to_bits({MVL_Z; MVL_Z; MVL_X; MVL_L},

 {MVL_Z; MVL_X})

9.10.6 bits_to_mvl()

Maps each bit with the value 1 to the mask mvl value, retains the 0 bits as MVL_0, and returns an mvl list
that has a size of bit-list.

Syntax example:

var ml : list of mvl = bits_to_mvl({1; 0; 1; 0}, MVL_Z)

9.10.7 mvl_to_mvl4()

Converts an mvl value to a subset of four-value logic (see 9.9.1).

Purpose Convert a list of mvl values to a list of bits

Category Predefined routine

Syntax mvl_to_bits(mvl-list: list of mvl, mask: list of mvl): list of bit

Parameters
mvl-list A list of mvl values to convert to bits.

mask A list of mvl values that specifies which mvl values are to be converted to 1.

Purpose Convert a list of bits to a list of mvl values

Category Predefined routine

Syntax bits_to_mvl(bit-list: list of bit, mask: mvl): list of mvl

Parameters
bit-list A list of bits to convert to mvl values.

mask An mvl value that replaces each bit in the list that has the value 1.

Purpose Convert an mvl value to a four-value logic value

Category Predefined routine

Syntax mvl_to_mvl4(value: mvl): mvl

Parameters value An mvl value to convert to a four-value logic value.
Copyright © 2015 IEEE. All rights reserved. 149

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

var m4 : mvl = mvl_to_mvl4(MVL_U)

9.10.8 mvl_list_to_mvl4_list()

Converts a list of mvl values to a list of the four-value logic subset (see 9.9.1).

Syntax example:

var m4l : list of mvl = mvl_list_to_mvl4_list({MVL_N; MVL_L; MVL_H; MVL_1})

9.10.9 string_to_mvl4()

Converts a string into a list of mvl, using the four-value logic subset. Logically, the string is converted to a
list of mvl (see 9.9.2), then converted into the four-logic value subset (see 9.9.1).

Syntax example:

mlist = string_to_mvl4("8'bxz")

9.11 Comparative analysis of ports and tick access

The e language supports both tick access (see 23.3) and ports in order to access external simulated objects.
Ports have the following advantages:

— They support modularity and encapsulation by explicitly declaring interfaces to e units.

— They are typed.

— They improve the performance of accessing DUT objects with configurable names.

— They can pass not only single values, but also other kinds of information, such as events and queues.

— They can be accompanied in e with generic or simulator-specific attributes that can be used to
specify information needed for enhanced access to DUT objects.

Purpose Convert a list of mvl values to a list of four-value logic subset values

Category Predefined routine

Syntax mvl_list_to_mvl4_list(mvl-list: list of mvl): list of mvl

Parameters mvl-list A list of mvl values to convert to a list of four-value logic subset values.

Purpose Convert a string to a list of four-value logic mvl subset values

Category Predefined routine

Syntax string_to_mvl4(value-string: string): list of mvl

Parameters
value-string A string representing mvl values, consisting of a width and base followed by

a series of characters corresponding to nine-value logic values.
150 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Example 1

This example shows how tick access notation translates to MVL methods, assuming the following numeric
port declaration:

data : inout simple_port of int is instance;
keep bind(data, external);
keep data.hdl_path() == "data";

d: int;

Example 2

This example shows how tick access notation translates to use of an MVL port, assuming the following
MVL port declaration:

data : inout simple_port of list of mvl is instance;
keep bind (data, external);
keep data.hdl_path() == "data";

9.12 e port binding

e ports can be bound imperatively by calling do_bind() as well as declaratively using the bind syntax defined
in bind() (9.7.2.1).

d = 'data'; d = data$;

'data' = 32'bz; data.put_mvl_list(32'bz);

check that 'data@x' == 0; check that not data.get_mvl_list().has
(it == MVL_X));

check that not data.has_x();

d = 'data[31:10]@z' d = mvl_to_int(data.get_mvl_list(),
{MVL_Z})[31:0]

check that 'data@x' == 0; check that not data$.has(it == MVL_X};
check that not data.has_x();

'data' = 32'bz; data$ = 32'bz
Copyright © 2015 IEEE. All rights reserved. 151

IEEE
Std 1647-2015 IEEE STANDARD
9.12.1 do_bind()

Calling the do_bind() routine procedurally connects a port to one or more e ports or to one or more external
simulated object. Ports can also be left explicitly disconnected with empty or undefined.

Syntax example:

do_bind(driver.bfm.data_in, bfm.driver.data_out)

NOTE 1—The do_bind() method can only be called during the connect_ports() sub-phase. Calling it at any other time
results in an error message.

NOTE 2—It is an error to declare a port disconnected in more than one way.

Purpose Connect ports

Category Predefined routine

Syntax
do_bind(port-exp1, port-exp2[,…]);
do_bind(port-exp1, external);
do_bind(port-exp1, empty | undefined);

Parameters

port-exp1, port-
exp2[,…]

One or more expressions of port type. If two expressions are given and the
port types are compatible, the two port instances are connected.

external Defines a port as connected to an external object.

empty Defines a disconnected port. Runtime accessing of a port with an empty
binding is allowed.

undefined Defines a disconnected port. Runtime accessing of a port with an undefined
binding causes an error
152 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.13 Transaction level modeling interface ports in e

This clause defines the support the e language provides for interface ports, used to implement transaction
level modeling (TLM) standard interfaces. These ports facilitate the transfer of transactions between
verification components, taking advantage of the standardized, high-level TLM communication mechanism.

9.13.1 interface_port

An e TLM interface port type is parameterized with a specific TLM interface type. For example, if an e
TLM interface port is defined with the syntax interface_port of tlm_nonblocking_put, then that port is tied to
the tlm_nonblocking_put interface. Then, the set of methods (functions) predefined can be used for that
interface to exchange transactions.

Syntax examples:

e_packet : in interface_port of tlm_put of packet is instance;

p1 : out interface_port of tlm_nonblocking_transport of
(packet, msg) is instance;

p2 : export interface_port of tlm_blocking_put is
instance; // export

Purpose Transfer transactions between e units or a combination of e units and external modules

Category Unit member

Syntax
port-instance-name : [list of] direction interface_port of tlm-intf-type [using prefix=prefix | using
suffix=suffix] [is instance]
port-instance-name : [list of] export interface_port of tlm-intf-type [is instance]

Parameters

port-instance-name A unique e identifier used to refer to the port or access its value.

direction in or out. There is no default.

tlm-intf-t ype One of the supported TLM interface types specified in Table 25 or Table 26.
The following restrictions apply to the “type” parameter of these interfaces.

For internal e TLM interface ports, the type (or types) specified for the
interface shall be any legal e type.

External e TLM interface ports support transactions of a struct (or class) type
only. Thus, for externally bound e TLM interface ports, the type (or types)
specified for the interface shall be legal e types that inherit from any_struct.

using prefix=prefix

using suffix=suffix

Applies for e TLM input ports only. Specifies a prefix or suffix string to be
attached to the predefined TLM methods for the given port.

Using a prefix or suffix ensures that there are no method name collisions if a
port contains more than instance of an e TLM interface port tied to the same
TLM interface.

(This syntax can be used only for the port instance members. It cannot be
used in other declarations, such as declarations for parameters or variables.)
Copyright © 2015 IEEE. All rights reserved. 153

IEEE
Std 1647-2015 IEEE STANDARD
9.13.1.1 Special port types

9.13.1.1.1 Export

An export interface port is a port whose enclosing unit does not implement the required interface methods.
The interface methods are delegated to the connected unit. An export TLM input port in e is functionally
equivalent to a SystemVerilog or SystemC export.

The following limitations apply to export interface ports:

— The port shall have an outbound connection.

— The port shall be connected (either directly or indirectly) to an input interface port or to an external
port providing suitable interface functions.

— The port shall have no inbound connection.

— The port must be connected using the connect() (see 9.13.3.2.1) method. The bind() constraints and
the do_bind() routine are not applicable for it.

9.13.1.2 Analysis port

Analysis ports are ports featuring the tlm_analysis interface—a restricted write-only interface intended to
share monitoring information for analysis purposes. They may have multiple outbound connections in
support of broadcast implementations.

9.13.2 Defining input e TLM interface ports

When a unit contains an instance member of an input TLM interface port, the unit must implement all
methods required by the TLM interface type of that input port. The list of methods is predefined according
to the standard TLM specification.

These methods must be defined before the port is defined. (If the methods and port are defined in the same
module, however, the order does not matter.) If any of the required methods is missing, a compile time error
shall be issued.

Syntax example:

struct packet {
…

};

unit server {
// The following four lines define the four methods required
// by the TLM interface tlm_put.
put(value : packet)@sys.any is {…};
try_put(value: packet) : bool is {…};
can_put() : bool is {…};
ok_to_put() : tlm_event is {…};
packet_in : in interface_port of tlm_put of

packet is instance;
}

In this example, the unit server implements the four methods/tasks that are required by the interface tlm_put
of packet.

See the following description of interface method semantics (see 9.13.4.5).
154 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.13.3 Binding e TLM interface ports

9.13.3.1 Binding rules for TLM interface ports

A TLM output port can be bound to a TLM input port if the interface type of the output port is either the
same as the interface type of the input port or subset of it (with exactly the same element type in the template
parameter). For example, the user can bind an output port of tlm_nonblocking_put to an input port of
tlm_put, because the tlm_nonblocking_put interface is a subset of the tlm_put interface. Additionally:

— Empty and undefined bindings are supported for e TLM interface ports.

— Multiple binding is not supported for e TLM interface ports, except for analysis ports.

— Unification of ports bound to the same external port is not supported for e TLM interface ports.

9.13.3.2 Declarative and procedural binding

e TLM interface ports have to be bound before usage, similar to any other port. Binding can be done
declaratively with keep bind() constraints or procedurally with do_bind() or do_bind_unit() pseudo-
routines. (See 9.7.2.1.)

Syntax examples for declarative binding:

keep bind(port1, port2);
keep bind(port3, external)

Syntax examples for procedural binding:

connect_ports() is also {
 do_bind(port1, port2);
 do_bind(port3, external)
}

9.13.3.2.1 connect()—language-neutral binding

External binding of TLM ports in a language-neutral way shall be supported by the simulation environment.
The port method connect() is provided for this purpose; connect() is used to bind two ports that are not both
defined in the same language. For example, this method can be used to bind a SystemC port to a
SystemVerilog port from e. For uniformity, connect() may be used to procedurally bind together e ports as
well.

The connect() method shall be called once during the connect_ports() phase. The effect of this method is
immediate—it shall issue an error in case of any mismatch (wrong external path, mismatching interface
types, unsupported multiple binding, and so on).

Syntax of connect():

<port1-exp>.connect(<port2-exp>);
<port1-exp>.connect(empty|undefined);
<port1-exp>.connect(“external path”)

Syntax examples for connect():

env.agent[1].my_port.connect(env.agent[2].my_export);
env.agent.monitor.port.connect(empty)

Description

The following restrictions shall apply to connections created by calling connect().
Copyright © 2015 IEEE. All rights reserved. 155

IEEE
Std 1647-2015 IEEE STANDARD
If port1 is an output port:

— It can be connected to another e output port, e export port, or e input port.

— It can be connected to empty. In this case, this must be the only outbound connection it has. In this
case, invoking a method on this port is like calling an empty method.

— In can be connected to undefined. In this case, this must be the only outbound connection it has. In
this case, invoking a method on this port will cause to runtime error.

— It can be connected to a specific external port by specifying the external port path. This external port
can be of any direction.

If port1 is an export port:

— It can be connected to another e export port or to other e input port.

— It can be connected to a specific external port by specifying the external port path. This external port
must be an input port or an export port.

Connecting to an external path:

— For SystemVerilog or SystemC, the external path must be quasi-static (full path from the top level
scope).

— For e, the external path is an e-path, beginning with “sys.”

9.13.4 Supported TLM interfaces

9.13.4.1 tlm_event predefined struct

The tlm_event predefined struct is used to synchronize a writer and a non-blocking reader on e-to-e TLM
ports.

The predefined struct tlm_event is defined as follows:

struct tlm_event {

 event trigger;

 notify() is {

 emit trigger

 }

}

Some TLM functions return this struct. User code for an input port shall call tlm_event.notify() when it is
ready to accept the next transaction. User code performing a non-blocking wait on that input shall be
sensitive to emission of the event tlm_event.trigger and will write the next transaction when that event is
emitted.

9.13.4.2 Supported unidirectional TLM interfaces

NOTE—Non-blocking TLM interface calls are zero-delay calls. The blocking interface calls, which correspond to e
TCM methods, consume an additional tick and one cycle of simulation time.
156 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Table 25—Supported TLM interfaces and related methods

TLM interface Interface methods

Blocking unidirectional interfaces

tlm_blocking_put of type put(value:type)@sys.any

tlm_blocking_get of type get(value:*type)@sys.any

tlm_blocking_peek of type peek(value:*type)@sys.any

tlm_blocking_get_peek of type get(value:*type)@sys.any
peek(value:*type)@sys.any

Non-blocking unidirectional interfaces

tlm_nonblocking_put of type try_put(value:type) : bool
can_put() : bool
ok_to_put() : tlm_event

tlm_nonblocking_get of type try_get(value:*type) : bool
can_get() : bool
ok_to_get() : tlm_event

tlm_nonblocking_peek of type try_peek(value:*type) : bool
can_peek() : bool
ok_to_peek() : tlm_event

tlm_nonblocking_get_peek of type try_get(value:*type) : bool
can_get() : bool
ok_to_get() : tlm_event
try_peek(value:*type) : bool
can_peek() : bool
ok_to_peek() : tlm_event

Combined unidirectional interfaces (blocking and non-blocking)

tlm_put of type put(value:type)@sys.any
try_put(value:type) : bool
can_put() : bool
ok_to_put() : tlm_event

tlm_get of type get(value:*type)@sys.any
try_get(value:*type) : bool
can_get() : bool
ok_to_get() : tlm_event

tlm_peek of type peek(value:*type)@sys.any
try_peek(value:*type) : bool
can_peek() : bool
ok_to_peek() : tlm_event
Copyright © 2015 IEEE. All rights reserved. 157

IEEE
Std 1647-2015 IEEE STANDARD
9.13.4.3 Supported bidirectional TLM interfaces

NOTE—Non-blocking TLM interface calls are zero-delay calls. The blocking interface calls, which correspond to e
TCM methods, consume an additional tick and one cycle of simulation time.

Table 26—Supported bidirectional TLM interfaces and related methods

TLM interface Interface methods

Blocking bidirectional interfaces

tlm_blocking_master of (req-type, rsp-type) put(value: req-type)@sys.any
get(value: *rsp-type)@sys.any
peek(value: *rsp-type)@sys.any

tlm_blocking_slave of (req-type, rsp-type) put(value: rsp-type)@sys.any
get(value: *req-type)@sys.any
peek(value: *req-type)@sys.any

tlm_blocking_transport of (req-type, rsp-type) transport(request: req-type,
response: *rsp-type)@sys.any

Non-blocking bidirectional interfaces

tlm_nonblocking_master of (req-type, rsp-type) try_put(value: req-type) : bool
can_put() : bool
ok_to_put() : tlm_event
try_get(value: *rsp-type): bool
can_get(): bool
ok_to_get(): tlm_event
try_peek(value: *rsp-type): bool
can_peek(): bool
ok_to_peek(): tlm_event

tlm_nonblocking_slave of (req-type, rsp-type) try_put(value: rsp-type) : bool
can_put() : bool
ok_to_put() : tlm_event
try_get(value: *req-type): bool
can_get(): bool
ok_to_get(): tlm_event
try_peek(value: *req-type): bool
can_peek(): bool
ok_to_peek(): tlm_event

tlm_nonblocking_transport of (req-type, rsp-type) nb_transport(request: req-type,
response: *rsp-type): bool

Combined bidirectional interfaces (blocking and non-blocking)

tlm_master of (req-type, rsp-type) put(value: req-type)@sys.any
get(value: *rsp-type)@sys.any
peek(value: *rsp-type)@sys.any
try_put(value: req-type): bool
can_put(): bool
ok_to_put(): tlm_event
try_get(value: *rsp-type): bool
can_get(): bool
ok_to_get(): tlm_event
try_peek(value: *rsp-type): bool
can_peek(): bool
ok_to_peek(): tlm_event
158 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.13.4.4 Supported analysis TLM interface

9.13.4.5 Required semantics of TLM interface methods

TLM interface methods need to be implemented for each interface type. These methods are activated in
response to a port interface call. As users of the e language define new interface types, they will have to
provide implementations to the interface methods. The following subclauses define the expected semantics
of the various interface methods.

9.13.4.5.1 put(value:type)

The put() method passes on a value into the port, making it available for connected ports to read. This call
shall block if the port is not ready to handle the transfer of the value.

9.13.4.5.2 try_put(value:type) : bool

The try_put() method is non-blocking. If the port is ready to handle a put operation, the value is passed on
and the method returns TRUE. Otherwise the method returns FALSE, and the value is not passed on.

9.13.4.5.3 can_put() : bool

The can_put() method returns TRUE if the port is ready to handle a put operation [a call to put() will not
block]. FALSE is returned if the port is not ready to handle a put operation [a call to put() would block].

tlm_slave of (req-type, rsp-type) put(value: rsp-type)@sys.any
get(value: *req-type)@sys.any
peek(value: *req-type)@sys.any
try_put(value: rsp-type): bool
can_put(): bool
ok_to_put(): tlm_event
try_get(value: *req-type): bool
can_get(): bool
ok_to_get(): tlm_event

lm_transport of (req-type, rsp-type) transport(request: req-type,
response: *rsp-type)@sys.any
nb_transport(request: req-type,
response: *rsp-type): bool

Table 27—Supported analysis TLM interface and related methods

TLM interface Interface methods

tlm_analysis of type write(value : type)

Table 26—Supported bidirectional TLM interfaces and related methods (continued)

TLM interface Interface methods
Copyright © 2015 IEEE. All rights reserved. 159

IEEE
Std 1647-2015 IEEE STANDARD
9.13.4.5.4 ok_to_put() : tlm_event

The method ok_to_put() returns an event that will trigger each time the port is ready to handle a put
operation. The returned event may be used to invoke the user code producing the next put operation.

9.13.4.5.5 get(value:*type)

The get() method returns the value that is read from the port (the value is passed by reference in the
parameter). This call blocks if no value is available to be read.

9.13.4.5.6 try_get(value:*type) : bool

The try_get() non-blocking method returns TRUE and the read value if the port can be read. FALSE is
returned if the port is not ready to be read [the get() operation would block].

9.13.4.5.7 can_get() : bool

The method can_get() returns TRUE if a get operation can be performed without blocking. FALSE is
returned otherwise.

9.13.4.5.8 ok_to_get() : tlm_event

The method ok_to_get() returns an event that will trigger each time the port is ready for a get operation (data
is available for reading). The returned event can be used to trigger user code performing a get operation.

9.13.4.5.9 peek(value:*type)

The peek() method returns the next value ready to be read from a port. The peek() method does not consume
the value—a subsequent get() call will return the same value. The peek() method shall block if no value is
ready to be read, and return only when the next value is available.

9.13.4.5.10 try_peek(value:*type) : bool

The try_peek() non-blocking method returns TRUE and the read value if the port can be read. FALSE is
returned if the port is not ready to be read [the peek() operation would block]. This method does not
consume the read value.

9.13.4.5.11 can_peek() : bool

The method can_peek() returns TRUE if a peek operation can be performed without blocking. FALSE is
returned otherwise.

9.13.4.5.12 ok_to_peek() : tlm_event

The ok_to_peek() method returns an event that triggers each time the port is ready for a peek operation (data
is available to be read). The returned event can be used to trigger user code that monitors (performs a non-
destructive inspection) the ports output.

9.13.4.5.13 transport(request: req-type, response: *rsp-type)

The transport() method implements the equivalent of a procedure call, or a bidirectional atomic transfer.
The first parameter contains the input to the procedure. The second parameter passes back the output (by
reference). The method may consume time, depending on the user-level implementation of this method for a
particular interface.
160 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.13.4.5.14 write(value : type)

The write() method passes on a value into an analysis port. The method is non-blocking, because analysis
ports should always be ready to be written.

9.14 TLM Sockets in e

This clause defines the support the e language provides for TLM sockets, used to implement transaction
level modeling and communication based on the IEEE Standard for Standard SystemC® Language Reference
Manual (IEEE1666-2011). These sockets facilitate the transfer of transactions between verification
components, taking advantage of the standardized, high-level TLM 2.0 communication mechanism.

9.14.1 tlm_initiator_socket/tlm_target_socket

The tlm_initiator_socket/tlm_target_socket declaration defines and instantiates e TLM sockets. TLM socket
based communication relies on a pair of sockets (one initiator and one target) being connected/bound.

When a unit contains an instance member of a TLM socket, the unit must implement all methods required by
the TLM socket type. The list of methods is predefined according to the standard TLM specification.

These methods must be defined before the socket is defined. (If the methods and socket are defined in the
same module, however, the order does not matter.) If any of the required methods is missing, a compile time
error will be issued.

The phase and time parameters in some of the methods are reference parameters, as designated by the
asterisk (*). This enables the method, when called, to update the values of those parameters.

Purpose Provide the interface for accessing external and internal TLM 2.0 sockets.

Category Unit member

Syntax tlm-socket-instance : [list of] tlm_socket_type [of type] [using prefix=prefix | using suf-
fix=suffix] [is instance]

Parameters

tlm-socket-instance A unique e identifier used to refer to the socket or call any of its access meth-
ods/TCMs.

tlm-socket-type Defines the socket as an initiator or target socket. Legal values:
tlm_initiator_socket
tlm_target_socket

type Type of transfer to be used with this socket. Default: tlm_generic_payload

using prefix=prefix
using suffix=suffix

By default, instantiation of multiple TLM 2.0 sockets in the same unit type
results in all sockets using the same predefined methods-because the method
names are the same for each socket.
To implement a different set of method names for each socket instance, you
define a prefix or suffix with using prefix or using suffix. The prefix or suffix
you define is attached to all the method names for the current socket instanti-
ation, thus creating a unique set of methods.
The prefix or suffix must be a string type, and the text for strings is always
enclosed in double quotation marks.
(This syntax can be used only for the socket instance members. It cannot be
used in other declarations, such as socket reference declarations.)
Copyright © 2015 IEEE. All rights reserved. 161

IEEE
Std 1647-2015 IEEE STANDARD
e TLM sockets are derived from the any_port base type and thus have the basic facilities of e ports.

Syntax example:

 initiator: tlm_initiator_socket of tlm_generic_payload using prefix=
my is instance;

9.14.1.1 nb_transport_bw(trans:tlm_generic_payload,
p:*tlm_phase_enum,t:*time):tlm_syn_enum

The nb_transport_bw() method is non-blocking and transports a transfer of type tlm_generic_payload (or a
type derived from tlm_generic_payload) from the target socket to the initiator socket. nb_transport_bw()
returns the status of the transaction as a tlm_sync_enum type.

9.14.1.2 nb_transport_fw(trans:tlm_generic_payload,
p:*tlm_phase_enum,t:*time):tlm_syn_enum

The nb_transport_bw() method is non-blocking and transports a transfer of type tlm_generic_payload (or a
type derived from tlm_generic_payload) from the initiator socket to the target socket. nb_transport_fw()
returns the status of the transaction as a tlm_sync_enum type.

9.14.1.3 b_transport(trans:tlm_generic_payload, ,t:*time)@sys.any

The b_transport() TCM is blocking and transports a transfer of type tlm_generic_payload (or a type
derived from tlm_generic_payload) from the initiator socket to the target socket.

9.14.1.4 transport_dbg(trans:tlm_generic_payload):uint

The transport_dbg() method is non-blocking and gives the initiator socket the ability to read from or write
to memory in the target socket. The intent is to provide access to the data for debug purposes.

9.14.1.5 set_bus_width (num:uint)

Predefined method of TLM sockets to set the current bus width. The default is 32 bits.

9.14.1.6 get_bus_width ():uint

Predefined method of TLM sockets to return the current bus width.

Table 28—TLM socket related methods

Required interface methods/TCMs

Unit with initiator socket nb_transport_bw(trans:tlm_generic_payload,phase:*tlm_p
hase_enum, t:*time):tlm_sync_enum

Unit with target socket b_transport(trans:tlm_generic_payload, t:*time)@sys.any

nb_transport_fw(trans:tlm_generic_payload,phase:*tlm_p
hase_enum, t:*time):tlm_sync_enum

transport_dbg(trans:tlm_generic_payload):uint
162 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.14.2 Predefined types related to TLM socket based transactions

In accordance with the TLM 2.0 standard there are additional predefined types available in the e language
for handling TLM socket transactions. Details are explained in the following sections.

9.14.2.1 tlm_command

Predefined enumerated type that identifies the basic operation to be performed with the e TLM 2.0 payload.
The possible values are TLM_READ_COMMAND, TLM_WRITE_COMMAND and TLM_IGNORE_COMMAND:

— TLM_READ_COMMAND – The target socket copies data from the specified address to the
transac-tion payload before passing it back to the initiator socket. (In other words, the initiator socket
reads data from the target socket.)

— TLM_WRITE_COMMAND – The target socket copies data from the current transaction payload
to the specified address. (In other words, the initiator socket writes data to the target socket.)

— TLM_IGNORE_COMMAND – The target socket does not perform a read or write. It can, how-
ever, make use of the value of any attribute in the transaction payload, including extensions. The
intent is to allow the payload to act as a vehicle for transporting payload extension values.

9.14.2.2 tlm_endianness

Predefined enumerated type that identifies the endianness of a payload for a TLM transaction. The possible
values are TLM_UNKNOWN, TLM_LITTLE_ENDIAN and TLM_BIG_ENDIAN.

9.14.2.3 tlm_extension

Predefined struct type for defining extensions to the tlm_generic_payload struct. The tlm_extension struct is
used to define TLM 2.0 data transaction fields that are missing from tlm_generic_payload but that are
required to follow a given protocol (or for any other reason). The tlm_extension base struct does not have
any public members.

9.14.2.4 tlm_generic_payload

Predefined struct for transferring transaction attributes (like address and data) between TLM sockets.
Tlm_generic_payload is inherited of any_sequence_item and can be used in sequence statements. The
member field characteristics (e.g. names, sizes) are aligned with the TLM 2.0 standard.

Note on Table 29— For information about how the attributes in this table are used, see the description of the attributes
in the IEEE Standard for Standard SystemC® Language Reference Manual (IEEE1666-2011).

Table 29—tlm_generic_payload struct fields

Field Name

%m_address: uint(bits:64) Address for the operation.

%m_command: tlm_command Operation type. See 9.14.2.1.

%m_data: list of byte Data read or to be written.
Copyright © 2015 IEEE. All rights reserved. 163

IEEE
Std 1647-2015 IEEE STANDARD

%m_length: uint The number of bytes to be copied to or from the m_data array.
This field is initialized to zero, which is an invalid value. Thus, this field
must be set explicitly when defining the tlm_generic_payload struct.
To transfer zero data bytes, set m_command to
TLM_IGNORE_COMMAND. For more information, see the descrip-
tion of TLM_IGNORE_COMMAND in 9.14.2.1.

%m_response_status:
tlm_response_status

Status of the operation. See 9.14.2.6.

%m_dmi: bool DMI stands for direct memory interface. When enabled, it allows the
initiator to get direct access to a target memory, bypassing the usual
transport interfaces. The default is FALSE.

%m_byte_enable: list of byte Indicates valid m_data array elements. The default value is zero (null
pointer).

%m_byte_enable_length: uint Indicates the number of elements in the byte enable array. The default
value is zero. Note that this attribute is ignored if the value of
m_byte_enable is zero.

%m_streaming_width: uint The number of bytes transferred on each beat. The default value is zero.
Streaming affects the way a component interprets the data array. A
stream consists of a sequence of data transfers occurring on successive
notional beats, each beat having the same start address as given by the
generic payload address attribute.

%m_extensions: list of
tlm_extension

Note This list is empty by default. To add extensions to this list, see the
descriptions of set_extension() and get_extension() in Table 30.

Field Name
164 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.14.2.5 tlm_phase_enum

Predefined enumerated type to identify the current phase of the communication protocol for non-blocking
transport transactions. Possible values are UNINITIALIZED_PHASE=0, BEGIN_REQ=1,END_REQ,
BEGIN_RESP and END_RESP. The values are described below.

UNINITIALIZED_PHASE – No phase has started.

BEGIN_REQ – The request has started.

END_REQ – The request has completed.

BEGIN_RESP – The response has started.

END_RESP – The response has completed.

Table 30— tlm_generic_payload Predefined Struct Methods

Method Name Method Description

set_extension(ext: tlm_extension) Adds the specified extension to the generic payload’s extension
list. Returns the previous value of this extension type, if one
existed; otherwise, returns NULL.
The following example illustrates the use of set_extension():
struct extension1 like tlm_extension {

%m_uint : uint;
%m_int: int;
…

};

struct extension2 like tlm_extension {
%m_struct : a_struct;
…

unit initiator_unit {
i: tlm_initiator_socket is instance;

…
drive()@sys.any is {
var gp : tlm_generic_payload;
gp = new;
var ext1: extension1 = new;
…
gp.set_extension(ext1);
var ext2: extension2 = new;
…
gp.set_extension(ext2);

var status :=
i$.nb_transport_fw(gp,phase,t);

…

get_extension(extension-type-name) :
tlm_extension

Returns the current value of the specified extension type if
such an extension was previously added to the list; otherwise,
returns NULL.

get_extensions() : list of tlm_extension Returns the list of extensions.
Copyright © 2015 IEEE. All rights reserved. 165

IEEE
Std 1647-2015 IEEE STANDARD
9.14.2.6 tlm_response_status

Predefined enumerated type to indicate the current response status of a TLM transaction. Possible values
and numeric values are TLM_INCOMPLETE_RESPONSE=0, TLM_OKAY_RESPONSE=1,
TLM_GENERIC_ERROR_RESPONSE=-1, TLM_ADDRESS_ERROR_RESPONSE=-2,
TLM_COMMAND_ERROR_RESPONSE=-3, TLM_BURST_ERROR_RESPONSE=-4 and
TLM_BYTE_ENABLE_ERROR_RESPONSE=-5. These values are described below.

— TLM_INCOMPLETE_RESPONSE – The transaction has not yet been delivered to the target or
the transaction operation has not yet been executed by the target.

— TLM_OKAY_RESPONSE – The transaction operation completed successfully (both read and
write operations).

— TLM_GENERIC_ERROR_RESPONSE – The operation had an error (can be used by the target to
indicate any sort of error).

— TLM_ADDRESS_ERROR_RESPONSE – The transaction address is out of range or the operation
failed because of the value of the address given in the transaction.

— TLM_BURST_ERROR_RESPONSE – An invalid burst was specified. (the target is unable to
execute the operation with the given data length).

— TLM_BYTE_ENABLE_ERROR_RESPONSE – Either the target does not support byte enables
or the value of the byte_enable attribute or the byte_enable_length attribute of the generic payload
caused an error.

9.14.2.7 tlm_sync_enum

Predefined enumerated type to identify the synchronization status of non-blocking transactions. Possible
values are TLM_ACCEPTED, TLM_UPDATED and TLM_COMPLETED. These values are described below.

— TLM_ACCEPTED – The transaction has been accepted. Neither the transaction object, the phase,
nor the delay arguments have been modified.

— TLM_UPDATED – The transaction has been modified. The transaction object, the phase, or the
delay arguments may have been modified.

— TLM_COMPLETED – The transaction execution has completed. The transaction object, the phase,
or the delay arguments may have been modified. There will be no further transport calls associated
with this transaction.

9.14.3 Binding e TLM sockets

9.14.3.1 Binding rules for TLM sockets

TLM initiator sockets need to be bound to TLM target sockets. Additionally:

— Multiple binding is not supported for e TLM sockets.

— Connection of TLM 2.0 sockets is unidirectional: An initiator socket can connect to its target sock-et,
but the target socket cannot connect to the initiator socket.

— The connect() method can be called only during the connect_ports() or connect_pointers() phase.

— Declarative connection using keep bind() and procedural connection using do_bind() are not sup-
ported for sockets.
166 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
9.14.3.1.1 connect()-language-neutral binding

Internal and external binding of TLM sockets in a language-neutral way shall be supported by the simulation
environment. The port method connect() is provided for this purpose; connect() is used to bind two sockets.

The connect() method shall be called once during the connect_ports() phase. The effect of this method is
immediate-it shall issue an error in case of any mismatch (wrong external path, mismatching interface types,
unsupported multiple binding, and so on).

Syntax of connect():

<socket1-exp>.connect(<socket2-exp>);
<socket1-exp>.connect(empty|undefined);
<socket1-exp>.connect("external path")

Syntax examples for connect():

env.agent[1].i_socket.connect(env.agent[2].t_socket);
env.agent.monitor.i_socket.connect(empty)
Copyright © 2015 IEEE. All rights reserved. 167

IEEE
Std 1647-2015 IEEE STANDARD
168 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
10. Constraints and generation

Test generation is a process producing data layouts according to a given specification. The specifications are
provided in the form of type declarations and constraints. Constraints are statements that restrict values
assigned to data items by test generation.

A constraint can be viewed as a property of a data item or as a relation between several data items.
Therefore, it is natural to express constraints using Boolean expressions. Any valid Boolean expression in
e can be turned into a constraint. Also, there are few special syntactic constructs not based on Boolean
expressions for defining constraints.

Constraints can be applied to any data types including user-defined scalar types as well as struct and list
types. It is natural to mix data types in one constraint, e.g.,

keep my_list.has(it == 0xff) => my_struct1 == my_struct2

10.1 Types of constraints

Constraints can be subdivided according to several criteria as follows:

a) Explicit or implicit

1) Explicit constraints are those declared using the keep statement or inside keeping {...} block.

2) Implicit constraints are those imposed by type definitions and variable declarations.

Examples

x : int[1, 3, 5, 10..100]; \\ is the same as:

x : int;
 keep x in [1, 3, 5, 10..100];

l[20] : list of int; \\ is the same as:

l : list of int;
 keep l.size() == 20

b) Hard or soft

1) Hard constraints are honored whenever the constrained data items are generated. A situation
when a hard constraint contradicts other hard constraints, and thus cannot be honored, shall
result in an error.

2) Soft constraints are honored if they do not contradict hard constraints or soft constraints of the
same connected field set honored earlier. If a soft constraint cannot be honored, it is
disregarded. (See 10.2.12 for the explanations on how the selection of soft constraints is done.)

c) Simple or compound

A constraint combining other constraints in a Boolean combination using not, and, or, and => is
called compound. Otherwise, the constraint is called simple.

10.2 Generation concepts

This subclause describes the basic concepts of generation.
Copyright © 2015 IEEE. All rights reserved. 169

IEEE
Std 1647-2015 IEEE STANDARD
10.2.1 Generation action

A generation action is a specific invocation of the generation process, initiated by a gen or do action. Pre-
run generation is also a generation action, and can be considered as an implicit gen sys action.

10.2.1.1 Pre-Run Generation Actions

Pre-run generation is initiated before starting the simulation run.

Pre-run generation is the generation of sys, in which sys and all generatable fields within sys, including
nested structs, are allocated and generated recursively. Any field prefixed with the do-not-generate character
(!) is not generated.

All unit instances must be generated during pre-run generation, so that the unit tree hierarchy is stable for the
duration of the run.

10.2.1.2 On-the-Fly Generation Actions

Any field or variable can be generated on-the-fly during a simulation run by executing a gen action within a
user-defined method.

10.2.2 Generatable variable

A variable that is subject to the generation process and can be constrained is one of the following:

a) Field of a struct or a unit.

b) Local variable that is a parameter of a gen action, and its structural descendants, if they exist.

var x: int;
gen x;

c) List-size of a generatable list.

d) Unit attribute.

10.2.3 Connected Field Sets (CFS)

Within a generation action, constraints create relationships between the fields being generated (or other
generatable variables). A set of fields in a generation action that is connected by a set of constraints is called
a connected field set (CFS).

A CFS has the following attributes:

a) Completeness—every generatable variable in a generation action is a member of some CFS. All
generatable variables that are connected by constraints (directly or indirectly) are placed in the
same CFS.

b) Exclusivity—for any given generation action, a generatable variable is a member of one and only
one CFS.

c) Generation at once—for any given generation action, all generatable variables in a CFS are gener-
ated at the same time.

d) Unified input state—the same values of the same set of sampled inputs are applied to all fields in a
CFS.

e) A building block of a generation action—a generation action consists of the sequential generation of
a set of CFSs.
170 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
NOTE

— Within a single struct, different fields can belong to different CFSs.

— The same CFS can contain fields from different places in the hierarchy generated by the root gen-
action.

10.2.4 Inputs

Expressions in constraints are either generatable or they are inputs to the CFS (that is, they are non-
generatable).

Generatable expressions are assigned a value by the current CFS

Input values are not affected by the constraints, but they can affect the values assigned to the generatable
items. Thus, the inputs must be evaluated before any generatable items can be generated.

The specific values of a CFS's inputs comprise the input state.

An input to a constraint is an expression whose path has one of the following attributes:

— Contains a user-defined method-call

keep x == foo(y);

— Starts with sys (that is, a global or absolute path), for example:

keep counter == sys.counter;

— Is me, for example:

keep root_node => parent == me;

— Is not in the scope of the current generation action, for example:

var my_method_variable:my_struct;
gen x keeping {it == my_method_variable.id};

— Contains a call to a predefined unidirectional method or list pseudo-method, for example:

keep read_only(z) == p.a.x;

For some constraints, it is convenient to assume some of the parameters are always treated as inputs. There
are five such kinds of expressions, treating some of their parameters as inputs, even if these parameters
represent generatable paths.

— list segments: in an expression l[i..j], the segment boundaries i and j are treated as inputs in the
generation of l. Thus, a constraint such as

keep ({1; 2; 3; 4; 5})[i..j] in {2; 3};

is allowed to cause a contradiction error.

— list in list: The right hand side of a “list in list” or “is a permutation” expression is considered as an
input to the constraint.

 keep list1.is_a_permutation(list2);//list2 is input

— soft..select conditions, weights and policies: The condition, weights and policies of a soft…select
constraint are inputs, and evaluated before the enforcement of the constraint. The only generatable
expression in a soft…select constraint is the expression on which the distribution is applied.

keep soft b => x == select { // b is input, only x is generatable.
1 : 10;
y : z; //y and z are inputs

};
Copyright © 2015 IEEE. All rights reserved. 171

IEEE
Std 1647-2015 IEEE STANDARD
— conditional reset_soft(): The condition of reset_soft() constraint is an input.

— unit instance assignment:

u_inst: my_unit is instance;
u_ref: my_unit;
keep u_ref == u_inst; //u_inst is input

10.2.5 Unidirectional and Bidirectional Relations

Bidirectional relations imply that all the generatable fields in a constraint should be solved together in the
same CFS. For example:

keep x > y;

Unidirectional relations on the other hand connect two generatable fields in which there is an implied gen-
eration order, for example:

keep x == read_only(y);

A constraint can have both unidirectional and bidirectional relations. For example, the following constraint
contains the unidirectional relations x->y and x ->z and the bidirectional relation y <-> z.

keep read_only(x==0) => y==z;

In unidirectional relations where there is an implied generation order:

— The field that must be resolved first is called the determinant.

— The field that depends on the value of the determinant is called the dependent.

For example, in the following example, y is the determinant and x is the dependent:

keep x == read_only(y);

10.2.6 Inconsistently Connected Field Sets (ICFS)

The generator responds to a generation action by:

1. Partitioning the fields in the gen-action being solved into connected field sets (CFSs)

2. Within each CFS, looping through reduction and assignment until the constraints are solved.

All the fields in a given CFS are solved together.

This process works as long as any two fields are connected only by unidirectional constraints or only by
bidirectional constraints. Problems arise when bidirectional constraints directly or indirectly connect two
fields that have a unidirectional connection. When this happens, the generator creates inconsistently con-
nected field sets (ICFSs), which it might or might not be able to solve.

10.2.7 Order of CFSs

There are two main types of unidirectional connections that imply an order between generatable fields:

a) Structural dependency

1) Field depends on its containing struct

2) Field in a subtype depends on its subtype determinant
172 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
3) An item in a list depends on the list's size

b) Input dependency

1) Field depends on input (method call, value(), global path) that uses another field as a parameter

10.2.7.1 Structural dependencies

A descendant field is dependent on its structural ancestor (either a struct or a list) because the ancestor (the
determinant) needs to be allocated in order to assign a value to the descendant field (the dependent).

For lists, the size of a list must be determined before any list element (or any descendant of that element) is
generated.

10.2.7.1.1 when Subtype Dependencies in Constraints

Just like with any structural dependency, any field that is declared under a when subtype depends on the
value of the when determinant. In other words, there is an implicit unidirectional constraint (a subtype de-
pendency) between the when determinant and the dependent field:

when-determinant -> dependent-field

If a field is constrained under a when subtype, but was declared outside it, the behavior is more robust. If the
when determinant is also connected to a dependent field directly or indirectly by bidirectional constraints,
the when determinant is treated as bidirectional, not creating an ICFS. As shown in Example: Subtype
Dependency Treated as Bidirectional on page 173, the generator can avoid inconsistent connections by
treating the subtype dependency as bidirectional. In these cases, the when determinant and the dependent
field remain in the same CFS.

Exception to this rule are cases in which the when determinant is required to be an input of a constraint.
Specifically, a soft…select or a reset_soft() constraint written under a when subtype makes the when sub-
type its condition, thus enforcing the when subtype to be generated before the constrained field. Another
case is of named constraints, where the exact subtype should be determined for the generator to decide
which layer of the named constraint should be enforced.

Example: Subtype Dependency Treated as Bidirectional

In this example, the when determinant "color" and the dependent field "x" are connected bidirectionally by
the keep color!=YELLOW => x < y; constraint. Both the when determinant and the dependent field
belong to the same CFS, and both constraints are considered bidirectional. No generation order is implied by
these constraints.

color <-> x <-> y
<'
extend sys {

p: packet_s
};
struct packet_s {

color: [RED,BLUE,YELLOW];
x: uint;
y: uint;

keep color!=YELLOW => x < y;
when RED packet_s {

keep x < 100
};
when BLUE packet_s {

keep x > 50
Copyright © 2015 IEEE. All rights reserved. 173

IEEE
Std 1647-2015 IEEE STANDARD
}
}
'>

10.2.7.2 Input dependencies

Any constraint containing a unidirectional operator defines an input dependency. For example, in keep x
= value(y), value(y) is a unidirectional operator. In this example, y is the determinant expression
and x is the dependent expression.

10.2.7.2.1 Dependencies of method-calls

All the parameters of an expression that contains a method-call are inputs to the constraint. A slightly more
complex dependency is created for the path of the method-call, thus to the struct or unit that calls the
method.

— If the CFS contains no fields belonging to the path, the path should be completely generated, and it's
post_generate() routine should be called before the CFS that calls the method is solved. This
is to enforce that the path is complete and the method-call is evaluated correctly.

— If a CFS contains a descendant of the method-call path, the determinant is the path of the method
call, but not its descendents. Thus if the method body uses generatable fields, it is the user's responsi-
bility to pass them as a parameter to the method-call.

For example, for a CFS containing only the following constraint:

keep y == p.foo();

p, and all its fields, and all their fields, will be generated, and p.post_generate() will be called be-
fore solving the CFS of y.

However for the CFS:

keep p.x == p.foo();

only the p object will be generated before the CFS of p.x is solved.

10.2.8 Basic flow of generation

Generation can be initiated for any field or variable. For items of struct types, the generation allocates the
struct storage and recursively generates all generatable fields of the struct. All fields of a struct are
considered generatable, except for the fields prefixed with ! (see 6.8). There is no specific order in which
data items or the fields in a struct hierarchy are generated.

For list items, the generation allocates the list and recursively generates all its elements. There is no specific
ordering for whether list items are generated after the size of the list has been fixed or that the items are
generated in the order of their indexes. Constraints specified for the items can impose restrictions on the list
size or on the items specified earlier in the list.

For scalar types, such as int, uint, bool, etc., the generation only generates the respective value.

The following ordering rules, however, do apply:

a) pre_generate() and post_generate()

1) pre_generate() of a struct is called after the struct is allocated and initialized using init(), but
before any of the fields of the struct are generated. In particular, for a struct containing nested
174 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
structs, the pre_generate() method is called before any of the pre_generate() methods of the
nested structs.

2) post_generate() is called after the generation of all fields of the struct is finished. In particular,
for a struct containing nested structs, the post_generate() method is called only when all the
nested generations are finished.

b) Methods

A method accepting a generatable item as an argument is called after that item is fully generated.

Example

struct s {
 a : int;
 b : t; // ’t’ is some other struct type
 keep a == f(b)
}

The constraint a==f(b) implies b is fully generated, including the calls to its pre_generate() and
post_generate() before f is called on b. See also 10.2.9 and 10.2.10.

10.2.9 Using methods in constraints

Constraint paths can include method calls. The syntax is:

[simple-path.]method-name([parameter, ...])[.trailing-path]

where simple-path does not include method calls and the following restrictions apply:

— If simple-path is generatable, then it is fully generated before the method is called.

— Generatable paths used as parameters of the method are fully generated before the method is called.

— For methods returning pointers to structs, the trailing path is sampled after evaluating the method and
used as an input of the constraint.

Example

struct s {
 x : int[0..5];
 q : t;
 keep x < m(q).y;

 m(param:t): t is {
 result = param
 }
};

struct t {
 y : int[0..5]
}

In this example, q is generated before x and then q is used as an input in the constraint x<m(q).y. If q.y
generates to 0, then the constraint x<m(q).y fails.

10.2.9.1 Classification of methods

Methods are classified into the following three categories:
Copyright © 2015 IEEE. All rights reserved. 175

IEEE
Std 1647-2015 IEEE STANDARD
a) Methods that behave like mathematical functions (pure). The computed result is entirely determined
by the arguments passed to the method. Multiple calls to the method with the same parameters
always produce the same result.

The use of such methods in constraints is safe and unrestricted.

b) Methods that observe the “state of the world,” but do not change it. Such method can read fields, sig-
nals, global configuration flags, etc., and base the computation on that data. Multiple calls to the
method with the same parameters can produce different results.

When using the methods of this category of constraints the following rules apply:

1) The method shall not base its computation on the items of the current generatable context,
unless such items are passed as parameters to the method.

Example

struct packet {
 data : list of byte;
 checksum : uint;
 keep checksum == calc_checksum(data);

 calc_checksum(data:list of byte): uint is {
 // use ’data’ to calculate checksum
 }
}

This is correct; data is generated before the method is called.

2) The timing of the call and/or the number of calls to the method cannot be presumed, especially
for methods reading values of the real-time or process clocks, operating-system (OS)
environment variables, sizes of allocated memory, etc.

Example

extend sys {
 l[1000] : list of uint;
 keep for each in l {
 it == read_machine_real_time_clock_msec()
 }
}

It is incorrect to assume the method read_machine_real_time_clock_msec is called
1000 times, i.e., once for each list element in order (see 10.2.9.2). It is acceptable for the gener-
ator to assume this method is a pure function, and thus, call it only once for the list and assign
the result to all the list elements. It is also acceptable to assign values to list elements unrelated
to their natural order of indexes. Thus (normally in the presence of other constraints), the times
read by the method might not be ordered with respect to the list indexes.

c) Methods that observe and change the “state of the world.”

The use of such methods in constraints can create problems. Instead, use the corresponding opera-
tions within the post_generate() method.

Example

struct packet {
 data : list of data_item;

 post_generate() is {
 var id;
176 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
 for each in data do {
 if it.x < 100 then {
 it.id = id;
 id += 1
 }
 }
 }
}

In general, it is impossible to classify methods automatically into the preceding three categories. Therefore,
the following warnings shall be used if a method calling issue occurs:

— method call warning #1: a method used in a constraint contains a non-local path anywhere in its
body.

— method call warning #2: a method used in a constraint contains an explicit assignment to a non-local
path.

10.2.9.2 Number of calls

A method used in constraints can be called zero or more times. The number of calls to a method is irrelevant
for the semantics of the constraint if the method behaves as a pure function [see 10.2.9.1, category a)].
However, the results of generation can differ depending on the number of calls for the methods with side
effects. Therefore, avoid using the methods of category c), and only use methods of category b) with
caution.

10.2.10 Generatable paths and the sampling of inputs

The purpose of constraints is to constrain generatable items, i.e., those items that can be assigned random
values (by the generator) satisfying the constraints. Thus, it is important to define which items are
considered generatable and when.

In the context of the initial generation, all fields of sys and all fields of nested structs are generatable, except
the fields declared as non-generatable (using the ! prefix).

In the context of a gen item action (see 10.5.1), item is generatable and, if item is of a struct type, all its
nested fields are generatable—except the fields marked with !. If gen item action applies to a field defined
as non-generatable, the item becomes generatable; however, any nested non-generatable fields remain non-
generatable.

Example

struct packet {
 x : int;
 !y : int
};

extend sys {
 p1 : packet; -- generated during pre-generation
 !p2 : packet; -- skipped during pre-generation

 post_generate() is also {
 gen p2 -- this allocates p2 and generates p2.x but not p2.y
 }
}

Copyright © 2015 IEEE. All rights reserved. 177

IEEE
Std 1647-2015 IEEE STANDARD
Data items in constraints are referenced by using paths (see 4.3.4). In generation context, each path is either
generatable or non-generatable. Generatable paths refer to items that are assigned values during the
generation with respect to the corresponding constraints. Each constraint shall have all its inputs sampled
before the items referenced by the generatable paths are generated.

Non-generatable paths refer to items that are not affected by generation, but those items might affect
generatable items. Thus, non-generatable paths refer to inputs of constraints. A path is non-generatable if

a) it is an absolute path (e.g., sys.counter).

b) it includes method calls (e.g., x.y.m().z).

c) it includes do-not-gen fields (e.g., x.y.non_gen_field.z).

d) the path is me (e.g., keep root_node => parent == me;).

Otherwise, the path is generatable.

A path that is generatable but is not intended to be generated may be modified by defining it as input to a
constraint using the read_only() syntax, as in keep x<read_only(y). In this case, the set of values y
can take is unaffected by the constraints on x. The parameter y is treated as an input.

Arbitrary expressions can be used as arguments of read_only(). For example, in keep x <
read_only(y+z), both y and z become inputs of the constraint. First, y and z are generated (unaffected
by the possible values of x). Then, their sum is computed and used as an input in the constraints.

Semantically, read_only() can be viewed as an identity function

read_only(arg : TYPE) is { result = arg }

defined for each type TYPE known to the generator. The use of read_only() in constraints is thus identical
to the use of such an identity function.

A constraint that has no generatable paths with respect to the current generation context shall be reported as
an error.

10.2.11 Scope of constraints

A constraint can be either applicable or inapplicable depending on the context of generation. There are two
basic rules governing that aspect of generation.

a) All constraints defined for sys and any of the nested structs are applicable during the initial
generation.

b) For generation started by the gen item action (see 10.5.1), the following are applicable:

1) The constraints defined within the optional constraints block.

2) All constraints defined in the type of item, if item is of a struct type.

3) All constraints referring to item in this struct (me) and in the struct hierarchy containing me.

Example

struct packet {
 x : uint;
 y : uint;
 keep x < y
};

extend sys {
178 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
 !p1 : packet;
 keep p1.y == 8;
 !p2 : packet;

 post_generate() is also {
 gen p1 keeping {it.x > 5};
 p2 = new;
 gen p2.x
 }
}

The generation of p1 succeeds. The applicable constraints here are p1.x>5 (by rule b1), p1.x<p1.y (by
rule b2), and p1.y==8 (by rule b3) Thus, p1.y becomes 8 and p1.x becomes either 6 or 7.

The generation of p2.x fails. For p2 allocated using new, p2.x=0 and p2.y=0. The only applicable
constraints in this case is p2.x<p2.y (by rule b3). p2.y is not a generatable item here in the context of
gen p2.x (see 10.2.10); it is used as input, so the constraint is equivalent to p2.x < 0. Since x is a
uint, the constraint is not satisfiable.

10.2.12 Soft constraints

A constraint can be declared as soft by prefixing it with the soft keyword in the declaration. See also 10.4.5.

keep soft constraint;
gen item keeping {soft constraint; ...};
keep soft item = select {...}

Intuitively, soft constraints are satisfied if possible and otherwise disregarded. Soft constraints suggest
default values and relations that can be overridden by hard or other soft constraints. They are considered
with respect to the order of importance, which is a reverse of the (textual) order of soft constraints in the
model.

The following properties of soft constraints also apply:

a) Assume two soft constraints c1 and c2, such that c1 is more important than c2. Then the generator
shall always produce a solution satisfying c1, if one exists. It is also required that the generator find
a solution satisfying both c1 and c2, if it exists.

b) Assume a collection of data items (fields and/or variables) x1...xn, a collection of constraints
c1...ck linking the data items, and a solution exists satisfying all c1...ck. Then a solution needs
to be found for {soft c1;...;soft ck} such that all soft constraints are satisfied.

Informally, this property means that in the absence of hard constraints, soft constraints act as hard, except
for those cases causing contradictions.

Example

struct s {
 x : int;
 y : int;
 z : int;
 keep x in [1..100];
 keep x < y or y < z
}

is the same as

struct s {
Copyright © 2015 IEEE. All rights reserved. 179

IEEE
Std 1647-2015 IEEE STANDARD
 x : int;
 y : int;
 z : int;
 keep soft x in [1..100];
 keep soft x < y or y < z
}

10.2.12.1 keep gen-item.reset_soft()

This causes the program to quit the evaluation of soft value constraints for the specified field. Soft
constraints for other fields are still evaluated. Soft constraints are considered in reverse order to the order in
which they are defined in the e code.

The syntax keep gen-item.reset_soft() is used for discarding soft constraints referring to the gen-item loaded
so far. Soft constraints not referring to gen-item or soft constraints referring to gen-item, but loaded later, are
taken into account by the constraint resolution engine. The main use of this feature is for overloading the
default “soft” behavior of a model.

Syntax example:

keep c.reset_soft()

Purpose Quit evaluation of soft constraints for a field

Category Struct member

Syntax keep gen-item.reset_soft()

Parameters gen-item A generatable item (see 10.4.8).
180 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
10.2.12.2 keep soft... select

This specifies the relative probability that a particular value or set of values is chosen from the current range
of legal values. The current range is the range of values as reduced by hard constraints and by soft
constraints that have already been applied. A weighted value shall be assigned with the probability of

weight/(sum of all weights)

Weights are treated as integers. If an expression is used for a weight, the value of the expression shall be
smaller than the maximum integer size (MAX_INT).

Like other soft constraints, keep soft select is order dependent (see 10.2.12) and shall not be met if it
conflicts with hard constraints or soft constraints that have already been applied. In those cases where some
values conflict with other constraints, keep soft select shall bias the distribution based on the remaining
permissible values.

Syntax example:

keep soft me.opcode == select {

 30 : ADD;

 20 : ADDI;

 10 : [SUB, SUBI]

}

10.2.13 Constraining non-scalar data types

This subclause describes constraining structs and lists.

Purpose Constrain distribution of values

Category Struct member

Syntax keep soft gen-item==select {weight: value; ...}

Parameters

gen-item A generatable item of type list (see 10.4.8).

weight Any uint expression. Weights are proportions; they do not have to add up to
100. A relatively higher weight indicates a greater probability that the value is
chosen.

value value is one of the following:
a) set—An expression of a set type, or a range list such as [2..7] or

[a..b]. A select expression with a set as a value, selects the por-
tion of the current range that intersects with the specified set.

b) exp—Any expression returning the type of the gen-item.
c) others—Selects the portions of the current range that do not inter-

sect with other select expressions in this constraint.
Using a weight of 0 for others causes the constraint to be ignored,
i.e., the effect is the same as if the others option were not entered at
all.

d) pass—Ignores this constraint and keeps the current range as is.
e) edges—Selects the values at the extreme ends of the current

range(s).
f) min—Selects the minimum value of the gen-item.
g) max—Selects the maximum value of the gen-item.
Copyright © 2015 IEEE. All rights reserved. 181

IEEE
Std 1647-2015 IEEE STANDARD
10.2.13.1 Constraining structs

There are two basic constraints that apply to structs: struct equality and struct inequality. Other constraints
affecting items of struct types (such as list constraints with structs as list elements) can be equivalently
expressed using these basic constraints and Boolean combinators.

10.2.13.1.1 Struct equality

Struct equality constrains two structs to share the same struct layout, i.e., it aliases two struct pointers.

Example

struct packet {
 x : int;
 y : int
};

extend sys {
 p1 : packet;
 p2 : packet;
 keep p1 == p2;

 post_generate() is also {
 p1.x = 5
 }
}

This causes p1 and p2 to represent the same struct, i.e., sys.p1 and sys.p2 can be viewed as pointers
pointing to the same place in memory. Thus, the assignment in post_generate has the same effect on
both structures, i.e., sys.p1.x = sys.p2.x = 5.

In contrast,

struct packet {
 x : int;
 y : int
};

extend sys {
 p1 : packet;
 p2 : packet;
 keep p1.x == p2.x;
 keep p1.y == p2.y;
post_generate() is also {
 p1.x = 5
 }
}

The first two lines in “extend sys” define two structures with the same contents, sys.p1 and sys.p2.
Then the assignment in post_generate changes the value of sys.p1.x, but not of sys.s2.x. Thus,
at the end sys.p1.x=5, while sys.p2.x is set to a random value from the range [MIN_INT..
MAX_INT]. Of course, this value could be 5 as well, but the chance for that is 1/(2^32). Thus, most likely at
the end sys.p1.x != sys.p2.x.
182 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
10.2.13.1.2 Struct inequality

Struct inequality states that two struct pointers cannot be aliased, although they can still have the identical
contents. Normally, struct inequality only makes sense for structs with a finite set of possible values (see
10.2.13.2).

Example

struct packet {
 x : int;
 y : int
};

extend sys {
 p1 : packet;
 p2 : packet;
 keep p1 in sys.list_of_input_packets;
 keep p2 in sys.list_of_input_packets;
 keep p1 != p2;
 keep p1.x == p2.x;
 keep p1.y == p2.y
}

This code constrains both p1 and p2 to be elements of a (pre-built) list of input packets, such that p1 and
p2 are distinct packets and have the same contents. The generation succeeds if and only if (iff) the list
sys.list_of_ input_packets contains repetitions. There is no contradiction in the fact p1 and p2
are different structs with identical contents.

10.2.13.2 Allocation versus aliasing

By default, a new structure is allocated for each item of a struct type. The only exception to that are the cases
when the range of possible structs is limited by constraints to a finite number of choices.

Example

p : packet;
 keep (packet == sys.input_packet1) or (packet == sys.input_packet2)

In this example, the range of values for packet is limited by the values sys.input_packet1 and
sys.input_packet2, where both values are pre-built structures, i.e., inputs to the constraint. In
contrast,

keep packet != sys.input_packet1

does not limit the choices of packet to a finite set. Here, there are an infinite number of ways to allocate
packet so that it does not point to sys.input_packet1. Thus, the system allocates a NEW struct for
packet in this case. This behavior makes struct inequality redundant for those cases where the set of
potential struct values is unlimited.

10.2.13.3 Constraining lists

This subclause describes constraining lists. See also Table 25.

Lists are treated as pointers exactly like structs.
Copyright © 2015 IEEE. All rights reserved. 183

IEEE
Std 1647-2015 IEEE STANDARD
10.2.13.3.1 List equality and inequality

List equality constraint states that two lists are allocated with the same object, and therefore contain the
same elements in the same order.

Example

extend sys {
 L1 : list of int;
 L2 : list of int;
 !x : int;
 keep L1 == L2;

 post_generate() is also {
 x = L2.pop()
 }
}

This generates two identical lists L1 and L2. Then, post_generate() removes the last element of L2,
which is also the last element of L1.

As for the list inequality constraint (L1 != L2), it states that the items of list type L1 and L2 are not
aliased. Still, the lists can have the same number of elements and the same values for their items.

10.2.13.3.2 List item

The syntax generatable_path_to_list[index] provides a generatable path of a list element. This syntax can be
used in constraints as any other generatable path. List item constraints are fully solvable. Thus, the
constraint can be used in several different modes.

Examples

keep sys.packets[5] == x; -- element extraction from fixed list
keep l[7] < 25; -- constraining certain element of list
keep sys.packets[i].id == 10; -- index look-up for fixed list and value
keep l[i] < x -- multi-way constraint

10.2.13.3.3 Item in list

The expression item in list states that item is an element of the list. Note that a constraint such as

keep x in l

also implies that l includes at least one element, i.e., it is non-empty.

10.2.13.3.4 List in list

The syntax list1 in list2 provides the way of constraining two lists list1 and list2 so list1 is a (possibly
permuted) sublist of list2. list1 is a possibly permuted sublist of list2 if for every valid index i in list1 there
exists a matching valid index j in list2 such that list1[i]==list2[j]. Every index j of list2 is
represented at most once in list1.

Informally, this definition means list1 can be obtained from list2 by a number (possibly zero) of delete
operations of elements of list2 and then applying is_a_permutation(list2).
184 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Examples

{1;2;3} is a sublist of {0;1;3;2;3}

{1;2;3} is a permuted sublist of {1;3;2}

{1;1;2} is a sublist of {1;3;1;4;2}

{1;1;2} is NOT a sublist of {1;2;2;3}

{1;1;2} is a permuted sublist of {2;1;1}

10.2.13.3.5 Permutations

The syntax list1.is_a_permutation(list2) states that list1 is a permutation of list2. The lists list1 and list2
contain exactly the same elements and the same numbers of repetitions of each element.

Examples

{2;3;1} is a permutation of {1;2;3}

{2;3} is not a permutation of {1;2;3}

{1;2;3} is a permutation of {1;2;3}

{2;3;2;1} is NOT a permutation of {1;2;3}

is_a_permutation is a symmetric property, i.e., list1 is a permutation of list2 iff list2 is a permutation of
list1. Thus, the following two constraints are equivalent:

keep list1.is_a_permutation(list2);
keep list2.is_a_permutation(list1)

10.2.13.3.6 List attributes

There are several properties of lists that can be constrained using the attribute syntax, list.attribute(...).

list.size()—constrains the size of the list, e.g., keep my_list.size() in [5..8]
my_list can have 5,6,7, or 8 elements.

list.count(exp)—counts the number of list elements satisfying exp that have a Boolean type, e.g.,
keep my_list.count(it == 3) == 5
the number 3 appears exactly five times in my_list.

list.has(exp)—verifies at least one item of the list satisfies the Boolean exp. This is the same as
list.count(exp) > 0.

list.all_different(exp[,cond_exp])—returns TRUE if, and only if, evaluation of the expression
returns a unique value for each of the list elements, meaning that no two items (or expressions) in the
list have the same value. If a cond_exp parameter is present, the constraint is applied only to the
items with a TRUE cond_exp. For example, keep my_list.all_different(it,
index>5)ensures that there are no duplicate items in indices above 5.

list.sum(exp)—constrains the sum of the list elements satisfying exp containing a Boolean type. The
attribute applies only to lists of numeric type, e.g., keep my_list.sum(it) == 100
for the elements of my_list in the range [0..20] is 100.

list.and_all(exp)—returns the logical AND of all Boolean expressions. For example,
list.and_all(it>5) returns TRUE if all the list items are greater than 5.

list.or_all(exp)—verifies at least one item of the list satisfies the Boolean exp. This is the same as
list.has(exp).

list.max_value(exp)—constrains the maximum exp in a list. For example,
list.max_value(it) == 100 constrains the maximal list item to be 100.
Copyright © 2015 IEEE. All rights reserved. 185

IEEE
Std 1647-2015 IEEE STANDARD
list.min_value(exp)—constrains the minimum exp in a list. For example,
list.min_value(it) == 100 constrains the minimal list item to be 100.

10.2.13.3.7 Constraining all list items: keep for each

This defines a value constraint on multiple list items. The following restrictions also apply:

— for each constraints can be nested. The parameters item-name, index-name, and prev-name of a
nested for each can shadow the names used in the outer for each blocks. In particular, if the optional
names are unspecified, then the default names it, index, and prev refer to the corresponding details
of the innermost for each block.

— Within a for each constraint, index represents a running index in the list, which is treated as a con-
stant with respect to each list item.

— Generated items need to be referenced by using a pathname that starts either with it, prev, or the
optional item-name or prev-name, respectively. Items whose pathname does not start with it can only
be sampled; their generated values cannot be constrained.

— If a for each constraint is contained in a gen ... keeping action, the iterated variable needs to be
named first.

Syntax example:

keep for each (p) in pkl do {
soft p.protocol in [atm, eth]

}

10.2.13.3.8 All solutions

This feature generates lists of structs covering all possible combinations of values for certain fields. The
syntax is list.is_all_iterations(.fieldname, ...), where list is a list of elements and fieldname, ... are field
names of some struct type T. The arguments of is_all_iterations are unique, i.e., there are no repetitions in
the list of fields. All fields shall be defined under the base type T, i.e., fields defined in when subtypes or
like successors are not allowed.

Purpose Constrain list items

Category Struct member

Syntax keep for each [(item-name)] [using [index (index-name)] [prev (prev-name)]] in
gen-item [do] {(constraint-bool-exp | nested-for-each); ...}

Parameters

item-name An optional name used as a local variable referring to the current item in the
list. The default is it.

index-name An optional name referring to the index of the current item in the list. The
default is index.

prev-name An optional name referring to the previous item in the list. The default is
prev.

gen-item A generatable item of type list (see 10.4.8).

constraint-
bool-exp

A simple or a compound Boolean expression (see 10.4.7).

nested-for-each A nested for each block, with the same syntax as the enclosing for each
block, except that keep is omitted.
186 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Example

struct s {
 b1 : bool;
 b2 : bool;
 x : int
};

extend sys {
 l : list of s;
 keep l.is_all_iterations(.b1, .b2)
}

The resulting sys.l includes four elements for all four combinations of TRUE/FALSE of b1 and b2. The
values of x are chosen randomly.

10.3 Type constraints

This subclause describes how to use type constraints to restrict the declared type of a field to one of its like
or when subtypes for a given context. A constraint prefixed with the type modifier is both (a) enforced by
the generator (like a regular constraint) and (b) presupposed at compile time for purposes of type checking.
Expressions for which type constraints apply are automatically downcast to the specified subtype wherever
required. This saves explicit downcasting [“is_a()” and “as a” operators] for the expression and lets the
downcast expression be used as a generatable term (rather than input) in constraint contexts.

10.3.1 keep type

Purpose Refine the type of a field to one of its subtypes for the specified context

Category Struct member

Syntax

keep type [me.]field-name is a type
keep type [me.]field-name.property-name == [me.]my-property-name
keep for each [(item-name)] in list-field-name {

…
type item-name is a type;
…

}
keep for each [(item-name)] in list-field-name {

…
type item-name.property-name == [me.]my-property-name;
…

}

Parameters

field-name The name of a struct field in the enclosing struct.

type The name of a struct or unit type.

property-name The name of an enumerated or Boolean const field.

my-property-
name

The name of a field of the same type as the property-name in this constraint.

item-name An optional name used as a local variable referring to the current item in the
list. The default is it.

list-field-name The name of a field of typelist of struct (or unit) in the enclosing struct.
Copyright © 2015 IEEE. All rights reserved. 187

IEEE
Std 1647-2015 IEEE STANDARD
A type constraint can be put either on a field of a struct type or on a list field of a struct type. The declaration
is similar to a regular constraint inside a keep struct member, or, in the list case, inside a keep for each
construct, with the type keyword prefixing the expression.

The type keyword is a constraint modifier syntactically analogous to soft. However, unlike soft, it can
modify only specific constraint expressions and can appear only in restricted contexts.

The type correlation can be fixed or, when the correlated types are when subtypes, variable. The former case
is expressed using the is a operator. In the latter case the determinant property (the when determinant) of the
referenced struct is equated to a determinant property of the same type in the declaring struct type.

Type constraints affect the static semantics of field-access expressions of the form instance-expression.field-
name (field-access in which instance-expression is omitted is equivalent to one having me as the instance-
expression). Typically the static type of a field-access expression is determined according to the type of the
field as it was initially declared in the struct type of instance-expression (or in one of its supertypes). Type
constraints tying the static type of instance-expression with a subtype of the field’s declared type can change
this rule. If the context in which the field-access occurs requires the subtype, the field-access is
automatically downcast. In this case, a runtime check is added to ensure that the casting is justified, and an
error is issued if it is not. The runtime check involves a minor overhead, not more than that required by the
as_a() operator.

NOTE

— In the Boolean expression following type, operators other than == and is a are not allowed.
For example, the following is not allowed:

keep type TRUE => engine is a FORD engine // not allowed

— The for each clause must occur immediately after keep. For example, the following is not allowed:

keep my_doors.size() > 4 => for each in my_doors { // not allowed
type it is a small door

}

— Type constraints can equate only constant fields, so the const keyword must appear in the declaration of fields
involved in equality constraints.

— Type constraints in general affect code from that point onwards. This includes type constraints that appear
inside a for each clause, in which case other expressions in the same scope after the declaration (but not before
it) can assume automatic casting.

— Type constraints cannot appear inside a gen action.

— The soft keyword cannot be used with type constraints.

— As with non-type constraints, the determinant field of the when subtype is assigned only during generation.
Thus the pre_generate() method of the type specified in the type constraint is not called during generation.

— A field’s type may be restricted by more than one type constraint with respect to different “when” dimensions
(determinant fields).

Syntax example:

keep type f.p1 == p1;
keep for each in lf {

type it is a B S1
}

10.3.2 Type constraints and struct fields

Automatic casting of a struct-reference field is performed in any context that requires it, including the
following:

— Struct-member access

— Assignment
188 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
— Parameter passing

10.3.3 Type constraints and list fields

When the type relation is one-to-many, in other words, when a list field is concerned, automatic casting is
applied not to the list itself but to its elements. Automatic casting affects list operators whose result type is
the element type, such as indexing (the [] operator) and pop(). It also affects the iteration variable inside the
for each construct, both in procedural and in constraint contexts.

10.3.4 Type constraints and like subtypes

Type constraints work just as well for like subtypes of the declared type of the field. They apply to the two
“is a” forms of the keep type struct member.

Note that type constraints with like subtypes cannot make the actual like type of a generated field dependent
on a when determinant. In other words, they may not figure under a when subtype if they affect a field not
declared in the same subtype. This is an error: the constraint is unenforceable.

10.4 Defining constraints

This subclause describes the constructs used to define constraints. See also 4.10.

10.4.1 keep

This states restrictions on the values generated for fields in the struct or its subtree, or describes required
relationships between field values and other items in the struct or its subtree.

Hard constraints are applied whenever the enclosing struct is generated. For any keep constraint in a
generated struct, the generator either meets the constraint or issues a constraint contradiction message. If the
keep constraint appears under a when construct, the constraint is considered only if the when condition is
true.

Syntax example (un-named constraint):

keep kind != tx or len == 16

Syntax example (named constraint):

keep address_range is soft addr in [0..9]

Purpose Define a hard value constraint

Category Struct member

Syntax keep [name is [only]] constraint-bool-exp

Parameters

 name Optional identifier for constraint overriding and reference by tools.

constraint-
bool-exp

A simple or a compound Boolean expression (see 10.4.7).
Copyright © 2015 IEEE. All rights reserved. 189

IEEE
Std 1647-2015 IEEE STANDARD
10.4.1.1 Constraint overriding

Every named constraint must have exactly one actual definition per struct type. An initial definition of a
constraint in a struct type may be overridden in like and when subtypes or in later extensions of the same
struct—any number of times—using the is only modifier.

The semantics of constraint overriding is identical to that of overriding other extendable struct members,
such as methods. A constraint can be redefined in different when subtypes (even if they are not
contradictory), and the latest definition that applies to the generated subtype is chosen (for ordering
definitions see Annex B).

Example:
struct packet {

size: [big, small];
data: list of byte;

keep data_size is undefined; // abstract constraint

when big packet {
keep data_size is all of { // concrete definition for big packets

data.size() > 10;
data.size() < 20

}
}

}

10.4.2 keep

10.4.3 keep all of {...}

A keep constraint block is exactly equivalent to a keep constraint for each constraint Boolean expression in
the block. The all of block can be used as a constraint Boolean expression itself.

Syntax example:

Purpose Define an abstract constraint

Category Struct member

Syntax keep name is [only]

Parameters name Optional identifier for constraint overriding and reference by tools.

Purpose Define a constraint block

Category Struct member

Syntax keep [name is [only]] all of {constraint-bool-exp; ...}

Parameters

 name Optional identifier for constraint overriding and reference by tools.

constraint-
bool-exp

A simple or a compound Boolean expression (see 10.4.7).
190 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
keep all of {
kind != tx;
len == 16

}

10.4.4 keep struct-list.is_all_iterations()

This causes a list of structs to have all legal, non-contradicting iterations of the fields specified in the field
list. Fields not included in the field list are not iterated; their values can be constrained by other relevant
constraints. The highest value always occupies the last element in the list.

Soft constraints on fields specified in the field list are skipped. All other relevant hard constraints on the list
and on the struct are applied. If these constraints reduce the ranges of some of the fields in the field list, then
the generated list is also reduced.

The following restrictions also apply:

— The number of iterations in a list produced by list.is_all_iterations() is the product of the number of
possible values in each field in the list. Use the absolute_max_list_size generation configuration
option to set the maximum number of iterations allowed in a list (the default is 524 288).

— The list.is_all_iterations() method shall only be used in a constraint Boolean expression.

— The fields to be iterated shall be of a scalar type, not a list or struct type.

Syntax example:

keep packets.is_all_iterations(.kind, .protocol)

Purpose Cause a list of structs to have all iterations of a field

Category Constraint-specific list method

Syntax keep [name is [only]] gen-item.is_all_iterations(.field-name: exp, ...)

Parameters

 name Optional identifier for constraint overriding and reference by tools.

gen-item A generatable item of type list of struct (see 10.4.8).

field-name The name of a scalar field of a struct. The field name shall be prefixed by a
period (.). The order of fields in this list does not affect the order in which
they are iterated. The specified field that is defined first in the struct is the one
that is iterated first.
Copyright © 2015 IEEE. All rights reserved. 191

IEEE
Std 1647-2015 IEEE STANDARD
10.4.5 keep soft

This suggests default values for fields or variables in the struct or its subtree, or describes suggested
relationships between field values and other items in the struct or its subtree. The following restrictions
apply:

— Soft constraints are order dependent (see 10.2.12) and shall not be met if they conflict with hard
constraints or soft constraints that have already been applied.

— The soft keyword shall not be used in compound Boolean expressions.

— Individual constraints inside a constraint block can be soft constraints.

— Because soft constraints only suggest default values, it is better not to use them to define
architectural constraints.

Syntax example:

keep soft legal

10.4.6 read_only()

read_only() computes the value of the expression inside it. It makes the expression an input to the constraint,
and if there are generative elements inside the expression, the generation order is enforced so that these
elements are generated before the connected field set to which the constraint belongs.

Example

keep a == read_only(b + c)

This constraint has two results:

— b and c are generated before a.

— The value of a cannot otherwise be constrained in a bidirectional constraint.

Syntax example:

Purpose Define a soft value constraint

Category Struct member

Syntax keep [name is [only]] soft constraint-bool-exp

Parameters

 name Optional identifier for constraint overriding and reference by tools.

constraint-
bool-exp

A simple Boolean expression (see 10.4.7).

Purpose Modify generation sequence

Category Pseudo-method

Syntax read_only(item: exp)

Parameters item A legal e expression.
192 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
keep i < read_only(j)

10.4.7 constraint-bool-exp

A constraint Boolean expression is a simple or compound Boolean expression that describes the legal values
for at least one generatable item or constrains the relation of one generatable item with others. A compound
Boolean expression is composed of two or more simple expressions joined with the or, and, or implication
(=>) operators. Table 25 shows the e special constructs that are useful in constraint Boolean expressions.

The following considerations also apply:

— The soft keyword can be used in simple Boolean expressions, but not in compound Boolean
expressions.

— The order of precedence for Boolean operators is: and, or, =>. A compound expression containing
multiple Boolean operators of equal precedence is evaluated from left to right, unless parentheses
[()] are used to indicate expressions of higher precedence.

— Any e operator can be used in a constraint Boolean expression. However, certain operators can affect
generation order or can create an constraint that is not enforceable.

— In compound expressions where multiple implication operators are used, the order in which the oper-
ations are performed is significant. For example, in the following constraint, the first
expression (a => b) is evaluated first by default:

Purpose Define a constraint on a generatable item

Category Expression

Syntax bool-exp [or | and | => bool-exp] ...

Parameters
bool-exp An expression that returns either TRUE or FALSE when evaluated at

runtime.

Table 25—Constraining Boolean expressions

Constraint Definition

soft A keyword that indicates the constraint is either a soft value constraint or a soft
order constraint. See 10.4 for a definition of these types of constraints.

soft...select An expression that constrains the distribution of values.

.reset_soft() A pseudo-method that causes the test generator to quit evaluation of soft constraints
for a field, in effect, removing previously defined soft constraints.

.is_all_iterations() A list method used only within constraint Boolean expressions that causes a list of
structs to have all legal, non-contradicting iterations of the specified fields.

.is_a_permutation() A list method that can be used within constraint Boolean expressions to constrain a
list to have the same elements as another list.

[not] in An operator that can be used within constraint Boolean expressions to constrain an
item to a range of values or a list to be a subset of another list; or when used with
not, to be outside the range or absent from another list.

is [not] a An operator that checks the subtype of a struct.
Copyright © 2015 IEEE. All rights reserved. 193

IEEE
Std 1647-2015 IEEE STANDARD
keep a => b => c; // is equivalent to:
keep (not a or b) => c; // is equivalent to:
keep a and (not b) or c

However, adding parentheses around the expression (b => c) causes it to be evaluated first, with
very different results.

keep a => (b => c); // is equivalent to:
keep a => (not b) or c; // is equivalent to:
keep (not a) or (not b) or c

Examples

The following are examples of simple constraint Boolean expressions:

not short // where "short" is of type "bool"
long == TRUE
soft x > y
x + z == y + 7

The following are examples of compound constraint Boolean expressions:

x > 0 and soft x < y
is_a_good_match(x, y) => z < 1024
color != red or resolution in [900..999]
packet is a good packet => length in [0..1023]

See also 5.1.1.

Syntax example:

z == x + y

10.4.8 gen-item

A generatable item is an operand in a Boolean expression that describes the legal values for that generatable
item or constrains its relation with another generatable item. Every constraint shall have at least one
generatable item or an error shall be issued.

In a keep constraint, the syntax for specifying a generatable item is a path starting with me of the struct
containing the constraint and ending with a field name. In a gen action, the syntax for specifying a
generatable item is a path starting with it of the struct containing the constraint and ending with a field name.

A generatable item cannot have an indexed reference in it, except as the last item in the path. See also 4.3.3.

Syntax example:

me.protocol

Purpose Identifies a generatable item

Category Expression

Syntax
[me.]field1-name[.field2-name ...]
| it | [it].field1-name[.field2-name ...]

Parameters field-name The name of a field in the current struct or struct type.
194 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
10.5 Invoking generation

There are two ways of invoking generation, as follows:

a) Generation is invoked automatically when generating the tree of structures starting at sys.

b) Generation can be called for any data item by using the gen action. The scope of this type of genera-
tion is restricted (see 10.5.1). The generation order is (recursively):

1) Allocate the new struct

2) Call pre_generate()

3) Perform generation

4) Call post_generate()

10.5.1 gen

This generates a random value for the instance of the item specified in the expression and stores the value in
that instance, while considering all the constraints specified in the keeping block, as well as other relevant
constraints at the current scope on that item or its children. Constraints defined at a higher scope than the
enclosing struct are not considered.

The following considerations also apply:

— Values for particular struct instances, fields, or variables can be generated during simulation (on-the-
fly generation) by using the gen action.

— This constraint can also be used to specify constraints that apply only to one instance of the item.

— The soft keyword can be used in the list of constraints within a gen action.

— The earliest the gen action can be called is from a struct’s pre_generate() method.

— The generatable item for the gen action cannot include an index reference.

— If a gen ... keeping action contains a for each constraint, the iterated variable needs to be named.

Syntax example:

gen next_packet keeping {

.kind in [normal, control]

}

Purpose Generate values for an item

Category Action

Syntax gen gen-item [keeping {[it].constraint-bool-exp; ...}]

Parameters

gen-item A generatable item. If the expression is a struct, it is automatically allocated,
and all fields under it are generated recursively, in depth-first order.

constraint-
bool-exp

A simple or compound Boolean expression (see 10.4.7).
Copyright © 2015 IEEE. All rights reserved. 195

IEEE
Std 1647-2015 IEEE STANDARD
10.5.2 pre_generate()

The pre_generate() method is run automatically after an instance of the enclosing struct is allocated, but
before generation is performed. This method is initially empty, but can be extended to apply values
procedurally to prepare constraints for generation. It can also be used to simplify constraint expressions
before they are analyzed by the constraint resolution engine.

NOTE—Prefix the ! character (see 6.8) to the name of any field whose value is determined by pre_generate(). Other-
wise, normal generation overwrites this value.

Syntax example:

pre_generate() is also {
 m = 7
}

10.5.3 post_generate()

The post_generate() method is run automatically after an instance of the enclosing struct is allocated and
both pre-generation and generation have been performed. This method can be extended for any_struct to
manipulate values produced during generation. It can also be used to derive more complex expressions or
values from the generated values.

Syntax example:

post_generate() is also {
m = m1 + 1

}

Purpose Method run before generation of struct

Category Method of any_struct

Syntax [struct-exp.]pre_generate()

Parameters struct-exp An expression that returns a struct. The default is the current struct.

Purpose Method run after generation of struct

Category Predefined method of any_struct

Syntax [struct-exp.]post_generate()

Parameters struct-exp An expression that returns a struct. The default is the current struct.
196 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
11. Temporal struct members

11.1 Events

The e language provides temporal constructs for specifying and verifying behavior over time. All e temporal
language features depend on the occurrence of events, which are used to synchronize activity with a
simulator and within the e program.

11.1.1 Causes of events

Table 26 describes how an event is made to occur.

11.1.2 Scope of events

Events are defined as a part of a struct definition. When a struct is instantiated, each instance has its own
event instances. Each event instance has its own schedule of occurrences. There is no relation between
occurrences of event instances of the same type. All references to events are to event instances.

The scoping rules for events are similar to other struct members, such as fields.

— If a path is provided, use the event defined in the struct instance pointed to by the path.

— If no path is provided, the event is resolved at compile time. The current struct instance is searched.

— If the event instance is not found, a compile-time error shall be issued.

11.1.3 Defining and emitting named events

This subclause describes the event and emit constructs.

Table 26—Event causation

Syntax Cause of the event

event a is (@b and @c)@d Derived from other events (see Clause 12).

event a is rise('top.b')@sim Derived from behavior of a simulated device (see Clause 12).

event a;
meth_b()@c is { ... ; emit a; ... };

By the emit action in procedural code (see 11.1.3.2).
Copyright © 2015 IEEE. All rights reserved. 197

IEEE
Std 1647-2015 IEEE STANDARD
11.1.3.1 event

Events can be attached to TEs, using the is temporal-expression syntax, or they can be unattached. An
attached event is emitted automatically during any tick in which the TE attached to it succeeds. For a
definition of the success of a TE, see 12.3. If an event has been attached to a TE, one or more temporal
operators can also be attributed to it, with the using temporal-operators syntax

Events, like methods, can be redefined in struct extensions. The is only temporal-expression syntax is used
to change the definition of an event, e.g., to define an event once and then attach it to several different TEs
under different when struct subtypes. The using also temporal-operators syntax is used to add a temporal
operator in a redefinition of the event (when used together with is only), or to add it as a separate extension
to an existing event (when used without is only).

Purpose Define a named event

Category Struct member

Syntax event event-type[is temporal-expression [using temporal-operators]]
event event-type[is only temporal-expression] [using also temporal-operators]

Parameters

event-type The name of the event type (any legal e identifier).

temporal-
expression

An event or combination of events and temporal operators.
See also Clause 12.

temporal-
operators

One or more temporal operators of the form: operation condition, separated by com-
mas, where:

operation is one of the following keywords:

abort Terminate evaluation of the temporal expression in the current tick
and restart it in the next tick.

start Start the evaluation of the temporal expression in the current tick if the
event is currently in a stopped state.

exclusive_
start

Similar to start, but in addition the event is stopped when the struct is
created, and remains stopped until acted upon by the exclusive start.

stop Stop the evaluation of the temporal expression in the current tick. It
will remain stopped until a start instruction is issued.

condition is one of the following:

@event-
name

Triggering temporal event. This event can belong to the context struct
(that is, [me.]event-name), or reachable via a constant path (that is,
const-or-unit-instance-field-path.event-name).

none Return to the default state. This value is intended for use when there
was a previous triggering event for this instruc-tion that should be
removed.

empty Used to specify a dummy event (i.e., an event that never happens), for
use with the procedural API - see (Yuri/AlanH: Add XREF to new
section once done).
198 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
11.1.3.2 emit

This causes an event of the specified type to occur.

— Emitting an event causes the immediate evaluation of all TEs containing that event.

— The emit event does not consume time. It can be used in regular methods and in TCMs.

— The simplest usage of emit is to synchronize two TCMs, where one TCM waits for the named event
and the other TCM emits it.

Syntax example:

emit ready

11.1.4 Predefined events

Predefined events are emitted at particular points in time.

11.1.4.1 General predefined events

Table 27 lists the general predefined events.

Purpose Cause a named event to occur

Category Action

Syntax emit [struct-exp.]event-type

Parameters
struct-exp An expression referring to the struct instance in which the event is defined.

event-type The type of event to emit.

Table 27—Predefined events

Predefined event Description

sys.any Emitted on every tick.

sys.tick_start Emitted at the start of every tick.

sys.tick_end Emitted at the end of every tick.

session.start_of_test Emitted once at test start.

session.end_of_test Emitted once at test end.

struct.quit Emitted when a struct’s quit() method is called. Only exists in structs that contain
events or have members that consume time (for example, TCMs or on struct
members).

sys.new_time In stand-alone operation (no simulator), this event is emitted on every sys.any event.
When a simulator is being used, this event is emitted whenever a callback occurs and
the attached simulator’s time has changed since the previous callback.
Copyright © 2015 IEEE. All rights reserved. 199

IEEE
Std 1647-2015 IEEE STANDARD
11.1.4.1.1 sys.any

This event is a special event that defines the finest granularity of time. The occurrence of any event in the
system causes an occurrence of the any event at the same tick. In stand-alone e program operation (that is,
with no simulator attached), the sys.any event is the only one that occurs automatically. It typically is used
as the clock for stand-alone operation.

11.1.4.1.2 sys.tick_start

This event is provided mainly for visualizing and debugging the program flow.

11.1.4.1.3 sys.tick_end

This event is provided mainly for visualizing and debugging the program flow. It also can be used to provide
visibility into changes of values that are computed during the tick, such as the values of coverage items.

11.1.4.1.4 session.start_of_test

The first action the predefined run() method executes is to emit the session.start_of_test event. This event
is typically used to anchor TEs to the beginning of a test.

11.1.4.1.5 session.end_of_test

This event is typically used to sample data at the end of the test. This event cannot be used in TEs, as it is
emitted after evaluation of TE has been stopped. The on session.end_of_test struct member is typically used
to prepare the data sampled at the end of the test.

11.1.4.1.6 struct.quit

This only exists in structs that contain temporal members (events, on, expect, or TCMs). It is emitted when
the struct’s quit() method is called, to signal the end of time for the struct.

The first action executed during the check test phase is to emit the quit event for each struct that contains it.
This event can be used to cause the evaluation of TEs that contain the eventually temporal operator (and
check for eventually TEs that have not been satisfied).

11.1.4.1.7 sys.new_time

This event is emitted on every sys.any event in stand-alone operation (no simulator). When a simulator is
being used, this event is emitted whenever a callback occurs and the attached simulator’s time has changed
since the previous callback.

11.1.4.2 Simulation time and ticks

Using any of the following expressions causes the DUT to be monitored for a change in that expression:

— rise | fall | change (HDL expression) @sim

— wait delay expression

— Verilog event

For each simulation delta cycle where a change in at least one of these monitored expressions occurs, the
simulator passes control to the e program. If simulation time has advanced since the last time control was
passed to the e program, a new_time event is issued. In any case, tick_start and any events are issued.
200 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Then, after emitting all events initiated by changes in monitored expressions in that simulation delta cycle, a
tick_end event is issued.

Thus, the new_time event corresponds to a new simulation time slot and a tick corresponds to a simulation
delta cycle where at least one monitored expression changes.

Multiple ticks can occur in the same simulation time slot under the following conditions:

— When a new value is driven into the DUT and that value causes a change in a monitored HDL object,
as in a clock generator

— When a monitored event is derived from another monitored event, as in a clock tree

— When a zero-delay HDL subprogram is called from e

For an explanation of when values are assigned, see 18.5.

NOTE—Glitches that occur in a single simulation time slot are ignored; only the first occurrence of a particular moni-
tored event in a single simulation time slot is recognized.

11.2 on

This defines a struct member that executes a block of actions immediately whenever a specified event
occurs. An on struct member is similar to a regular method, except that it is invoked automatically upon an
occurrence of the event. An on action block is executed before TCMs waiting for the same event. The
actions are executed in the order in which they appear in the action block.

To extend an on struct member, its declaration can be repeated and a different action block used. This has
the same effect as using is also to extend a method.

If no const-exp is specified, the on struct member is implemented as a method, named on_event-type(). In this
case, the action block can be invoked without the occurrence of the event, call the on_event-type() method.
This method can be extended like any other method, by using is, is also, is only, or is first (see 17.1.3).

The following restrictions also apply:

Purpose Specify a block of actions that execute on an event

Category Struct member

Syntax on [const-exp.]event-type {action; ...}

Parameters

const-exp An optional expression identifying the struct or unit in which event-type is
defined. This expression must remain constant and thus can consist only of:

— A const field

— A unit instance name

— Indexing a unit from a list of unit instances (a constant unit
pointer)

If not provided, the context struct or unit is assumed.

event-type The name of an event that invokes the action block.

action; ... A block of non-time-consuming actions.
Copyright © 2015 IEEE. All rights reserved. 201

IEEE
Std 1647-2015 IEEE STANDARD
— The named event shall be local to the struct specified by const-exp, or to the struct in which the on is
defined if no const_exp is specified.

— The on action block shall not contain any time-consuming actions or TCMs.

See also 4.2.3 and 17.1.3.

Syntax example:

on xmit_ready {
transmit()

}

11.3 on event-port

This defines a struct member that executes a block of actions immediately whenever a specified event port is
triggered. An on event-port struct member is similar to a regular method, except that it is invoked
automatically upon an occurrence of the event that triggers the event port. An on action block is executed
before TCMs waiting for the same event. The actions are executed in the order in which they appear in the
action block.

To extend an on struct member, its declaration can be repeated and use a different action block. This has the
same effect as using is also to extend a method.

The following restriction also applies:

— The on action block shall not contain any time-consuming actions or TCMs.

See also 4.2.3 and 17.1.3.

Syntax example:

on sys.clk$ {
out("clock tick")

}

Purpose Specify a block of actions that execute on on the triggering an event.

Category Struct member

Syntax on [const-exp.]event-port-name$ {action; ...}

Parameters

const-exp An optional expression identifying the struct or unit in which event-type is
defined. This expression must remain constant and thus can consist only of:

— A const field

— A unit instance name

— Indexing a unit from a list of unit instances (a constant unit
pointer)

If not provided, the context struct or unit is assumed.

event-port-name The event port that invokes the action block. The port direction must be either
in or inout.

action; ... A block of non-time-consuming actions.
202 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
11.4 expect | assume

Both the expect and assume struct members are used for defining temporal properties.

— When a simulation-based tool executes the e program, it evaluates the rule expressed by the TE. If
the TE fails at some point in time (see 12.3), the tool reports an error as specified with the dut_error
clause (if no dut_error clause is specified, the tool prints the rule name). The notion of failure of the
TE implies a new evaluation starts on every state following a state in which the sampling event

Purpose Define a temporal rule

Category Struct member

Syntax

expect | assume [rule-name is]
 temporal-expression [else dut_error(string-exp)] [using temporal_operators]

expect | assume rule-name
 [is only temporal-expression [else dut_error(string-exp)]]
 [using also temporal_operators]

Parameters

rule-name A name that uniquely identifies the rule from other rules or events within the struct. It
can be used to override the temporal rule later on in the code or change from expect to
assume or vice versa.

temporal-
expression

A TE that is always expected to succeed. Typically involves a temporal yield (=>)
operator (see 12.2.13).

string-exp A string or an expression that can be converted to a string. If the TE fails, the string is
printed.

temporal-
operators

One or more temporal operators of the form: operation condition, separated by com-
mas, where:

operation is one of the following keywords:

abort Terminate evaluation of the temporal expression in the current tick
and restart it in the next tick.

start Start the evaluation of the temporal expression in the current tick if
the expect is currently in a stopped state.

exclusive_
start

Similar to start, but in addition the expect is stopped when the struct is
created, and remains stopped until acted upon by the exclusive start.

stop Stop the evaluation of the temporal expression in the current tick. It
will remain stopped until a start instruction is issued.

condition is one of the following:

@event-
name

Triggering temporal event. This event can belong to the context struct
(that is, [me.]event-name), or is reachable via a constant path (that is,
const-or-unit-instance-field-path.event-name).

none Return to the default state. This value is intended for use when there
was a previous triggering event for this instruction that should be
removed.

empty Used to specify a dummy event (i.e., an event that never happens), for
use with the procedural API - see (Yuri/AlanH: Add XREF to new
section once done).
Copyright © 2015 IEEE. All rights reserved. 203

IEEE
Std 1647-2015 IEEE STANDARD
occurs (see 12.3.3). Simulation-based tools typically treat expect and assume in exactly the same
manner.

— When a formal verification tool analyzes the e program, expect struct members are interpreted as
rules the tool needs to verify, whereas assume struct members are interpreted as constraints on legal
behavior. This means the tool looks for program execution paths where the TE bound to an expect
fails (see 12.3) and none of the TEs bound to the assumes fail.

In addition, one or more temporal operators can also be attributed to it, with the using temporal-operators
syntax.

Once a rule has been defined, it can be modified using the is only syntax and can be changed from an expect
to an assume or vice versa. To perform multiple verification runs, the rules can be varied slightly or the
same set of rules can be used in different expect/assume combinations. The using also temporal-operators
syntax can be used to add a temporal operator in a redefinition of the rule (when used together with is only),
or to add it as a separate extension to an existing rule (when used without is only).

Syntax example:

expect @a => {[1..5]; @b} @clk

Example

This example defines an expect, bus_cycle_length, that requires the length of the bus cycle to be no
longer than 1000 cycles.

struct bus_e {
 event bus_clk is change(’top.b_clk’) @sim;
 event transmit_start is rise (’top.trans’) @bus_clk;
 event transmit_end is rise (’top.transmit_done’) @bus_clk;
 event bus_cycle_length;

 expect bus_cycle_length is
 @transmit_start => {[0..999]; @transmit_end} @bus_clk
 else dut_error("Bus cycle did not end in 1000 cycles")
}

11.5 Procedural API for Temporal Operators on event and expect struct Members

11.5.1 do_abort_on_event()

This method immediately applies the abort operator on the event name of the target struct, if attributed
operators of the event name and force parameters allow it:

— If force is FALSE, the event name is affected only if no abort operator is attributed to it, or its condi-
tion is none; condition @event-name or empty disables the method.

Purpose Apply the abort operator on the event struct member

Category Predefined method of any struct or unit

Syntax do_abort_on_event(name: string, force: bool)

Parameters
name The name of an event struct member of this struct or unit

force Denotes whether the effect is forced, regardless attributed operators
204 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
— If force is TRUE, the event name is affected regardless attributed operators.

Syntax example:

do_abort_on_event("checker", FALSE)

11.5.2 do_stop_on_event()

This method immediately applies the stop operator on the event name of the target struct, if attributed
operators of the event name and force parameters allow it:

— If force is FALSE, the event name is affected only if no stop operator is attributed to it, or its condi-
tion is none; condition @event-name or empty disables the method.

— If force is TRUE, the event name is affected regardless attributed operators.

Syntax example:

do_stop_on_event("checker", FALSE)

11.5.3 do_start_on_event()

This method immediately applies the start operator on the event name of the target struct, if attributed
operators of the event name and force parameters allow it:

— If force is FALSE, the event name is affected only if no start operator is attributed to it, or its condi-
tion is none; condition @event-name or empty disables the method.

— If force is TRUE, the event name is affected regardless attributed operators.

Syntax example:

do_start_on_event("checker", FALSE)

Purpose Apply the stop operator on the event struct member

Category Predefined method of any struct or unit

Syntax do_stop_on_event(name: string, force: bool)

Parameters
name The name of an event struct member of this struct or unit

force Denotes whether the effect is forced, regardless attributed operators

Purpose Apply the start operator on the event struct member

Category Predefined method of any struct or unit

Syntax do_start_on_event(name: string, force: bool)

Parameters
name The name of an event struct member of this struct or unit

force Denotes whether the effect is forced, regardless attributed operators
Copyright © 2015 IEEE. All rights reserved. 205

IEEE
Std 1647-2015 IEEE STANDARD
11.5.4 do_abort_on_expect()

This method immediately applies the abort operator on the expect name of the target struct, if attributed
operators of the expect name and force parameters allow it:

— If force is FALSE, the expect name is affected only if no abort operator is attributed to it, or its con-
dition is none; condition @event-name or empty disables the method.

— If force is TRUE, the expect name is affected regardless attributed operators.

Syntax example:

do_abort_on_expect("checker", FALSE)

11.5.5 do_stop_on_expect()

This method immediately applies the stop operator on the expect name of the target struct, if attributed
operators of the expect name and force parameters allow it:

— If force is FALSE, the expect name is affected only if no stop operator is attributed to it, or its condi-
tion is none; condition @event-name or empty disables the method.

— If force is TRUE, the texpect name is affected regardless attributed operators.

Syntax example:

do_stop_on_expect("checker", FALSE)

Purpose Apply the abort operator on the expect struct member

Category Predefined method of any struct or unit

Syntax do_abort_on_expect(name: string, force: bool)

Parameters
name The name of an expect struct member of this struct or unit

force Denotes whether the effect is forced, regardless attributed operators

Purpose Apply the stop operator on the expect struct member

Category Predefined method of any struct or unit

Syntax do_stop_on_expect(name: string, force: bool)

Parameters
name The name of an expect struct member of this struct or unit

force Denotes whether the effect is forced, regardless attributed operators
206 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
11.5.6 do_start_on_expect()

This method immediately applies the start operator on the expect name of the target struct, if attributed
operators of the expect name and force parameters allow it:

— If force is FALSE, the expect name is affected only if no start operator is attributed to it, or its con-
dition is none; condition @event-name or empty disables the method.

— If force is TRUE, the expect name is affected regardless attributed operators.

Syntax example:

do_start_on_expect("checker", FALSE)

11.5.7 do_abort_on_struct()

This method immediately applies the abort operator on events and expects of the target struct, by calling the
apply_abort_on_struct() method with the same force parameter. By default, its effect is as follows:

— If force is FALSE, the events and expects are affected only if no abort operator is attributed to them,
or its condition is none; condition @event-name or empty disables the method.

— If force is TRUE, the events and expects are affected regardless attributed operators.

Syntax example:

do_abort_on_struct(FALSE)

Purpose Apply the start operator on the expect struct member

Category Predefined method of any struct or unit

Syntax do_start_on_expect(name: string, force: bool)

Parameters
name The name of an expect struct member of this struct or unit

force Denotes whether the effect is forced, regardless attributed operators

Purpose
Apply the abort operator on events and expects of a struct. By default it applies it on all of them, but
can be customized by extending the apply_abort_on_struct() method (see 11.5.10).

Category Predefined method of any struct or unit

Syntax do_abort_on_struct(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators
Copyright © 2015 IEEE. All rights reserved. 207

IEEE
Std 1647-2015 IEEE STANDARD
11.5.8 do_stop_on_struct()

This method immediately applies the stop operator on events and expects of the target struct, by calling the
apply_stop_on_struct() method with the same force parameter. By default, its effect is as follows:

— If force is FALSE, the events and expects are affected only if no stop operator is attributed to them,
or its condition is none; condition @event-name or empty disables the method.

— If force is TRUE, the events and expects are affected regardless attributed operators.

Syntax example:

do_stop_on_struct(FALSE)

11.5.9 do_start_on_struct()

This method immediately applies the start operator on events and expects of the target struct, by calling the
apply_start_on_struct() method with the same force parameter. By default, its effect is as follows:

— If force is FALSE, the events and expects are affected only if no start operator is attributed to them,
or its condition is none; condition @event-name or empty disables the method.

— If force is TRUE, the events and expects are affected regardless attributed operators.

Syntax example:

do_start_on_struct(FALSE)

Purpose
Apply the stop operator on events and expects of a struct. By default it applies it on all of them, but
can be customized by extending the apply_stop_on_struct() method (see 11.5.11).

Category Predefined method of any struct or unit

Syntax do_stop_on_struct(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators

Purpose Apply the start operator on events and expects of a struct. By default it applies it on all of them, but
can be customized by extending the apply_start_on_struct() method (see 11.5.12).

Category Predefined method of any struct or unit

Syntax do_start_on_struct(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators
208 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
11.5.10 apply_abort_on_struct()

To customize how the abort operator is applied on temporal struct members, this method can be extended
for the specific struct. The default implementation of the method contains two calls:

— do_abort_on_all_events(force);

— do_abort_on_all_expects(force);

In an extension, these or other predefined methods can be called, for example, do_abort_on_event() on a
specific event.

Syntax example:

extend sys {
apply_abort_on_struct(force: bool) is only {
 do_abort_on_all_expects(force)
 }
}

11.5.11 apply_stop_on_struct()

To customize how the stopoperator is applied on temporal struct members, this method can be extended for
the specific struct. The default implementation of the method contains two calls:

— do_stop_on_all_events(force);

— do_stop_on_all_expects(force);

In an extension, these or other predefined methods can be called, for example, do_stop_on_event() on a
specific event.

Syntax example:

extend sys {
apply_stop_on_struct(force: bool) is only {
 do_stop_on_all_expects(force)
 }
}

Purpose Customize how the abort operator is applied on temporal struct members of a struct

Category Predefined method of any struct or unit

Syntax apply_abort_on_struct(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators

Purpose Customize how the stop operator is applied on temporal struct members of a struct

Category Predefined method of any struct or unit

Syntax apply_stop_on_struct(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators
Copyright © 2015 IEEE. All rights reserved. 209

IEEE
Std 1647-2015 IEEE STANDARD
11.5.12 apply_start_on_struct()

To customize how the start operator is applied on temporal struct members, this method can be extended for
the specific struct. The default implementation of the method contains two calls:

— do_start_on_all_events(force);

— do_start_on_all_expects(force);

In an extension, these or other predefined methods can be called, for example, do_start_on_event() on a
specific event.

Syntax example:

extend sys {
apply_start_on_struct(force: bool) is only {
 do_start_on_all_expects(force)
 }
}

11.5.13 do_abort_on_all_events()

This method immediately applies the abort operator on all events of the struct, if attributed operators of the
event and force parameter allow it:

— If force is FALSE, the events are affected only if no abort operator is attributed to them, or its condi-
tion is none; condition @event-name or empty disables the method.

— If force is TRUE, the events are affected regardless attributed operators.

Syntax example:

extend sys {
apply_abort_on_struct(force: bool) is only {
 do_abort_on_all_events(force)
 }

Purpose Customize how the start operator is applied on temporal struct members of a struct

Category Predefined method of any struct or unit

Syntax apply_start_on_struct(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators

Purpose
Apply the abort operator on all events of a struct. This method is used in extensions of the
apply_abort_on_struct() method (see 11.5.10), to customize how the abort operator is applied on
temporal struct members a struct.

Category Predefined method of any struct or unit

Syntax do_abort_on_all_events(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators
210 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
}

11.5.14 do_stop_on_all_events()

This method immediately applies the stop operator on all events of the struct, if attributed operators of the
event and force parameter allow it:

— If force is FALSE, the events are affected only if no stop operator is attributed to them, or its condi-
tion is none; condition @event-name or empty disables the method.

— If force is TRUE, the events are affected regardless attributed operators.

Syntax example:

extend sys {
apply_stop_on_struct(force: bool) is only {
 do_stop_on_all_events(force)
 }
}

11.5.15 do_start_on_all_events()

This method immediately applies the start operator on all events of the struct, if attributed operators of the
event and force parameter allow it:

— If force is FALSE, the events are affected only if no start operator is attributed to them, or its condi-
tion is none; condition @event-name or empty disables the method.

— If force is TRUE, the events are affected regardless attributed operators.

Syntax example:

extend sys {
apply_start_on_struct(force: bool) is only {
 do_start_on_all_events(force)

Purpose
Apply the stop operator on all events of a struct. This method is used in extensions of the
apply_stop_on_struct() method (see 11.5.11), to customize how the abort operator is applied on
temporal struct members a struct.

Category Predefined method of any struct or unit

Syntax do_stop_on_all_events(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators

Purpose
Apply the start operator on all events of a struct. This method is used in extensions of the
apply_start_on_struct() method (see 11.5.12), to customize how the abort operator is applied on
temporal struct members a struct.

Category Predefined method of any struct or unit

Syntax do_start_on_all_events(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators
Copyright © 2015 IEEE. All rights reserved. 211

IEEE
Std 1647-2015 IEEE STANDARD
 }
}

11.5.16 do_abort_on_all_expects()

This method immediately applies the abort operator on all expects of the struct, if attributed operators of the
expect and force parameter allow it:

— If force is FALSE, the expects are affected only if no abort operator is attributed to them, or its con-
dition is none; condition @expect-name or empty disables the method.

— If force is TRUE, the expects are affected regardless attributed operators.

Syntax example:

extend sys {
apply_abort_on_struct(force: bool) is only {
 do_abort_on_all_expects(force)
 }
}

11.5.17 do_stop_on_all_expects()

This method immediately applies the stop operator on all expects of the struct, if attributed operators of the
expect and force parameter allow it:

— If force is FALSE, the expects are affected only if no stop operator is attributed to them, or its condi-
tion is none; condition @expect-name or empty disables the method.

— If force is TRUE, the expects are affected regardless attributed operators.

Syntax example:

extend sys {
apply_stop_on_struct(force: bool) is only {

Purpose
Apply the abort operator on all expects of a struct. This method is used in extensions of the
apply_abort_on_struct() method (see 11.5.10), to customize how the abort operator is applied on
temporal struct members a struct.

Category Predefined method of any struct or unit

Syntax do_abort_on_all_expects(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators

Purpose
Apply the stop operator on all expects of a struct. This method is used in extensions of the
apply_stop_on_struct() method (see 11.5.11), to customize how the stop operator is applied on
temporal struct members a struct.

Category Predefined method of any struct or unit

Syntax do_stop_on_all_expects(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators
212 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
 do_stop_on_all_expects(force)
 }
}

11.5.18 do_start_on_all_expects()

This method immediately applies the start operator on all expects of the struct, if attributed operators of the
expect and force parameter allow it:

— If force is FALSE, the expects are affected only if no start operator is attributed to them, or its con-
dition is none; condition @expect-name or empty disables the method.

— If force is TRUE, the expects are affected regardless attributed operators.

Syntax example:

extend sys {
apply_start_on_struct(force: bool) is only {
 do_start_on_all_expects(force)
 }
}

11.5.19 do_abort_on_subtree()

This method immediately applies the abort operator on events and expects of the target unit and unit sub-
tree under it, by calling the propagate_abort_on_subtree() method with the same force parameter. By
default, its effect is as follows:

— If force is FALSE, the events and expects are affected only if no abort operator is attributed to them,
or its condition is none; condition @event-name or empty disables the method.

— If force is TRUE, the events and expects are affected regardless attributed operators.

This default effect can be changed by extending the propagate_abort_on_subtree() method (see 11.5.22).

Syntax example:

Purpose
Apply the start operator on all expects of a struct. This method is used in extensions of the
apply_start_on_struct() method (see 11.5.12), to customize how the start operator is applied on
temporal struct members a struct.

Category Predefined method of any struct or unit

Syntax do_start_on_all_expects(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators

Purpose Apply the abort operator on the specified unit and propagate to the unit sub-tree under it.

Category Predefined method of any unit

Syntax do_abort_on_subtree(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators
Copyright © 2015 IEEE. All rights reserved. 213

IEEE
Std 1647-2015 IEEE STANDARD
do_abort_on_subtree(FALSE)

11.5.20 do_stop_on_subtree()

This method immediately applies the stop operator on events and expects of the target unit and unit sub-tree
under it, by calling the propagate_stop_on_subtree() method with the same force parameter. By default, its
effect is as follows:

— If force is FALSE, the events and expects are affected only if no stop operator is attributed to them,
or its condition is none; condition @event-name or empty disables the method.

— If force is TRUE, the events and expects are affected regardless attributed operators.

This default effect can be changed by extending the propagate_stop_on_subtree() method (see 11.5.23).

Syntax example:

do_stop_on_subtree(FALSE)

11.5.21 do_start_on_subtree()

This method immediately applies the start operator on events and expects of the target unit and unit sub-tree
under it, by calling the propagate_start_on_subtree() method with the same force parameter. By default,
its effect is as follows:

— If force is FALSE, the events and expects are affected only if no start operator is attributed to them,
or its condition is none; condition @event-name or empty disables the method.

— If force is TRUE, the events and expects are affected regardless attributed operators.

This default effect can be changed by extending the propagate_start_on_subtree() method (see 11.5.24).

Syntax example:

do_start_on_subtree(FALSE)

Purpose Apply the stop operator on the specified unit and propagate to the unit sub-tree under it.

Category Predefined method of any unit

Syntax do_stop_on_subtree(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators

Purpose Apply the start operator on the specified unit and propagate to the unit sub-tree under it.

Category Predefined method of any unit

Syntax do_start_on_subtree(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators
214 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
11.5.22 propagate_abort_on_subtree()

To customize how the abort operator is propagated on temporal struct members of a specified unit and the
unit sub-tree under it, this method can be extended for the specific unit. The default implementation of the
method contains two calls:

— do_abort_struct(force);

— do_abort_on_all_instance_fields(force);

In an extension, these or other predefined methods can be called, for example, do_abort_on_struct() can be
called on a struct pointed to by a specific field.

Syntax example:

extend sys {
propagate_abort_on_subtree(force: bool) is only {
 do_abort_on_all_instance_fields(force)
 }
}

11.5.23 propagate_stop_on_subtree()

To customize how the stop operator is propagated on temporal struct members of a specified unit and the
unit sub-tree under it, this method can be extended for the specific unit. The default implementation of the
method contains two calls:

— do_stop_struct(force);

— do_stop_on_all_instance_fields(force);

In an extension, these or other predefined methods can be called, for example, do_stop_on_struct() can be
called on a struct pointed to by a specific field.

Syntax example:

extend sys {
propagate_stop_on_subtree(force: bool) is only {

Purpose
Customize how the abort operator is propagated on temporal struct members of a specified unit and
the unit sub-tree under it

Category Predefined method of any unit

Syntax propagate_abort_on_struct(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators

Purpose
Customize how the stop operator is propagated on temporal struct members of a specified unit and
the unit sub-tree under it

Category Predefined method of any unit

Syntax propagate_stop_on_struct(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators
Copyright © 2015 IEEE. All rights reserved. 215

IEEE
Std 1647-2015 IEEE STANDARD
 do_stop_on_all_instance_fields(force)
 }
}

11.5.24 propagate_start_on_subtree()

To customize how the start operator is propagated on temporal struct members of a specified unit and the
unit sub-tree under it, this method can be extended for the specific unit. The default implementation of the
method contains two calls:

— do_start_struct(force);

— do_start_on_all_instance_fields(force);

In an extension, these or other predefined methods can be called, for example, do_start_on_struct() can be
called on a struct pointed to by a specific field.

Syntax example:

extend sys {
propagate_start_on_subtree(force: bool) is only {
 do_start_on_all_instance_fields(force)
 }
}

11.5.25 do_abort_on_all_instance_fields()

This method recursively applies the abort operator on on all instance fields of the unit, by calling the
do_abort_on_subtree() method on them with the same force parameter.

Syntax example:

extend sys {
propagate_abort_on_subtree(force: bool) is only {

 do_abort_on_all_instance_fields(force)

Purpose Customize how the start operator is propagated on temporal struct members of a specified unit and
the unit sub-tree under it

Category Predefined method of any unit

Syntax propagate_start_on_struct(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators

Purpose
Propagate the abort operator on all instance fields of a unit. This method is used in extensions of the
propagate_abort_on_subtree() method (see 11.5.22), to customize how the abort operator is
propagated on temporal struct members of a unit and unit sub-tree under it

Category Predefined method of any unit

Syntax do_abort_on_all_instance_fields(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators
216 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
 }
}

11.5.26 do_stop_on_all_instance_fields()

This method recursively applies the stop operator on on all instance fields of the unit, by calling the
do_stop_on_subtree() method on them with the same force parameter.

Syntax example:

extend sys {
propagate_stop_on_subtree(force: bool) is only {

 do_stop_on_all_instance_fields(force)
 }
}

11.5.27 do_start_on_all_instance_fields()

This method recursively applies the start operator on on all instance fields of the unit, by calling the
do_start_on_subtree() method on them with the same force parameter.

Syntax example:

extend sys {
propagate_start_on_subtree(force: bool) is only {

 do_start_on_all_instance_fields(force)
 }
}

Purpose
Propagate the stop operator on all instance fields of a unit. This method is used in extensions of the
propagate_stop_on_subtree() method (see 11.5.23), to customize how the stop operator is
propagated on temporal struct members of a unit and unit sub-tree under it

Category Predefined method of any unit

Syntax do_stop_on_all_instance_fields(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators

Purpose
Propagate the start operator on all instance fields of a unit. This method is used in extensions of the
propagate_start_on_subtree() method (see 11.5.24), to customize how the start operator is
propagated on temporal struct members of a unit and unit sub-tree under it

Category Predefined method of any unit

Syntax do_start_on_all_instance_fields(force: bool)

Parameters force Denotes whether the effect is forced, regardless attributed operators
Copyright © 2015 IEEE. All rights reserved. 217

IEEE
Std 1647-2015 IEEE STANDARD
218 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
12. Temporal expressions

Temporal expressions (TEs) provide a declarative way to describe temporal behavior. The e language
provides a set of temporal operators and keywords that can be used to construct TEs. A TE is a combination
of events and temporal operators that describes behavior. A TE expresses temporal relationships between
events, values of fields, variables, or other items during a test.

TEs are used to define the occurrence of events, specify sequences of events as checkers, and suspend
execution of a thread until the given sequence of events occurs. TEs are only legal in the following
constructs:

— wait and sync actions in TCMs

— event definitions and expect or assume struct members

12.1 Overview

TEs are built from a set of temporal atoms (see 12.1.2) and a set of operators (see 12.2).

TEs are interpreted over finite paths, which are successions of states. A state is a complete valuation of all
atoms, i.e., for each atom, a given state tells us whether that atom holds or does not hold. A path is an
abstraction of the execution of an e program. The notion of a state does away with the detail between the
occurrence of tick_start and a subsequent tick_end when simulating the e program (see 11.1.4.2). This
detail is not needed to define the semantics of TEs.

The meaning of a TE is given in terms of tight satisfaction (“holds tightly”), which is a relationship between
paths and TEs. A TE holds tightly on a path iff (if and only if) that complete path exhibits the behavior
expressed by the TE.

a) The first step to determine the meaning of a TE is to determine its sampling event (see 12.1.3) and to
transform it to its sampled normal form (see 12.1.4).

b) The second step is to apply the definitions of the operators (see 12.2).

c) New events can be defined in terms of TEs using the event construct (see 11.1.3.1). It is not
necessary to consider an atom’s origin when defining the semantics of TEs.

d) To determine the success or failure of a TE, which is relevant for describing the meaning of con-
structs that use TEs, see 12.3.

12.1.1 Terminology

This subclause defines some of the terms used in this clause.

12.1.1.1 holds

A term used to talk about the meaning of atoms. If the atom is an event, the atom holds if the event occurs at
the state. If the atom is a proposition true(exp), the proposition holds if exp evaluates at the state to
TRUE if it is a Boolean expression or to non-zero if exp is an numeric expression.

12.1.1.2 holds tightly

A term used to talk about the meaning of TEs. A TE is interpreted over finite paths. Informally, a TE holds
tightly on a path iff the path exhibits the behavior described by the TE.
Copyright © 2015 IEEE. All rights reserved. 219

IEEE
Std 1647-2015 IEEE STANDARD
12.1.1.3 occurs, occurrence

A term used to talk about the meaning of events. For each event, a state identifies whether the event is
present or not.

12.1.1.4 path

A succession of states of the e program. For a path p, the notation p = s0 s1 .. sn can be used to indicate p
has n+1 states. The first state of p is s0; the last state of p is sn.

12.1.1.5 prefix

A prefix of a path is a sub-path of that consists of all states of the original path up to a certain point. The
empty path and the original path are both prefixes of the original path.

12.1.1.6 proposition

A temporal atom of the form true(exp).

12.1.1.7 sampling event

An atom associated with a TE that determines when the TE is evaluated. Every TE has a sampling event.

12.1.1.8 sampled normal form

The result of propagating the sampling event of a TE. In this form, every atom under the TE is explicitly
sampled.

12.1.1.9 state

A valuation of all atoms. For each event, the state identifies whether the event occurs. For each proposition,
the state identifies whether the proposition holds.

12.1.1.10 strict prefix

A prefix of the path that is not that original path.

12.1.1.11 sub-path

A contiguous part of a path. The sub-paths of a path p = s0 s1 .. sn are the paths sp = si si+1 .. sj, where
.

12.1.1.12 success

A term used to talk about the meaning of top-level temporal expressions. The TE succeeds at a point of a
path if there is a sub-path ending in the given point, such that the TE holds tightly over the sub-path.

12.1.1.13 temporal atom

An event, a proposition true(exp), or the atom cycle.

12.1.1.14 tight satisfaction

See 12.1.1.2.

0 i j n≤ ≤ ≤
220 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
12.1.1.15 top-level temporal expression

A TE that is not nested underneath another TE, i.e., it appears directly under a wait or sync action, or an
event, expect, or assume struct member.

12.1.2 Temporal atoms

TEs are built from a set of temporal atoms. These atoms consist of the following:

— Events, including predefined events, such as the event sys.any

— Propositions true(exp)

— The atom cycle

Atoms are interpreted at states of the e program. Each and every state identifies which atoms hold and which
do not hold.

Events are said to “occur,” propositions “hold.” The proposition true(exp) holds at a state if exp
evaluates to TRUE if it is a Boolean expression or to non-zero if exp is an numeric expression. The atom
cycle holds at any state.

12.1.3 Sampling event

A key step in determining the meaning of a TE is to identify its sampling event. The sampling event for a TE
is one of the following, in decreasing order of precedence:

a) The sampling event specified with the binary @ operator.

b) The sampling event inherited from the parent TE.

c) The sampling event of the TCM if the TE appears under a wait or sync action of that TCM.

d) sys.any, if none of the above applies.

12.1.4 Sampling propagation and sampled normal form

The first step in uncovering the meaning of a top-level TE is to propagate its sampling event so every
temporal atom that appears under the given TE is explicitly sampled. This transformation is called sampling
propagation and the result is the sampled normal form of the given TE.

The rules for transforming a TE to its sampled normal form are as follows:

a) Given a (top-level) TE t whose sampling event is q,
let S be a function that returns the sampled normal S(t,q).

b) Let b be an expression; e and q be events; t,t1, and t2 be TEs;
exp be a numeric expression; and range be either exp..exp, exp.., ..exp, or ..

S(true(b), q) = true(b) @q

S(cycle, q) = cycle @q

S(@e, q) = @e @q

S((t), q) = (S(t,q))

S(t1 and t2, q) = S(t1,q) and S(t2,q)
Copyright © 2015 IEEE. All rights reserved. 221

IEEE
Std 1647-2015 IEEE STANDARD
Example

Consider the following TE:

{@a; ~[..]*cycle; @b} @q

The sampling event of this TE is specified explicitly as q.

The temporal atoms a, cycle, and b are not explicitly sampled.

To obtain the sampled normal form, q is propagated into the following sub-expressions:

{@a @q; ~[..]*cycle @q; @b @q} @q

12.2 Temporal operators and constructs

This subclause gives the semantics of the operators for building TEs. These definitions only apply after a
top-level TE has first been interpreted to determine its sampling event and sampled normal form (see
12.1.4). Each meaning is given in terms of tight satisfaction (see 12.1.1).

To illustrate tight satisfaction, consider the TE cycle @q, which holds tightly on any path where event q
occurs in the last state of that path and in no other state. It is clear that tight satisfaction considers the path as
a whole and makes requirements on every state of the given path. This is different from the notion success of
a TE (see 12.3). The textual description of the operators may illustrate the meaning of the operators for a
top-level expression using the notion of success (see 12.3) rather than tight satisfaction.

S(t1 or t2, q) = S(t1,q) or S(t2,q)

S({ t1 ; t2 }, q) = { S(t1,q) ; S(t2,q) }

S([exp]*t, q) = [exp]* S(t,q)

S(~[range]*t, q) = ~[range]* S(t,q)

S({[range]*t1;t2} q) = { [range]* S(t1,q); S(t2;q)}

S(t @ e, q) = S(t,e) @q

S(fail t, q) = fail (S(t,q))

S(t1 => t2, q) = S(t1,q) => S(t2,q)

S(rise(exp), q) = rise(exp) @q

S(fall(exp), q) = fall(exp) @q

S(change(exp), q) = change(exp) @q

S(not t, q) = not (S(t,q))

S(detach (t), q) = detach (S(t,q))

S(t exec action, q) = S(t,q) exec action
222 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
12.2.1 Precedence of temporal operators

Table 28 shows the precedence of temporal operators, listed from highest precedence to lowest.

12.2.2 cycle

This represents one cycle of some sampling event. With no explicit sampling event specified, this represents
one cycle of the sampling event from the context (i.e., the sampling event from the overall TE or the
sampling event for the TCM that contains the TE). When a sampling event is specified, as in
cycle@sampling-event, this is equivalent to @sampling-event@sampling-event.

See also 11.1.3.1 and 11.1.4.

Syntax example:

wait cycle

Table 28—Precedence of temporal operators

Operator name Operator example

named event @event-name

exec TE exec action-block

repeat [] * TE

fail
not

fail TE
not TE

and TE1 and TE2

or TE1 or TE2

sequence {TE1 ; TE2}

yield TE1 => TE2

sample event TE @ event-name

Purpose Specify an occurrence of a sampling event

Category TE

Syntax cycle

Informal
semantics

cycle @e holds tightly on a path iff e occurs at the last state of that path and at no other state of
that path.
Copyright © 2015 IEEE. All rights reserved. 223

IEEE
Std 1647-2015 IEEE STANDARD
12.2.3 true(exp)

This uses a Boolean expression as a TE. Each occurrence of the sampling event causes an evaluation of the
Boolean expression. The Boolean expression is evaluated only at the sampling point.

The TE succeeds each time the expression evaluates to TRUE. The expression exp is evaluated after pclk.
Changes in exp after true(exp) @pclk has been evaluated are ignored.

See also 5.1.1.

Syntax example:

event rst is true(reset == 1) @clk

12.2.4 @ unary event operator

An event can be used as the simplest form of a TE. The TE @event-type succeeds every time the event
occurs. Success of the expression is simultaneous with the occurrence of the event.

The struct-exp is an expression that evaluates to the struct instance containing the event instance. If no
struct-exp is specified, the default is the current struct instance. If a struct-exp is included in the event name,
the value of the struct-exp shall not change throughout the evaluation of the TE.

See also 11.1.3.1 and 11.1.4.

Syntax example:

wait @rst

Purpose Boolean TE

Category TE

Syntax true(bool: exp)

Parameters bool A Boolean expression.

Informal
semantics

true(exp) @e holds tightly on a given path iff

a) true(exp) holds at the last state of the path, and

b) cycle @e holds tightly on the path.

Purpose Use an event as a TE

Category TE

Syntax @[struct-exp.]event-type

Parameters struct-exp.
event-type

The name of an event. This can be a predefined event or a user-defined event,
and can include the name of the struct instance where the event is defined.

Informal
semantics

@e @q holds tightly on a given path iff

a) event e occurs at a state of the path, and

b) cycle @q holds tightly on that path.
224 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
12.2.5 @ sampling operator (binary @)

This is used to specify the sampling event for a TE. The specified sampling event overrides the default
sampling event. The sampling event applies to all sub-expressions of the TE. It can be overridden for a sub-
expression by attaching a different sampling event to the sub-expression. A sampled TE succeeds when its
sampling event occurs with or after the success of the TE.

See also 11.1.3.1 and 11.1.4.

Syntax example:

wait {@start; cycle} @clk

12.2.6 and

The temporal and succeeds when both TEs start evaluating in the same sampling period and succeed in the
same sampling period.

Syntax example:

event e12 is (@TE1 and @TE2) @clk

Purpose Specify a sampling event for a TE

Category TE

Syntax temporal-expression @event-name

Parameters

temporal-
expression

A TE.

event-name The sampling event.

Informal
semantics

t @e holds tightly on a given path iff there exist paths p1 and p2 and state s so that

a) the concatenation of p1, s, and p2 is the original path;

b) t holds tightly on p1 s;

c) cycle @e holds tightly on s p2.

Purpose TE and operator

Category TE

Syntax temporal-expression and temporal-expression

Parameters temporal-
expression

A TE.

Informal
semantics

t1 and t2 holds tightly on a path iff both t1 and t2 hold tightly on that path.
Copyright © 2015 IEEE. All rights reserved. 225

IEEE
Std 1647-2015 IEEE STANDARD
12.2.7 or

The or TE succeeds when either TE succeeds. An or operator creates a parallel evaluation for each of its
sub-expressions. It can create multiple successes for a single TE evaluation.

Syntax example:

event e12 is (@TE1 or @TE2) @clk

12.2.8 { exp ; exp }

The semicolon (;) sequence operator evaluates a series of TEs over successive occurrences of a specified
sampling event. Each TE following a semicolon (;) starts evaluating in the sampling period following the
one where the preceding TE succeeded. The sequence succeeds whenever its final expression succeeds.

Braces ({}) are used in the scope of a TE to define a sequence; do not use them in any other way here.

Example

Figure 5 shows the results of evaluating the temporal sequence:

{@ev_a; @ev_b; @ev_c} @qclk

over the series of ev_a, ev_b, and ev_c events shown at the top of Figure 5. The sequence evaluation starts
whenever event ev_a occurs.

Purpose TE or operator

Category TE

Syntax temporal-expression or temporal-expression

Parameters temporal-
expression

A TE.

Informal
semantics

t1 or t2 holds tightly on a path iff either t1 or t2 holds tightly on that path (or they both hold
tightly on that path).

Purpose TE sequence operator

Category TE

Syntax {temporal-expression; temporal-expression; ...}

Parameters temporal-
expression

A TE.

Informal
semantics

{ t1 ; t2 } holds tightly on a given path iff there exist paths p1 and p2 so that

a) p1 concatenated with p2 gives the original path;

b) t1 holds tightly on p1;

c) t2 holds tightly on p2.
226 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

event de is {@ev_d; @ev_e} @ev_f

12.2.9 [exp]

Repetition of a TE is frequently used to describe cyclic or periodic temporal behavior. The [exp] fixed repeat
operator specifies a fixed number of occurrences of the same TE. If the numeric expression evaluates to zero
(0), the TE succeeds immediately.

Syntax example:

wait [2]*cycle

Purpose Fixed repetition operator

Category TE

Syntax [exp] [* temporal-expression]

Parameters

exp A 32-bit, non-negative integer expression that specifies the number of times
to repeat the evaluation of the TE. It cannot contain any functions.

temporal-
expression

A TE. If * temporal-expression is omitted, * cycle is automatically used in
its place.

Informal
semantics

[exp]*t is equivalent to { t ; t ; .. ; t }, where the sequence consists of as many
terms as the value of exp. A special case is [0]*t, which holds tightly only on the empty path.

{@ev_a;@ev_b;@ev_c}@qclk

ev_c

ev_b

ev_a

qclk

1 2 3 4 5

event emitted evaluation starts evaluation succeeds evaluation fails

Figure 5—Example evaluations of a temporal sequence
Copyright © 2015 IEEE. All rights reserved. 227

IEEE
Std 1647-2015 IEEE STANDARD
12.2.10 ~[exp..exp]

The true match repeat operator can be used to specify a variable number of consecutive successes of a TE.
True match variable repeat succeeds every time the sub-expression succeeds. This expression creates a
number of parallel repeat evaluations within the range.

True match repeat also enables specification of behavior over infinite sequences by repeating an infinite
number of occurrences of a TE. The expression ~[..]*TE is equivalent to:

[0] or [1]*TE or [2]*TE...

This construct is mainly useful for maintaining information about past events. See also 12.2.9.

Syntax example:

event p2_4 is ~[2..4]*@pclk

Purpose True match variable repeat operator

Category Expression

Syntax ~[[from-exp]..[to-exp]] [* temporal-expression]

Parameters

from-exp An optional non-negative, 32-bit numeric expression that specifies the
minimum number of repetitions of the TE. If the from-exp is missing, zero (0)
is used.

to-exp An optional non-negative, 32-bit numeric expression that specifies the
maximum number of repetitions of the TE. If the to-exp is missing, infinity is
used.

temporal-
expression

A TE that is to be repeated some number of times within the from-expr..to-
exp range. If * temporal-expression is omitted, * cycle is automatically
used in its place.

Informal
semantics

The following definitions apply:

a) ~[range] is equivalent to

~[range]* cycle

b) ~[exp1 .. exp2] * t is equivalent to

{ [exp1]*t ; ~[.. exp2-exp1] * t }

c) ~[exp1 ..] * t is equivalent to

{ [exp1]*t ; ~[..] * t }

d) ~[.. exp2] * t is equivalent to

[0]*t or [1]*t or .. [exp2]*t

e) ~[..] * t is equivalent to

[0]*t or [1]*t or ..
228 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
12.2.11 [exp..exp]

The first match repeat operator is only valid in a temporal sequence {TE; TE; TE} (see 12.2.8); it is not a
TE operator. The first match repeat expression succeeds on the first success of the match-expression
between the lower and upper bounds specified for the repeat-expression.

First match repeat also enables specification of behavior over infinite sequences by allowing an infinite
number of repetitions of the repeat-expression to occur before the match-expression succeeds. Where
@ev_a is an event occurrence, {[..]*TE1;@ev_a} is equivalent to:

{@ev_a} or {[1]*TE1; @ev_a} or {[2]*TE1; @ev_a} or {[3]*TE1; @ev_a}...

Syntax example:

event ev_1 is {[2..4]*@pclk; @reset}

12.2.12 fail

A fail succeeds whenever the TE fails. If the TE has multiple interpretations [e.g., fail (TE1 or TE2)],
the expression succeeds iff all the interpretations fail. The expression fail TE succeeds at the point where all
possibilities to satisfy TE have been exhausted. Any TE can fail at most once per sampling event.

Purpose First match variable repeat operator

Category Expression

Syntax { ... ; [[from-exp]..[to-exp]] [* repeat-expression]; match-expression; ... }

Parameters

from-exp An optional non-negative, 32-bit numeric expression that specifies the
minimum number of repetitions of the repeat-expression. If the from-exp is
missing, zero (0) is used.

to-exp An optional non-negative, 32-bit numeric expression that specifies the maxi-
mum number of repetitions of the repeat-expression. If the to-exp is missing,
infinity is used.

repeat-
expression

A TE that is to be repeated some number of times within the from-expr..to-
exp range. If * repeat-expression is omitted, * cycle is automatically used
in its place.

match-
expression

The TE to match.

Purpose TE failure operator

Category TE

Syntax fail temporal-expression

Parameters temporal-
expression

A TE.

Informal
semantics

fail t holds tightly on a given path iff

a) that path cannot be extended so that t holds tightly on the extended path, and

b) the given path does not have a strict prefix on which fail t also holds tightly.
Copyright © 2015 IEEE. All rights reserved. 229

IEEE
Std 1647-2015 IEEE STANDARD
The not operator (see 12.2.16) differs from the fail operator, as illustrated in Figure 6.

Syntax example:

event ev_1 is fail{@ev_b; @ev_c}

@ev_a

{@ev_b;@ev_c} @pclk

not{@ev_b;@ev_c} @pclk

fail{@ev_b;@ev_c} @pclk

{@ev_a; not{@ev_b;@ev_c}} @pclk

{@ev_a; fail{@ev_b;@ev_c}} @pclk

@ev_b

@ev_c

@pclk

event emitted evaluation starts evaluation succeeds evaluation fails

Figure 6—Comparison of temporal not and fail operators
230 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
12.2.13 =>

The yield operator is used to assert that success of one TE depends on the success of another TE. The yield
expression succeeds without evaluating the second expression if the first expression fails. If the first
expression succeeds, then the second expression needs to also succeed in sequence.

The sampling event from the context applies to both sides of the yield operator expression. The entire
expression is essentially a single TE, so that (TE1 => TE2)@sampling_event is effectively
(TE)@sampling_event, where TE is the TE made up of TE1 => TE2.

NOTE—The yield operator is typically used along with the expect struct member (see 11.1.2) to express temporal rules.

Syntax example:

expect @A => {[1..2]*@clk; @B}

12.2.14 eventually

This is used to indicate the TE is expected to succeed at some unspecified time. Typically, eventually is
used in an expect struct member to specify a TE is expected to succeed sometime before the quit event
occurs for the struct. See also 27.2.2.5.

Syntax example:

expect @req => eventually @ack

Purpose Temporal yield operator

Category TE

Syntax temporal-expression1 => temporal-expression2

Parameters

temporal-
expression1

The first TE. The second TE is expected to succeed if this expression
succeeds.

temporal-
expression2

The second TE. If the first TE succeeds, this expression is also expected to
succeed.

Informal
semantics

The TE
t1 => t2 @q

 is equivalent to
(fail t1 or {t1; t2}) @q

Purpose TE success check

Category TE

Syntax eventually temporal-expression

Parameters
temporal-
expression

A TE.

Informal
semantics

The TE eventually t @q holds tightly on a given path p iff

a) {~[..];t} @q holds tightly on p, and

b) the event quit does not occur at any state of p that precedes the last state of p.
Copyright © 2015 IEEE. All rights reserved. 231

IEEE
Std 1647-2015 IEEE STANDARD
12.2.15 detach

A detached TE is evaluated independently of the expression in which it is used. It starts evaluation when the
main expression does. Whenever the detached TE succeeds, it emits an “implicit” event that is only
recognized by the main TE. The detached TE inherits the sampling event from the main TE.

Example

In the following example, both S1 and S2 start with @Q. However, the S1 TE expects E to follow Q, while the
S2 TE expects E to precede Q by one cycle. The detach() construct causes the TEs to be evaluated
separately. As a result, the S3 TE is equivalent to the S2 expression, as shown in Figure 7.

struct s {
event pclk is @sys.pclk;
event Q;
event E;
event T is {@E; [2]} @pclk;
event S1 is {@Q; {@E; [2]}} @pclk;
event S2 is {@Q; @T} @pclk;
event S3 is {@Q; detach({@E; [2]})} @pclk

}

Purpose Detach a TE

Category TE

Syntax detach(temporal-expression)

Parameters temporal-
expression

A TE to be independently evaluated.

Informal
semantics

The TE
detach(t1)

is equivalent to
@unnamed_event_1

where unnamed_event_1 is defined as
event unnamed_event_1 is t1;
232 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

@trans.end => detach({@trans.start; ~[2..5]})@pclk

12.2.16 not

The not TE succeeds if the evaluation of the sub-expression does not succeed during the sampling period.
Thus, not TE succeeds on every occurrence of the sampling event if TE does not succeed.

NOTE—If an event is explicitly emitted (see 11.1.3.2), a race condition can arise between the event occurrence and the
not of the event when used in some TEs.

Syntax example:

event bc_bar is not {@ev_b; @ev_c}

Purpose TE inversion operator

Category TE

Syntax not temporal-expression

Parameters temporal-
expression

A TE.

Informal
semantics

The TE
not t

is equivalent to
detach(fail t)

Q

S1 is {@Q; {@E; [2]}}

E

T is {@E; [2]}

S2 is {@Q; @T}

S3 is {@Q; detach({@E; [2]})}

pclk

event emitted evaluation starts evaluation succeeds evaluation fails

Figure 7—Examples illustrating detached temporal expressions
Copyright © 2015 IEEE. All rights reserved. 233

IEEE
Std 1647-2015 IEEE STANDARD
12.2.17 change(exp), fall(exp), rise(exp)

This detects a change in the sampled value of an expression. The expression is evaluated at each occurrence
of the sampling event and compared to the value it had at the previous sampling point. Only the values at
sampling points are detected. The value of the expression between sampling points is invisible to the TE.

Table 29 describes the behavior of each of the three TEs (change, fall, and rise). When applied to HDL
variables, the expressions examine the value after each bit is translated from the HDL four-value or nine-
value logic representation to e two-value logic representation.

Purpose Transition or edge TE

Category TE

Syntax change | fall | rise(scalar: exp) [@event-type]
change | fall | rise(‘HDL-pathname’) @sim

Parameters

scalar A Boolean expression or an integer expression.

event-type The sampling event for the expression.

HDL-pathname An HDL object enclosed in single quotes (' ').

@sim A special annotation used to detect changes in HDL signals.

Informal
semantics

a) The following definitions apply for the first syntax type:
change | fall | rise(scalar: exp) [@event-type]

1) change(exp) @q is equivalent to

true(prev(exp,q) != exp)@q

2) fall(exp) @q is equivalent to

true(prev(exp,q) > exp)@q

3) rise(exp) @q is equivalent to

true(prev(exp,q) < exp)@q

4) prev(exp,q) is a function that gives the value of exp at the previous state for
which q holds. If no such state exists, it gives the value of exp at the first state of
the path.

prev() is not part of the e syntax, it is only an aid for defining the meaning of
rise(exp) @q.

b) The following definitions apply for the second syntax type:

change | fall | rise(‘HDL-pathname’) @sim

— The TE rise(‘HDL-pathname’) @sim serves two main purposes.

1) It causes the simulator to pass control back to the e program at the end of a sim-
ulator delta cycle in which HDL-pathname changes (see 11.1.4.2).

2) It is a TE.

If rise(‘HDL-pathname’) @sim appears as a top-level TE, it is already in sampled
normal form.

— rise(‘HDL-pathname’) @sim holds tightly on a path iff

1) the last point of the path corresponds to a tick in which the signal HDL-path-
name changes;

2) the signal changes at no other point of the path;

3) the signal's new value is larger than its old value.

— fall and change perform in a similar fashion.
234 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Table 30 describes the default translation of HDL nine-value logic representation to e values. The @x and @z
HDL value modifiers can be used to override the default translation (see 23.3).

A special notation, @sim, can be used in place of a sampling event for the rise, fall, or change of HDL
objects. If @sim is used, the HDL object is watched by the simulator. The @sim notation does not signify
an event, but is used only to cause a callback any time there is a change in the value of the HDL object to
which it is attached.

When a sampling event other than @sim is used, changes to the HDL object are detected only if they are
visible at the sampling rate of the sampling event (see Figure 8).

NOTE—An e program ignores glitches (see 11.1.4.2) that occur in a single simulation time slot. Only the first occur-
rence of a particular monitored event in a single simulation time slot is recognized by the e program.

Syntax example:

event hv_c is change('top.hold_var')@sim

Example

Figure 8 shows evaluations of the rise, fall, and change expressions for the HDL signal V, with the sampling
events @sim and @qclk. The qclk event is an arbitrary event that is emitted at the indicated points. The V
signal rises and then falls between the second and third occurrences of event qclk. Since the signal’s value
is the same at the third qclk event as it was at the second qclk event, the change('V')@qclk expression
does not succeed at the third qclk event.

Table 29—Edge condition options

Edge condition Meaning

rise(exp) Triggered when the expression changes from FALSE to TRUE. If it is an integer expres-
sion, the rise() TE succeeds upon any change from x to y>x. Signals wider than one bit
are allowed. Integers larger than 32 bits are not allowed.

fall(exp) Triggered when the expression changes from TRUE to FALSE. If it is an integer expres-
sion, the fall() TE succeeds upon any change from x to y<x. Signals wider than one bit
are allowed. Integers larger than 32 bits are not allowed.

change(exp) Triggered when the value of the expression changes. The change() TE succeeds upon any
change of the expression. Signals wider than one bit are allowed. Integers larger than 32
bits are not allowed.

Table 30—Transition of HDL values

HDL values e value

0, X, U, W, L, - 0

1, Z, H 1
Copyright © 2015 IEEE. All rights reserved. 235

IEEE
Std 1647-2015 IEEE STANDARD
12.2.18 delay

This succeeds after a specified simulation time delay elapses. A callback occurs after the specified time. A
delay of zero (0) succeeds immediately. See also 13.1.3.

Attaching a sampling event to delay has no effect. The delay ignores the sampling event and succeeds as
soon as the delay period elapses. Also, this expression can only be used if the e program is being run with an
attached HDL simulator.

Syntax example:

wait delay(3)

Purpose Specify a simulation time delay

Category TE

Syntax delay(int: exp)

Parameters
int An integer expression or time expression no larger than 64 bits. The number

specifies the amount of simulation time to delay. The time units are in the
timescale used in the HDL simulator.

Informal
semantics

delay(exp) holds tightly on a path whose elapsed simulation time is exp.

change('V')@sim

rise('V')@sim

fall('V')@sim

change('V')@qclk

rise('V')@qclk

fall('V')@qclk

qclk

'V'

Figure 8—Effects of the sampling rate on detecting HDL object changes
236 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
12.2.19 exec

This invokes an action block when a TE succeeds. The action block cannot contain any time-consuming
actions. The actions are executed immediately upon the success of the expression, but not more than once
per tick. To support extensibility, use method calls in the exec action block rather than calling the actions
directly.

The usage of exec is similar to the on struct member, except:

— any TE can be used as the condition for exec, while only an event can be used as the condition for
on;

— exec needs to be used in the context of a TE in a TCM or an event definition, while on can only be a
struct member.

An exec action cannot be attached to a first match variable repeat expression. However, it can be attached to
the repeat expression of a first match variable repeat expression. An exec action also cannot be attached to
an implicit repeat expression, it needs to be attached to an explicit repeat expression.

See also 4.2.3 and 11.2.

Syntax example:

wait @watcher_on exec {print watcher_status_1}

12.3 Success and failure of a temporal expression

The meaning of TEs is defined in terms of tight satisfaction (“holds tightly”), as seen in 12.2. For top-level
TEs, it is useful to introduce the notions of “success” and” failure,” which are derived from tight
satisfaction. The notion of success is used for describing the meaning of event struct members and wait and
sync actions. The notion of failure is used to describe the meaning of assume and expect struct members.

12.3.1 Success of a temporal expression

A TE succeeds at a point of a path if it holds tightly on a sub-path ending in the given point. More precisely:

A TE t, whose sampling event is q, succeeds at the ith state of a path
p = s0 s1 .. si .. sn, , iff
either t holds tightly on s0 .. si or else there is a j, such that
event q holds at sj–1 and t holds tightly on sj .. si.

The notion of success of a TE can also be used without specifying a path and a state. Then it is presumed the
path corresponds to the execution of a given e program and the state corresponds to the current state of the
execution.

Purpose Attach an action block to a TE

Category TE side effect

Syntax temporal-expression exec action; ...

Parameters

temporal-
expression

The TE that invokes the action block.

action; ... A series of actions to perform when the expression succeeds.

0 i n≤ ≤
0 j< i≤
Copyright © 2015 IEEE. All rights reserved. 237

IEEE
Std 1647-2015 IEEE STANDARD
12.3.2 Failure of a temporal expression

A TE t, whose sampling event is q, fails at the ith state of a path iff fail t succeeds at the ith state of that
path. Again, if no path and state are specified, it is presumed the path corresponds to the execution of a given
e program and the state corresponds to the current state of the execution.

12.3.3 Start of an evaluation of a temporal expression

For a given path p = s0 s1 .. si .. sn, a state si of that path, and a TE t, whose sampling event is q,
the definition of success of t on p at si considers various sub-paths of p and tests for tight satisfaction of t
on these sub-paths. The sub-paths considered are those sub-paths that start with a state just after a state in
which q occurs and end in si, and also the sub-path that starts with the first state of p and ends in si.

The evaluation of t starts at the first state of p and also at any states following a state where the sampling
event occurs. The TE can succeed only in those states in which the sampling event occurs, except for TEs
that hold tightly on the empty path, e.g., [0]*cycle @q.

The paths over which a top-level TE is interpreted during the execution of an e program depend on the
construct in which the TE appears.

— For event, expect, and assume struct members, evaluation of the TE starts as soon as the parent
struct is generated and ends when the parent struct is quit.

— For sync actions, the TE is evaluated as soon as the sync action is reached.

— For wait actions, the evaluation of the TE starts in the tick after reaching the wait action.

— For both sync and wait actions, evaluation ends if the TE succeeds or the parent TCM is terminated.

0 i n≤ ≤
238 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
13. Time-consuming actions

Time-consuming actions are distinguished actions that shall only appear in the body of a TCM (see
Clause 17); however, they shall not appear in any of the following contexts, even if they are themselves
embedded within a TCM:

— exec action block (see 12.2.19)

— new .. with action block (see 4.16.2)

— error() action block (see 16.3.2)

Any attempt to use a time-consuming action in an illegal context shall cause the compiler to issue an error
message.

13.1 Synchronization actions

The sync (see 13.1.2) and wait (see 13.1.3) actions are used to synchronize temporal test activities within an
e program, and between the DUT and the e program. Both actions operate on an optional TE; if it is omitted,
then the TE cycle is implied. See also Clause 12.

NOTE—The put() and get() operations on buffer ports have blocking behavior and may be used for synchronization as
well. See 9.8.

13.1.1 Synchronization semantics

The declaration of a TCM introduces a default sampling event (see Clause 17), which serves as the sampling
event for any TE embedded in a wait or sync action that does not have its own sampling event specified.
Thus the following examples are equivalent:

tcm() @p_clk is { wait };
tcm() @p_clk is { wait cycle@p_clk }

A number of concurrent TCMs can be invoked using the start action (see 17.2.2). An e program consisting
of a number of concurrently executing TCMs simulates concurrency by interleaving their actions over time.
The TEs embedded in the synchronization actions orchestrate this behavior as follows:

a) When an executing TCM reaches a synchronization action, its execution shall be suspended and
some other suspended TCM can then be scheduled for execution.

b) When a suspended TCM is scheduled for execution, the system first evaluates the embedded TE:

1) If this succeeds, the TCM resumes execution immediately;

2) If it remains undecided, the TCM remains suspended;

3) If it fails, the TCM remains idle until the next occurrence of the sampling event.

When a TCM resumes, it commences executing from the first action following the synchronization action
and continues execution without interruption until it either terminates normally (for a started TCM) or
encounters a subsequent synchronization action.

In this way, the synchronization actions in the body of a TCM delimit the program fragments that are
executed atomically without interruption; the system can pause and choose another TCM for execution only
when a synchronization action is encountered.

The following restrictions also apply:

— If a called TCM returns, the callee resumes execution immediately.

— When a TCM is called or started, there is an implicit “sync cycle” before it commences execution.
Copyright © 2015 IEEE. All rights reserved. 239

IEEE
Std 1647-2015 IEEE STANDARD
13.1.2 sync

When an TCM reaches a sync action, its execution shall be suspended so some other TCM, or the suspended
TCM itself, can be scheduled for execution.

If the temporal-expression is omitted, cycle is assumed and the TCM therefore synchronizes to its default
sampling event.

Syntax example:

sent_data_tcm();
sync

13.1.3 wait

When a TCM reaches a wait action, its execution shall be suspended so some other TCM can be scheduled
for execution. The suspended TCM itself shall remain idle and shall not be scheduled until the next
occurrence of the sampling event.

If the temporal-expression is omitted, cycle is assumed and the TCM therefore waits for the next
occurrence of the default sampling event.

NOTE—The until option is an aid to readability only and has no effect on the semantics of the action.

Syntax example:

wait [3]*cycle

13.2 Concurrency actions

The all of (see 13.2.1) and first of (see 13.2.2) actions facilitate concurrent execution within TCMs. They
introduce explicit concurrent branches whose actions shall be interleaved in the same way that the actions of
concurrent TCMs are themselves interleaved. The parallel action blocks that form the body of the all of and
first of actions can start or call TCMs, synchronize through wait and sync actions, and execute all normal
and time-consuming actions subject to the following limitations:

Purpose Synchronize a TCM to the success of the embedded TE.

Category Action

Syntax sync [temporal-expression]

Parameters temporal-
expression

A TE that specifies how the synchronization is achieved.

Purpose Wait until a TE succeeds

Category Action

Syntax wait [[until] temporal-expression]

Parameters temporal-
expression

A TE that specifies how the synchronization is achieved.
240 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
— It is illegal to execute a return action (see 17.2.5) from the body of a concurrency action.

— It is illegal to execute either a break or continue action (see 20.4) from the body of a concurrency
action, unless the loop itself is embedded in the body of the concurrency action.

The compiler shall issue an error message in each of the preceding circumstances.

13.2.1 all of

This executes multiple action blocks concurrently as separate branches of a fork, continuing with subsequent
actions only when all the action blocks have completed executing.

When execution of a TCM reaches an all of action, the branches shall be executed in some indeterminate
order until each branch either terminates normally or reaches a synchronization action (see 13.1) and is
suspended. The rules for scheduling and resuming the execution of the branches of an all of action are the
same as those for concurrent TCMs (see 13.1.1).

The subsequent actions following the all of action shall be reached when and only when execution of all the
individual branches in the body has completed. When the last branch of the all of action completes, the
subsequent actions commence execution immediately.

Syntax example:

all of {
 { check_bus_controller() };
 { check_memory_controller() };
 { wait cycle; check_alu() }
}

13.2.2 first of

This executes multiple action blocks concurrently as separate branches of a fork, continuing with subsequent
actions once one of the action blocks has completed executing.

When execution of a TCM reaches a first of action, the branches shall be executed in some indeterminate
order until some branch terminates normally or each branch reaches a synchronization action (see 13.1) and

Purpose Execute action blocks in parallel

Category Action

Syntax all of {{action; ...}; ... }

Parameters
{action; ...}; Action blocks that are to execute concurrently. Each action block is a separate

branch.

Purpose Execute action blocks in parallel

Category Action

Syntax first of {{action; ...}; ... }

Parameters {action; ...}; Action blocks that are to execute concurrently. Each action block is a separate
branch.
Copyright © 2015 IEEE. All rights reserved. 241

IEEE
Std 1647-2015 IEEE STANDARD
is suspended. The rules for scheduling and resuming the execution of the branches of a first of action are the
same as those for concurrent TCMs (see 13.1.1).

The subsequent actions following the first of action shall be reached when and only when execution of one
of the individual branches in the body has completed. When one of the branches of the first of action
completes, the subsequent actions commence execution immediately and the suspended parallel branches of
the first of action are terminated (or preempted) immediately.

Syntax example:

first of {
 { wait [3]*cycle@ev_a };
 { wait @ev_e }
}

13.3 State machines

This subclause describes the syntax and semantics of the state machine time-consuming action. The state
machine action is used to in-line a finite state machine in the body of a TCM. See also Clause 17.

13.3.1 Overview

The state machine action is a construct for modeling finite state machines. A state machine definition
consists of the state machine action block, along with the identification of a state variable that holds the
current state of the machine. The state variable is a local variable (see Clause 4) of the enclosing TCM or a
field path expression (see 4.3.4); in either case, the entity shall be a scalar of some enumerated type (see
Clause 4). The symbolic values of the enumerated type are the states of the state machine being defined. The
rules governing state variables are detailed in 13.3.2.

The state machine action block specifies the behavior of the state machine. This action block consists of a
number of special state-transition actions and state actions. A state-transition action is a time-consuming
action that governs how the state machine changes from one state to another. There are two kinds of state-
transition action, as detailed in 13.3.3 and 13.3.4. A state action is a block that is executed whenever the
identified state of the machine is entered (see 13.3.5).

In addition, the state machine action can nominate a final state of the state machine. If it does so, when the
machine enters this state, the state machine action shall terminate and subsequent actions shall commence
execution.
242 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
13.3.2 state machine action

This action declares a state machine using a state-variable of some enumerated type to hold the current state
of the machine. The states of the machine are the symbolic values of this variable’s enumerated type. When
the state machine action is reached, the state machine starts in the first state listed in the state variable’s
enumerated type. If the optional until final-state exit condition is used, the state machine runs until that state
is reached, whereupon it terminates. final-state shall be one of the values of the state-variable’s enumerated
type. If the until clause is not used, the state machine runs until the enclosing construct, usually a TCM
action block or a concurrency action, is terminated in some way.

The definition of the state machine consists of a number of state-transition actions and state actions, as
follows:

a) Simple state transition action: state => state {action; ...}

b) Wild card state transition action: *=> state {action; ...}

c) State action: state {action; ...}

In each case, the state shall be one of the legal enumerated values of the state-variable used in the definition
of the state machine. The action block associated with the state or state-transition actions can contain any
legal actions, time-consuming or otherwise, subject to the following limitations:

— It is illegal to use a return action (see 17.2.5) in a state or state-transition action block.

— It is illegal to use a break or continue action (see 20.4) in a state or state-transition action block,
unless enclosed by a loop action within the block.

The compiler shall issue an error message in each of the preceding circumstances.

The effect of assigning to the state-variable used in the definition of the state machine in any of the state or
state-transition action blocks is undefined. Nested state machines shall use distinct state variables to hold
their state; otherwise, the result is undefined.

Syntax example:

var stv : [initial, running, done];

state machine stv until done {
 initial => running {
 wait until rise(’top.a’)
 };

Purpose Define a state machine

Category Action

Syntax state machine state-variable [until final-state]
{(state-transition-action | state-action); ...}

Parameters

state-variable This is a local variable (or a field) of some enumerated type.

final-state The state at which the state machine normally terminates.

state-transition-
action

A state transition that occurs when the associated action block finishes.
See 13.3.3 and 13.3.4.

state-action Actions executed upon entering the named state (see 13.3.5).
Copyright © 2015 IEEE. All rights reserved. 243

IEEE
Std 1647-2015 IEEE STANDARD
 initial => done {

 wait until change(’top.r1’);

 wait until rise(’top.r2’)

 };

 running => initial {

 wait until rise(’top.b’)

 };

 running {

 out("Entered ", stv, " state at ", sys.time);

 while TRUE do {

 wait cycle;

 out("still running")

 }

 }

}

13.3.3 Simple state transition: state => state

This specifies how a transition occurs from one state to another. The action block starts executing when the
state machine enters the current state. When the action block completes, the transition to the next state
occurs. The action block usually contains at least one time-consuming action; if it does not, the transition to
the next state is immediate.

If the current-state is applicable to two or more simple or wild card state-transition actions, then each action
block commences execution concurrently when the current-state is entered; in this case, the actual next state
chosen is indeterminate and depends upon the first of the action blocks to complete execution. When the
state transition occurs, any concurrent action blocks associated with the current-state shall be preempted.

Syntax example:

begin => run {

 wait [2]*cycle;

 out("Run state entered")

 }

Purpose One-to-one state transition

Category State transition

Syntax current-state => next-state {action; ...}

Parameters

current-state The state from which the transition starts.

next-state The state to which the transition changes.

action; ... The sequence of actions that precede the transition.
244 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
13.3.4 Wild card state transition: * => state

This specifies how a transition occurs from any defined state to a particular state. The action block starts
executing when the state machine enters a new state. When the action block completes, the transition to the
next state occurs.

If two or more simple or wild card state-transition actions apply to any state of the machine, then each
action block commences execution concurrently when that state is entered; in this case, the actual next state
chosen is indeterminate and depends upon the first of the action blocks to complete execution. When the
state transition occurs, any concurrent action blocks associated with that state shall be preempted.

Syntax example:

* => pause {
 wait @sys.restart;
 out("Entering pause state")
 }

13.3.5 state action

This specifies an action block that is executed when a specific state is entered. No transition occurs when the
action block completes.

— If the current-state is also the final state of the state machine, then the state machine terminates when
the action block completes, and any actions subsequent to the state machine action shall then
commence execution immediately.

— There can be more than one state action associated with the current-state; in this case, all the action
blocks commence execution concurrently when the current-state is entered.

— If the current-state has one or more state-transition actions associated with it, then the state action
block and the relevant state-transition actions all commence execution concurrently when the
current-state is entered. If some state-transition action block completes execution, the state
transition occurs immediately, possibly preempting the state action block if it has not already
completed execution.

Purpose Any-to-one state transition

Category State transition

Syntax * => next-state {action; ...}

Parameters
next-state The state to which the transition changes.

action; ... The sequence of actions that precede the transition.

Purpose Execute actions upon entering a state, with no state transition

Category State action block

Syntax current-state {action; ...}

Parameters
current-state The state for which the action block is to be executed.

action; ... The sequence of actions that is executed upon entering the current state.
Copyright © 2015 IEEE. All rights reserved. 245

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

* => run {
 out("* to run");
 wait cycle
 };

run {
 out("In run state");
 wait cycle;
 out("Still in run")
};

run => done {
 out("run to done");
 wait cycle
 }
246 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
14. Coverage constructs

This clause describes how to define, extend, and use coverage constructs. See also 6.2.

14.1 Defining coverage groups: cover

This defines a coverage group. A coverage group is a struct member that contains a list of data items for
which data is collected over time. Once data coverage items have been defined in a coverage group, they can
be used to define special coverage group items called transition and cross items (see 14.4 and 14.3,
respectively). The is keyword can also be used to define a new coverage group (see 14.5 for information on
using is also to extend an existing coverage group).

The sampling event of a coverage group cannot be defined in a when subtype of a struct. However, a
coverage group that uses an event defined in a parent struct can be defined in a when subtype. If they are
extended by adding a per_instance item, the instances refer only to the when subtype. If a per_instance
item is instead defined in a base type and additional items are added under the when construct, then the
cover group instances refer to the base type and the cover item values refer to the when subtype (see 14.2.1).

The empty keyword can be used to define an empty coverage group that will be extended later by using a
cover is also struct member with the same name (see 14.5). See also Clause 6 and Clause 11.

Purpose Define a coverage group

Category Struct member

Syntax cover event-type [using coverage-group-option, ...] is {coverage-item-definition; ...}
cover event_type is empty

Parameters

event-type The name of the group. This shall be the name of an event type defined
previously in the struct. The event shall not have been defined in a subtype.
However, if the event and coverage group are defined in the same file, the
event definition does not have to appear before the coverage group definition.
The event is the sampling event for the coverage group. Coverage data for the
group is collected every time the event is emitted.
The full name of the coverage group is struct-exp.event-name. The full name
shall be specified for the coverage methods.

coverage-group-
option

The coverage group options listed in Table 31 can be set via the using
keyword. Each coverage group can have its own set of options. The options
can appear in any order after the using keyword.

coverage-item-
definition

The definition of a coverage item (see 14.2).
Copyright © 2015 IEEE. All rights reserved. 247

IEEE
Std 1647-2015 IEEE STANDARD
NOTE—Unless coverage mode is turned on first (see 28.9), no coverage results are collected, even if cover groups and
cover items are defined.

Syntax example:

cover inst_driven is {

Table 31—Coverage group options

Option Description

no_collect This coverage group is not displayed in coverage reports and is not saved in the
coverage files.

count_only This option reduces memory consumption because the data collected for this coverage
group is reduced. Interactive, post-processing cross coverage of items is not allowed in
this case. The coverage configuration option count_only (see 28.9) sets this option for
all coverage groups.

text=string A text description for this coverage group. This can only be a quoted string (" "), not a
variable or expression. The text is shown at the beginning of the information for the
group in the coverage report.

when=bool-exp The coverage group is sampled only when bool-exp is TRUE. The bool-exp is
evaluated in the context of the parent struct, i.e., the scope of entities is taken from that
context. Concretely, names of fields shall be taken as fields of the parent structs, and
methods called shall be executed in the context of said struct. The pseudo-variable me
refers to that struct.

global A global coverage group is a group whose sampling event is expected to be emitted
only once. If more than one sampling event is emitted, a DUT error shall be issued. If
items from a global group are used in interactive cross coverage, no timing
relationships exist between the items.

radix=DEC | HEX | BIN Buckets for items of type int or uint are given the item value ranges as names. This
option specifies in which radix the bucket names are displayed. The global print radix
option does not affect the bucket name radix.
Legal values are DEC (decimal), HEX (hexadecimal), and BIN (binary). The value
shall be in uppercase letters.
If the radix is not used, int or uint bucket names are displayed in decimal.

per_unit_instance[=unit-
type]

Enables the collection of coverage results for separate instances of a unit, and the
accumulation of the coverage data and grade associated with each particular instance.
Coverage results will be collected separately for each instance of the given unit type.
The unit-type option determines the nearest unit of which type the coverage sampling is
attributed to. If this cover group is defined in the context of a non-unit struct type, unit-
type is mandatory. If this cover group is defined in the context of a unit type, and if
unit-type is not specified, the default is the context unit type.
For cover groups defined in the context of a unit type, tools may collect coverage for
separate unit instances even if no per_unit_instance option is explicitly defined.

instance_no_collect=
bool-exp

When a cover group is collected per unit instance, this option determines whether
coverage is collected for the given instance or not. It can be an instance of a unit type
defined by a per_unit_instance option. The unit instance can be referenced inside
bool-exp using the implicit variable inst. See also 14.1.1
If this option is used in a cover group that is not collected per unit instance, a
compilation error is issued.

weight=uint This option specifies the grading weight of the current group relative to other groups. It
is a non-negative integer with a default of 1.
248 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
item opcode;

item op1;

cross opcode, op1

}

14.1.1 Using the instance_no_collect option for per unit instance coverage

The instance_no_collect group option defines a context-dependent no_collect expression for an instance,
depending on the scope.

The bool-exp argument of instance_no_collect can include the implicit variable inst. When determining
whether a cover group instance should be presented, inst refers to the unit instance associated with this
cover group instance. Hence, the type of inst is the unit-type which was provided in the per_unit_instance
option setting (or the coverage definition type if per_unit_instance was set without unit_type).

When an instance_no_collect expression is defined, the unit type of inst must be known and cannot change
after the definition. Thus, after an instance_no_collect expression is defined for a cover group, the
per_unit_instance option cannot be overridden.

The instance_no_collect option has an OR relation with the no_collect group option. That is, if one or both
of no_collect and instance_no_collect options of the group are evaluated to TRUE, the group will not be
presented under that instance.

14.2 Defining basic coverage items: item

This defines a new basic coverage item with an optional type. Options specify how coverage data is
collected and reported for the item. The item can be an existing field name or a new name. If a new name is
used for a coverage item, the item’s type and the expression that defines it shall also be specified.

Purpose Define a coverage item

Category Coverage group item

Syntax item item-name[:type=exp] [using coverage-item-option, ...]

Parameters

item-name The name assigned to the coverage item.
If the optional type=exp is not used, the value of the field named item-name is
used as the coverage sample value. The field can be a scalar, not larger than
32 bits, or a string.
If type=exp is specified, the value of exp is used as the coverage sample
value.

type The type of the item. The type expression shall evaluate to a scalar not larger
than 32 bits or to a string.

exp The expression is evaluated at the time the whole coverage group is sampled.
If the using when option is used, expression evaluation is further restricted
by the when expression evaluating to TRUE. The value of exp is recorded for
the item.

coverage-item-
option

The coverage group options listed in Table 32 can be set via the using
keyword. The options can appear in any order after the using keyword.
Copyright © 2015 IEEE. All rights reserved. 249

IEEE
Std 1647-2015 IEEE STANDARD
Table 32—Coverage item options

Option Description

per_instance Coverage data is collected and graded for all the other items in a separate listing for
each bucket of this item. See also 14.2.1 and 14.2.2.

no_collect This coverage item is not displayed in coverage reports and is not saved in the
coverage files. However, it can be referenced by cross and transition items.

text=string A text description for this coverage item. This can only be a quoted string (" "), not
a variable or expression. In an ASCII coverage report, the text is shown along with
the item name.

when=bool-exp The item is sampled only when bool-exp is TRUE. The bool-exp is evaluated in the
context of the parent struct, i.e., the scope of entities is taken from that context.
Concretely, names of fields shall be taken as fields of the parent structs and methods
called shall be executed in the context of said struct. The pseudo-variable me refers
to that struct.
The sampling is done at runtime.

at_least=num The minimum number of samples for each bucket of the item. Anything less than
num is considered a hole.
This option cannot be used for an ungradeable item, an item whose number of
buckets exceeds the configuration option max_int_buckets. This shall be a non-
negative number; the default is 1.

ranges =
{range(parameters)
[; range(parameters) …]}

This option creates buckets for this item’s values or ranges of values. It cannot be
used for string items.
range() can have one, two, three, or four parameters that specify how the values are
separated into buckets. The first parameter, range, is required. The other three are
optional. The syntax for range options is:

range(range: range, [name: string, every-count: int,
at_least-num: int])

The parameters are:
— range

The range for the bucket. It shall be a literal range, such as [1..5], of the
proper type. Even a single value needs to be specified in brackets, e.g.,
[7]. If overlapping ranges are specified, the values of the overlapping
region go into the first of the overlapping buckets. The specified range for a
bucket is the bucket name.

— name

A name for the bucket. If this parameter is used, the every-count parameter
shall be set to UNDEF.

— every-count

The size of the buckets to create within the range. If this parameter is used,
the name parameter shall be set to an empty string (" ").

— at-least-num

A number that specifies the minimum number of samples required for a
bucket. If the item occurs fewer times than this, a hole is marked. This
parameter overrides the global at_least option and the per-item at_least
option. The value of at-least-num can be set to zero (0), meaning “do not
show holes for this range.”
250 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
If a value for an item falls outside all of the buckets for the item, that value does not count toward the item’s
grade. The ranges option determines the number and size of buckets into which values for the item are
placed. If ranges is not specified, the default number of buckets is 16 [set by the max_int_buckets

ignore=item-bool-exp Defines values that are to be completely ignored. They do not appear in the statistics
at all. The expression is a Boolean expression that can contain a coverage item name
and constants.
The Boolean expression is evaluated in a global context, not in instances of the
struct, i.e., the expression shall be valid at all times, even before generation.
Therefore, only constants and the item itself can be used in the expression. For
example, if i is a coverage item and j is a reference to a struct field, the expression
i > 5 is a valid expression, but not i > me.j.
If the ignore expression is TRUE when the data is sampled, the sampled value is
ignored (not added to the bucket count).
To achieve the first effect (ignore specific samples) without hiding buckets
containing holes (and to have the grade reflect all generated values), use the when
option instead.

illegal=item-bool-exp Defines values that are illegal. An illegal value shall cause a DUT error. If the
check_illegal_immediately coverage configuration option is FALSE, the DUT
error occurs during the check_test phase of the test. If that configuration option is
TRUE, the DUT error occurs immediately (on-the-fly).
The Boolean expression is evaluated in a global context, not in instances of the
struct, i.e., the expression shall be valid at all times, even before generation.
Therefore, only constants and the item itself can be used in the expression. For
example, if i is a coverage item and j is a reference to a struct field, the expression
i > 5 is a valid expression, but not i > me.j.
If the coverage grades need to reflect all bucket contents, use the when option instead
to specify the circumstances under which a given value is counted.

instance_no_collect=bool-
exp

When the cover group is collected per unit instance, this option determines in which
instances of the cover group this item should be collected, and in which instances it
should not. The unit instance can be referenced inside bool-exp using the implicit
variable inst. See also 14.2.3.

instance_ignore= item-
bool-exp

When the cover group is collected per unit instance, this option determines which
buckets of this item should be ignored in each instance in addition to the common
ignored buckets which were set using the ignore option. The unit instance can be
referenced inside bool-exp using the implicit variable inst. See also 14.2.3.

instance_illegal== item-
bool-exp

When the cover group is collected per unit instance, this option determines which
buckets of this item should be regarded as illegal in each instance in addition to the
common illegal buckets which were set using the illegal option. The unit instance can
be referenced inside bool-exp using the implicit variable inst. See also 14.2.3.

radix=DEC | HEX | BIN For items of type int or uint, this specifies the radix used in coverage reports for
implicit buckets. If the ranges option is not used to create explicit buckets for an
item, a bucket is created for every value of the item that occurs in the test. Each
different value sampled gets its own bucket, with the value as the name of the bucket.
These are called implicit buckets. The global print radix option does not affect the
bucket name radix.
Legal values are DEC (decimal), HEX (hexadecimal), and BIN (binary). The value
shall be in uppercase letters.
If the radix is not used, int or uint bucket names are displayed in decimal. If no radix
is specified for an item, but a radix is specified for the item’s group, the group’s radix
applies to the item.

weight=uint Specifies the weight of the current item relative to other items in the same coverage
group. It is a non-negative integer with a default of 1.

Table 32—Coverage item options (continued)

Option Description
Copyright © 2015 IEEE. All rights reserved. 251

IEEE
Std 1647-2015 IEEE STANDARD
coverage configuration option (see 28.9)]. The ranges option must be used for items of real type, in which
case the range and every-count parameters may be specified in constant real values. If buckets are not
created for all possible values of the item, the values for which buckets do not exist are ungradeable. Those
values are given goals of 0 and do not affect the grade for the item.

For example, a randomly generated item of type uint has 232 possible values. If no ranges are specified for a
uint item, then buckets are created by default for only the first 16 possible values (0 through 15). Since the
odds that a uint value will be less than 16 are very small, it is almost certain that none of the values will fall
into one of the 0 to 15 buckets, which are the only buckets for which a grade is calculated. This means that
the item does not receive a grade or contribute to the grade for the group.

NOTE—Unless coverage mode is turned on first (see 28.9), no coverage results are collected, even if cover groups and
cover items are defined.

Syntax example:

cover inst_driven is {
item op1;
 item op2;
 item op2_big : bool = (op2 >= 64);
 item hdl_sig : int = ’top.sig_1’
}

14.2.1 Coverage per instance

When the per_instance option is set in a cover item definition, that item becomes a “per_instance item.”
Each bucket of that item gets its own coverage grade and is shown separately in the coverage report. An
instance is created for every valid bucket of the per_instance item. Any instance that is not sampled is
marked as a hole. For example, if a struct has a field named packet_type and the value of the
packet_type field can be either Ethernet or ATM, then making that field a per_instance item results
in a grade and a coverage report listing for Ethernet instances, and a separate grade and coverage report
listing for ATM instances.

Along with the per_instance item data, coverage data is also collected for the original per_type item as if it
were not a per_instance item. This coverage data for the per_type item is the accumulated information for
all the instances, using the coverage options defined for the item.

Grading is calculated for each instance separately. The grade of the cover group is the weighted grades of all
the per_instance items. The per_type item receives the same grade it would get if there were no
per_instance items.

An instance item name is the name of the per_type item followed by == and the name of the instance
bucket. For example, the instance item names for the preceding case are:

packet_type == Ethernet
packet_type == ATM

The following considerations also apply:

— For integer instances, the decimal radix is used regardless of what the radix is for the cover group.

— More than one per_instance item can be defined in the same cover group. In this case, the total num-
ber of instances is the sum of all valid buckets for all the per_instance items +1 (the per_type
bucket).

— If a per_instance item definition is changed in an extension, then the coverage data for the original
per_type item might not accurately reflect nor agree with the coverage data collected per instance.

— A per_instance item cannot be defined under a specific instance.
252 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
— Items with the same name can be defined under two different instances, as long as they have the
same definition (type and expression).

— If a per_instance item is participating in a cross item or a transition item, then the cross or transition
item is not added to the instances created by the per_instance item.

— To cancel per instance coverage collection in an extension, use the also per_instance = FALSE
option.

14.2.2 per_instance item errors

Table 33 lists errors that can occur when coverage per instance is used.

14.2.3 Relationship of type and instance based coverage items

The instance_no_collect item option defines a context-dependent no_collect expression in per-unit
instance groups. This option lets you define under which instances of the covergroup this item should
appear, and under which instances this item should not appear.

 This option has an OR relation with the no_collect option. That is, if one or both of no_collect and
instance_no_collect options of the item are evaluated to TRUE, the item will not be presented under that
instance.

The instance_ignore item option defines a context-dependent ignore expression in per-unit instance
groups. This option lets you define which buckets should be ignored under each instance according to the
configuration fields of this unit instance.

This option has an OR relation with the ignore option. That is, if for a certain bucket one or both of the
ignore and instance_ignore options of the item are evaluated to TRUE, this bucket will be ignored.

Table 33—Coverage per instance errors

Error Description

Using a non-gradeable item as a
per_instance item

When the user defines a per_instance item option for a non-
gradeable item, a runtime error shall be issued.

Using a cross or transition item as a
per_instance item

When the user defines a per_instance item for a cross item or a
transition item, a loadtime error shall be issued.

Trying to extend an invalid instance When the user tries to extend (using cover ... is also) a group instance
that does not exist, a loadtime error shall be issued.

Recursively split instances When the user defines a per_instance item option for an instance
group extension, a loadtime error shall be issued.

Trying to extend specific instances without
using is also

When the user tries to extend a specific group instance using is
instead of is also.

Trying to define multiple items with the
same name but different definitions under
different instances

When the user tries to define an item with the same name under two
different instances.

Specifying an invalid instance name When the user specifies an invalid instance name (possibly by using
wild cards). No matching instance is found and the command is
ignored.
Copyright © 2015 IEEE. All rights reserved. 253

IEEE
Std 1647-2015 IEEE STANDARD
The instance_illegal item option defines a context-dependent ignore expression in per-unit instance
groups. This option lets you define which buckets should be considered as an illegal (hence a dut_error will
be issued when these values are sampled) under each instance according to the configuration fields of this
unit instance.

This option has an OR relation with the illegal option. That is, if for a certain bucket one or both of the
illegal and instance_illegal options of the item are evaluated to TRUE, this bucket will be considered as an
illegal bucket.

The instance_ignore, instance_illegal item options expressions can include any term which is valid inside
the ignore and illegal item options' expressions.

In addition, the bool-expr argument for instance_ignore, instance_illegal and instance_no_collect can
include the implicit variable inst, which refers to the unit instance associated with this covergroup instance.

 Hence, the type of inst is the unit-type which was provided in the per_unit_instance option setting (or the
coverage definition type per_unit_instance was set without unit_type).

When instance_ignore, instance_illegal or instance_no_collect option is set, the unit type of inst must be
known and cannot change after this setting. As a result, after instance_ignore, instance_illegal or
instance_no_collect expression is defined for a cover group, the per_unit_instance type cannot be
changed.

14.3 Defining cross coverage items: cross

Purpose Define a cross coverage item

Category Coverage group item

Syntax cross item-name-1, item-name-2, ... [using coverage-item-option, ...]

Parameters

item-name-1,
item-name-2

Each item name shall be one of the following:

— The name of an item defined previously in the current coverage
group.

— The name of a transition item defined previously in the current
coverage group

— The name of a cross item defined previously in the current coverage
group.

coverage-item-
option

An option for the cross item (see Table 34).

Table 34—Cross coverage item options

Option Description

name=label Specifies a name for a cross coverage item. No white spaces are allowed in the label. The
default is cross__item-name-1__item-name-2.
254 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
text=string A text description for this coverage item. This can only be a quoted string (" "), not a
variable or expression. The text is shown along with the item name at the top of the
coverage information for the item.

when=bool-exp The item is sampled only when bool-exp is TRUE. The bool-exp is evaluated in the
context of the parent struct, i.e., the scope of entities is taken from that context. Concretely,
names of fields shall be taken as fields of the parent structs, and methods called shall be
executed in the context of said struct. The pseudo-variable me refers to that struct.

no_collect This cross coverage item is not displayed in coverage reports and is not saved in the
coverage files. However, it can be referenced by other cross and transition items.

at_least=num The minimum number of samples for each bucket of the item. Anything less than num is
considered a hole.
This option cannot be used with string items or for unconstrained integer items (items that
do not have specified ranges). This shall be a non-negative number; the default is 1.

ignore=item-bool-exp Defines values that are to be completely ignored. They do not appear in the statistics at all.
The expression is a Boolean expression that can contain a coverage item name and
constants.
The Boolean expression is evaluated in a global context, not in instances of the struct, i.e.,
the expression shall be valid at all times, even before generation. Therefore, only constants
and the item itself can be used in the expression. In a cross, this means any of the
participating items. In a transition, it means the item or prev__item. For example, if i is a
coverage item and j is a reference to a struct field, the expression i > 5 is a valid
expression, but not i > me.j.
If the ignore expression is TRUE when the data is sampled, the sampled value is ignored
(not added to the bucket count).
To achieve the first effect (ignore specific samples) without hiding buckets containing
holes (and to have the grade reflect all generated values), use the when option instead.

illegal=item-bool-exp Defines values that are illegal. An illegal value shall cause a DUT error. If the
check_illegal_immediately coverage configuration option is FALSE, the DUT error
occurs during the check_test phase of the test. If that configuration option is TRUE, the
DUT error occurs immediately (on-the-fly).
The Boolean expression is evaluated in a global context, not in instances of the struct, i.e.,
the expression shall be valid at all times, even before generation. Therefore, only constants
and the item itself can be used in the expression. In a cross, this means any of the
participating items. For example, if i is a coverage item and j is a reference to a struct
field, the expression i > 5 is a valid expression, but not i > me.j.
If the coverage grades need to reflect all bucket contents, use the when option instead to
specify the circumstances under which a given value is counted.

weight=uint Specifies the weight of the current cross item relative to other items in the same coverage
group. It is a non-negative integer with a default of 1.

instance_no_collect=
bool-exp

When the cover group is collected per unit instance, this option determines in which
instances of the cover group this item should be presented, and in which instances it
should not. The unit instance can be referenced inside bool-exp using the implicit variable
inst. See also 14.2.3

instance_ignore=
item-bool-exp

When the cover group is collected per unit instance, this option determines which buckets
of this item should be ignored in each instance in addition to the common ignored buckets
which were set using the ignore option. The unit instance can be referenced inside bool-
exp using the implicit variable inst. See also 14.2.3

instance_illegal==
item-bool-exp

When the cover group is collected per unit instance, this option determines which buckets
of this item should be regarded as illegal in each instance in addition to the common illegal
buckets which were set using the illegal option. The unit instance can be referenced inside
bool-exp using the implicit variable inst. See also 14.2.3

Table 34—Cross coverage item options (continued)

Option Description
Copyright © 2015 IEEE. All rights reserved. 255

IEEE
Std 1647-2015 IEEE STANDARD
This defines cross coverage between items in the same coverage group. It creates a new item with a name
specified using a name option or by using the default name of cross__item-name-1__item-name-2 (with
two underscores separating the parts of the name). This shows every combination of values of the first and
second items, and every combination of the third item and the first item, the third item and the second item,
and so on. Any combination of basic coverage items, cross items, and transitions defined in the same
coverage group can be crossed.

This defines cross coverage between items in the same coverage group. It creates a new item with a name
specified using a name option or by using the default name of cross__item-name-1__item-name-2 (with
two underscores separating the parts of the name). This shows every combination of values of the first and
second items, and every combination of the third item and the first item, the third item and the second item,
and so on. Any combination of basic coverage items, cross items, and transitions defined in the same
coverage group can be crossed.

The using when, using ignore, and using illegal options of the constituent items restrict the sampled values
for a cross item. For example, in the following inst_driven coverage group, if item opcode includes
the option using ignore = (opcode != ADD), and the cross coverage item
cross__opcode__op1 would exclude all buckets with the opcode value ADD.

Syntax example:

cover inst_driven is {
item opcode;
item op1;
cross opcode, op1

}

14.4 Defining transition coverage items: transition

This defines coverage for changes from one value to another of a coverage item. If no name is specified for
the transition item with the name option, it gets a default name of transition__item-name (with two
underscores between transition and item-name). If item-name had n samples during the test, then the
transition item has n–1 samples, where each sample has the format previous-value, value.

Syntax example:

cover state_change is {
item st : cpu_state = 'top.cpu.main_cur_state';
transition st

}

Purpose Define a coverage transition item

Category Coverage group item

Syntax transition item-name [using coverage-item-option, ...]

Parameters

item-name A coverage item defined previously in the current coverage group.

coverage-item-
option

An option for the transition item (see Table 35).
256 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Table 35—Transition coverage item options

Option Description

name=string Specifies a name for a transition coverage item. The default name is
transition__item-name (where two underscores separate transition and
item-name).

text=string A text description for this coverage item. This can only be a quoted string (" "), not a
variable or expression. The text is shown along with the item name at the top of the
coverage information for the item.

no_collect This transition coverage item is not displayed in coverage reports and is not saved in the
coverage files. However, it can be referenced by other cross and transition items.

when=bool-exp The item is sampled only when bool-exp is TRUE. The bool-exp is evaluated in the
context of the parent struct, i.e., the scope of entities is taken from that context. Concretely,
names of fields shall be taken as fields of the parent structs, and methods called shall be
executed in the context of said struct. The pseudo-variable me refers to that struct.

at_least=num The minimum number of samples for each bucket of each of the transition items. Anything
less than num is considered a hole.
This option cannot be used with string items or for unconstrained integer items (items that
do not have specified ranges). This shall be a non-negative number; the default is 1.

ignore=item-bool-exp Defines values that are to be completely ignored. They do not appear in the statistics at all.
The expression is a Boolean expression that can contain a coverage item name and
constants. The previous value can be accessed as prev_item-name. The prev prefix is
predefined for this purpose.
The Boolean expression is evaluated in a global context, not in instances of the struct, i.e.,
the expression shall be valid at all times, even before generation. Therefore, only constants
and the item itself can be used in the expression. In a cross, this means any of the
participating items. In a transition, it means the item or prev__item. For example, if i is a
coverage item and j is a reference to a struct field, the expression i > 5 is a valid
expression, but not i > me.j.
If the ignore expression is TRUE when the data is sampled, the sampled value is ignored
(not added to the bucket count).
To achieve the first effect (ignore specific samples) without hiding buckets containing
holes (and to have the grade reflect all generated values), use the when option instead.

illegal=item-bool-exp Defines values that are illegal. An illegal value shall cause a DUT error. If the
check_illegal_immediately coverage configuration option is FALSE, the DUT error
occurs during the check_test phase of the test. If that configuration option is TRUE, the
DUT error occurs immediately (on-the-fly).
The Boolean expression is evaluated in a global context, not in instances of the struct, i.e.,
the expression shall be valid at all times, even before generation. Therefore, only constants
and the item itself can be used in the expression. In a transition, this means any of the
participating items. For example, if i is a coverage item and j is a reference to a struct
field, the expression i > 5 is a valid expression, but not i > me.j.
If the coverage grades need to reflect all bucket contents, use the when option instead to
specify the circumstances under which a given value is counted.

weight=uint Specifies the weight of the current transition item relative to other items in the same
coverage group. It is a non-negative integer with a default of 1.

instance_no_collect=
bool-exp

When the cover group is collected per unit instance, this option determines in which
instances of the cover group this item should be presented, and in which instances it
should not. The unit instance can be referenced inside bool-exp using the implicit variable
inst. See also 14.2.3

instance_ignore=
item-bool-exp

When the cover group is collected per unit instance, this option determines which buckets
of this item should be ignored in each instance in addition to the common ignored buckets
which were set using the ignore option. The unit instance can be referenced inside bool-
exp using the implicit variable inst. See also 14.2.3
Copyright © 2015 IEEE. All rights reserved. 257

IEEE
Std 1647-2015 IEEE STANDARD
14.5 Extending coverage groups: cover ... using also ... is also

The using also clause changes, overrides, or extends options previously defined for the coverage group. The
is also clause adds new items to a previously defined coverage group, or it can be used to change the options
for previously defined items (see 14.6).

The following considerations also apply:

— If a coverage group is defined under a when subtype, it can only be extended under that subtype.

— If per_instance coverage is being used (see 14.2.1), a particular cover group instance can be
extended to complement or override options set in the base type cover group. To change an item’s
options in a particular instance, enter the instance name in the cover is also construct.

— If an instance is extended, but it never gets created (due to an ignore or illegal option), a warning is
issued and no information for the extension is put in the coverage data.

— If the coverage options of an instance are changed, the coverage data for the per_type item might no
longer reflect or agree with the per_instance coverage data.

— If, in an extension of a cover group, a cover group when option is overridden, then the overriding
condition is only considered after the condition in the base group is satisfied, i.e., sampling of the
item is only performed when the logical AND of the cover group when options are TRUE.

— When using also is used to extend or change a when, illegal, or ignore option, a special variable
named prev is automatically created. The prev variable holds the results of all previous when,
illegal, or ignore options, so it can be used as a shorthand to assert those previous options combined
with a new option value.

Syntax examples:

cover rclk is also {
item rflag

};
cover rclk using also text = "RX clock";

instance_illegal==
item-bool-exp

When the cover group is collected per unit instance, this option determines which buckets
of this item should be regarded as illegal in each instance in addition to the common illegal
buckets which were set using the illegal option. The unit instance can be referenced inside
bool-exp using the implicit variable inst. See also 14.2.3

Purpose Extend a coverage group

Category Struct member

Syntax cover event-type using also cover-option, ...[is also {coverage-item-definition; ... }]

Parameters

event-type The name of the coverage group. This shall be an event defined previously in
the struct. The event is the sampling event for the coverage group.

cover-option The definition for this option is shown in Table 32.

coverage-item-
definition

The definition of a coverage item (see Table 31).

Table 35—Transition coverage item options (continued)

Option Description
258 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
cover rclk using also no_collect is also {
item rvalue

}

14.6 Extending coverage items: item ... using also

Cover item extensibility enables extending, changing, or overriding a previously defined coverage item. To
extend a coverage item, see 14.5.

If a coverage item is originally defined under a when subtype, it can only be extended in the same subtype of
the base type.

When using also is used to extend or change a when, illegal, or ignore option, a special variable named
prev is automatically created. The prev variable holds the results of all previous when, illegal, or ignore
options, so it can be used as a shorthand to assert those previous options combined with a new option value.

Once an item is extended, it shall be referenced using its full name. If an item with that name does not exist,
an error shall be issued.

Purpose Change or extend the options on a cover item

Category Coverage group item

Syntax item item-name using also coverage-item-option, ...

Parameters

item-name The name assigned to the coverage item. If the optional type=exp is not used,
the value of the field named item-name is used as the coverage sample value.

coverage-item-
option

The coverage item options are listed in Table 32. The options can appear in
any order after the using keyword.
Copyright © 2015 IEEE. All rights reserved. 259

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

item len using also radix = HEX

14.7 Coverage API

This subclause contains descriptions of the e coverage API.

The coverage API is accessed through a set of methods defined in the struct user_cover_struct. Once an
instance of this struct is declared, the scan_cover() method may be invoked, which, in turn, invokes
accessory methods, such as start_group() and start_instance().

14.7.1 Methods of user_cover_struct

This subclause contains descriptions of the e coverage predefined API methods.

14.7.1.1 scan_cover()

The scan_cover() method initiates the coverage data-scanning process. It goes through all the items in all
the groups specified in the item-names parameter in the order that groups and items have been defined. This
method cannot be extended.

For each group, scan_cover() calls start_group(). For each instance in the group, scan_cover() calls
start_instance(). For each item in the current instance, scan_cover() calls start_item(). Then for each
bucket of the item, scan_cover() calls scan_bucket(). After all of the buckets of the item have been
processed, scan_cover() calls end_item(). After all items of the instance have been processed, scan_cover()
calls end_instance(). After all instances in the group have been processed, scan_cover() calls end_group().

Before each call to any of the preceding methods, the relevant fields in the user_cover_struct are updated to
reflect the current item [and also the current bucket for scan_bucket()].

The scan_cover() method returns the number of coverage items actually scanned.

NOTE—The methods called by scan_cover()—start_group(), start_instance(), start_item(), scan_bucket(),
end_item(), end_instance(), and end_group()—are initially empty and meant to be extended.

Syntax example:

num_items = cover_info.scan_cover("cpu.inst_driven.*")

Purpose Activate the coverage API and specify items to cover

Category Method

Syntax scan_cover(item-names:string): int

Parameters
item-names The names of the coverage items to be scanned by scan_cover(). This is a

string of the form struct-name.group-name.item-name (for example,
"inst.start.opcode"). Wild cards are allowed.
260 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
14.7.1.2 start_group()

When the scan_cover() method initiates the coverage data-scanning process for a group, it updates the
group-related fields within the containing user_cover_struct and then calls the start_group() method. The
start_group() method is called for every group to be processed by scan_cover(). For every instance within
a group, scan_cover() calls the start_instance() method.

The start_group() method is originally empty. It is meant to be extended to process group data according to
user preferences.

NOTE—start_group(), start_instance(), and scan_cover() are all methods of the user_cover_struct.

Syntax example:

start_group() is {

if group_text != NULL then {

 out("Description: ", group_text)

 }

}

14.7.1.3 start_instance()

When the scan_cover() method initiates the coverage data-scanning process for an instance, it updates the
instance-related fields within the containing user_cover_struct and then calls the start_instance() method.
The start_instance() method is called for every instance to be processed by scan_cover().

The start_instance() method is originally empty. It is meant to be extended to process instance data
according to user preferences.

NOTE—start_instance() and scan_cover() are methods of the user_cover_struct.

Syntax example:

start_instance() is {

if instance_text != NULL then {

 out("Description: ", instance_text)

 }

}

Purpose Process coverage group information according to user preferences

Category Method

Syntax start_group()

Purpose Process coverage instance information according to user preferences

Category Method

Syntax start_instance()
Copyright © 2015 IEEE. All rights reserved. 261

IEEE
Std 1647-2015 IEEE STANDARD
14.7.1.4 start_item()

When the scan_cover() method initiates the coverage data-scanning process for an item, it updates the item-
related fields within the containing user_cover_struct and then calls the start_item() method. The
start_item() method is called for every item to be processed by scan_cover().

The start_item() method is originally empty. It is meant to be extended to process item data according to
user preferences.

NOTE—start_item() and scan_cover() are methods of the user_cover_struct.

Syntax example:

start_item() is {

 if item_text != NULL then {

 out("Description: ", item_text)

 }

}

14.7.1.5 scan_bucket()

When the scan_cover() method processes coverage data, then for every bucket of the item, it updates the
bucket-related fields within the containing user_cover_struct and calls scan_bucket().

The scan_bucket() method is originally empty. It is meant to be extended to process bucket data according
to user preferences.

NOTE—scan_bucket() and scan_cover() are methods of the user_cover_struct.

Syntax example:

scan_bucket() is {

out(count, " ", percent, "% ", bucket_name)

}

Purpose Process coverage item information according to user preferences

Category Method

Syntax start_item()

Purpose Process coverage item information according to user preferences

Category Method

Syntax scan_bucket()
262 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
14.7.1.6 end_item()

When the scan_cover() method completes the processing of coverage data for an item, it calls the
end_item() method to report the end of item information according to user preferences. When all items in
the current group have been processed, scan_cover() calls the start_instance() method for the next
instance.

The end_item() method is originally empty. It is meant to be extended so as to process item data according
to user preferences.

NOTE—end_item(), start_instance(), and scan_cover() are all methods of the user_cover_struct.

Syntax example:

end_item() is {

out("finished item ", item_name, "\n")

}

14.7.1.7 end_instance()

When the scan_cover() method completes the processing of coverage data for an instance, it calls the
end_instance() method to report the end of instance information according to user preferences. When all
instances in the current group have been processed, scan_cover() calls the start_group() method for the
next group.

The end_instance() method is originally empty. It is meant to be extended so as to process instance data
according to user preferences.

NOTE—end_instance(), start_group(), and scan_cover() are all methods of the user_cover_struct.

Syntax example:

end_instance() is {

out("finished instance ", instance_name, "\n")

}

Purpose Report end of item coverage information according to user preferences

Category Method

Syntax end_item()

Purpose Process end of instance coverage information according to user preferences

Category Method

Syntax end_instance()
Copyright © 2015 IEEE. All rights reserved. 263

IEEE
Std 1647-2015 IEEE STANDARD
14.7.1.8 end_group()

When the scan_cover() method completes the processing of coverage data for a group, it calls the
end_group() method to report the end of group information according to user preferences.

The end_group() method is originally empty. It is meant to be extended so as to process item data according
to user preferences.

NOTE—end_group() and scan_cover() are both methods of the user_cover_struct.

Syntax example:

end_group() is {
out("finished group", group_name, "\n")

}

14.7.2 Fields of user_cover_struct

In addition to the methods of user_cover_struct in 14.7.1, the user_cover_struct contains fields for
coverage information. The fields are listed in Table 36. The following code is referred to in the Description
column of the table.

struct packet {
kind: [tx, rx];
len: uint (bits:7);
keep len in [64..128];
event done;
cover done is {

item kind;
item len using ranges={range([0..127], "", 16)};
transition len;
cross kind, len

}
}

Purpose Report end of group coverage information according to user preferences

Category Method

Syntax end_group()

Table 36—Fields in user_cover_struct

Field name Type Description

Group information fields (see NOTE)

struct_name string The struct in which the item resides (for example, packet).

package_name string The name of the package in which the struct defining the items was declared.
Syntax example:

package_name : "Turbo Mode Package"

group_name string The name of the group (for example, done).
264 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
group_text string The text specified using the text= option in the group definition, or NULL if
the option is not used.

group_weight int The group’s weight for grading.

group_grade int The group’s grade.

Per instance item information field

instance_name string Modified whenever a new instance is scanned.

instance_grade string If per instance coverage is used, then this is the field to look at, rather than
group_grade.

Item information fields

item_name string The name of the current item (for example, kind).

sub_items list of string For a basic item, the item name (for example {kind}).
For a cross, the names of the items that make up the cross (for example {kind;
len}).
For a transition, the item name twice (for example {len; len}).

samples int The total number of samples for the item in the .ecov files.

item_at_least int The value of the at_least option in the item definition. This is the grading goal
for the item, which is the minimum number of samples required to fill each
bucket of the item.

item_text string The text specified using the text= option in the item definition, or NULL if
the option is not used.

item_no_of_tests int The number of tests in which the item appears.

item_when_string string The struct subtype under which the item is defined (for example, if the item
was defined inside a “when tx packet,” then the item_when_string is “tx
packet”).

item_exp_string string The expression string, if the item was defined using type=exp, or NULL if
type=exp was not specified [for example, if the item was defined as “item s:
int=sys.packets.size(),” then the item_exp_string is sys.packets.size()].

item_weight int The item’s weight for grading item_grade int.

Bucket information fields

bucket_name string The name of the current bucket

count int The number of samples in this bucket status bucket_status, whether bucket is
illegal, normal, or hole.

at_least int The number of samples required to fill the bucket

no_of_tests int The number of tests that sample the bucket

cross_level int For cross coverage, ranging from 0 to sub_items.size()−1

is_string bool TRUE if this is a string bucket. If TRUE, the string is the bucket name.

int_value int Meaningful if is_string is FALSE and the value in this bucket as an integer. If
the bucket is a range of values, this is the lowest integer value within the
range.

Table 36—Fields in user_cover_struct (continued)

Field name Type Description
Copyright © 2015 IEEE. All rights reserved. 265

IEEE
Std 1647-2015 IEEE STANDARD
NOTE

— Item information fields are updated before start_item() is called.

— Bucket information fields are updated before scan_bucket() is called.

— A grade is an integer from 0 to 100 000 000, or UNDEF for an ungradeable item. A grade of 100 000 000 means
the goal for the number of samples has been reached. To represent the grade as a percentage, divide the grade by
1 000 000. Then, a grade of 100% means the goal has been reached, and a grade of 0 means no samples were
collected.

14.8 Coverage methods for the covers struct

The covers struct is a predefined struct containing methods used for coverage and coverage grading. With
the exception of the write_cover_file() method, all of the following methods are methods of the covers
struct. See also 16.2.5.

14.8.1 include_tests()

This method specifies which test runs to use in showing coverage information. If .ecov files are being read
to load coverage information, only call this method after the .ecov files have been read.

Syntax example:

covers.include_tests("tests_A:run_A_10", TRUE)

hi_int_value int Meaningful if is_string is FALSE and the value in this bucket is an integer. If
the bucket is a range of values, this is the highest integer value within the
range.

bucket_weight int The bucket’s weight for grading bucket_grade int.

Overall information field

all_grade int The overall grade for all coverage items, calculated by calling the
scan_cover() method with *.*.* as the item parameter. The default is UNDEF.

NOTE—Group information fields are updated before start_item() is called for the first item in the group.

Purpose Specify for which tests coverage information should be displayed

Category Predefined method

Syntax covers.include_tests(full-run-name: string, include-run: bool)

Parameters
full-run-name The name of the test to include or exclude.

include-run Set to TRUE to include the specified run, FALSE to exclude it.

Table 36—Fields in user_cover_struct (continued)

Field name Type Description
266 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
14.8.2 set_weight()

Coverage grading uses weights to emphasize the affect of particular groups or items relative to others. The
weights can be specified in the coverage group or item definitions. This method sets the weights
procedurally. It overrides the weights set in the group or item definitions. Weights can be set explicitly or
multiplied by a given value.

If .ecov files are being read to load coverage information, only call this method after the .ecov files have
been read.

Syntax example:

covers.set_weight("inst.done", 4, FALSE)

14.8.3 set_at_least()

The minimum number of samples required to fill a bucket can be set in the coverage group or item
definitions. This method can be used to set the number procedurally. It overrides the numbers set in the
group or item definitions. If the entity-name is a coverage group name, all items in the group are affected. If
the entity-name matches items within a coverage group, only those items are affected.

If .ecov files are being read to load coverage information, only call this method after the .ecov files have
been read.

Syntax example:

covers.set_at_least("inst.done", 4, FALSE)

Purpose Specify the coverage grading weight of a group or item

Category Predefined method

Syntax covers.set_weight(entity-name: string, value: int, multiply-value: bool)

Parameters

entity-name The group or item for which to set the weight. This can include wild cards.

value The integer weight value to set.

multiply-value When this is FALSE, it changes the weights of all matching groups or items
to value. When this is TRUE, the weights of all matching groups or items are
multiplied by value.

Purpose Set the minimum number of samples needed to fill a bucket

Category Predefined method

Syntax covers.set_at_least(entity-name: string, value: int, multiply-value: bool)

Parameters

entity-name The group or item for which to set the “at-least” number. This can include
wild cards.

value The at-least integer value to set.

multiply-value When this is FALSE, it changes the at-least number of all matching items to
value. When this is TRUE, it multiplies the at-least number by value.
Copyright © 2015 IEEE. All rights reserved. 267

IEEE
Std 1647-2015 IEEE STANDARD
14.8.4 set_cover()

By default, coverage data is collected for all defined coverage items and groups, and for all user-defined
events. This method selectively turns data collection on or off for specified items, groups, or events.
Although this method can be used to filter samples during periods in which they are not valid, for
performance reasons, use when subtypes instead.

Additionally, if the test ends while coverage collection is turned off by set_cover() for one or more coverage
groups, then set_cover() needs to be called again to re-enable sampling before the .ecov file is written, in
order to include the previously collected samples for those groups in the .ecov file.

Syntax example:

covers.set_cover("packet.*", FALSE)

14.8.5 get_contributing_runs()

This method returns a list of strings that are the full run names of the test runs that placed samples in a
specified bucket. For a cross item, the bucket-name can be a bucket of any level, with the bucket set names
separated by slashes, e.g., ADD/REG1/[0xC0..0xCF].

Purpose Turn coverage data collection and display on or off for specified items or events

Category Predefined method

Syntax covers.set_cover((item | event): string, collect-coverage: exp)

Parameters

item A string, enclosed in double quotes (" "), specifying the coverage item to
turn on or off. This can include wild cards.

event A string, enclosed in double quotes (" "), specifying the event to turn on or
off. This can include wild cards.
Enter the name of the event using the following syntax:

session.events.struct_type__event_name

where struct_type and event_name are separated by two underscores. Wild
cards can also be used here.
If only one name is specified, it is treated as a struct type and the method shall
affect all events in that struct type.

collect-coverage Set to TRUE to turn on coverage for the item or FALSE to turn coverage off.

Purpose Return a list of the test runs that contributed samples to a bucket

Category Predefined method

Syntax covers.get_contributing_runs(item-name: string, bucket-name: string): list of string

Parameters

item-name A string, enclosed in double quotes (" "), specifying the coverage item that
contains bucket-name.

bucket-name A string, enclosed in double quotes (" "), specifying the bucket for which
contributing test run names are to be listed.
268 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

bkl = covers.get_contributing_runs("inst.done.len", "[0..4]")

14.8.6 get_unique_buckets()

A unique bucket is a bucket that is covered by only one test. This method reports, for each specified test, the
full names of its unique buckets, if there are any.

Syntax example:

print covers.get_unique_buckets("test_rx")

14.8.7 write_cover_file()

This method writes the coverage results .ecov file during a test run. It can only be invoked during a test,
not before the run starts nor after it ends.

The coverage file written by this method does not contain the session.end_of_test or session.events
coverage groups.

Syntax example:

write_cover_file()

14.8.8 get_overall_grade()

This method returns an integer that represents the overall coverage grade for the current coverage results.
Since e does not handle floating-point types, the value is a normalized value between 1 M and 100 M. To
obtain a value equivalent to the overall grade, divide the returned value by 100 M.

Purpose Return a list of the names of unique buckets from specific tests.

Category Method

Syntax covers.get_unique_buckets(file-name: string): list of string

Parameters
file-name A string, enclosed in double quotes, (" ") specifying which coverage data-

base files, containing unique buckets, to display. Wild cards cannot be used in
the file name.

Purpose Write the coverage results during a test

Category Predefined method

Syntax write_cover_file()

Purpose Return the normalized overall coverage grade

Category Predefined method

Syntax covers.get_overall_grade(): int
Copyright © 2015 IEEE. All rights reserved. 269

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

grade = covers.get_overall_grade()

14.8.9 get_ecov_name()

This method returns the name of the .ecov file in which the current coverage results are to be stored.

Syntax example:

ecov_file = covers.get_ecov_name()

14.8.10 get_test_name()

This method returns the identifier of the current test run.

Syntax example:

ecov_file = covers.get_test_name()

14.8.11 get_seed()

This method returns the current test seed.

Syntax example:

seed_val= covers.get_seed()

Purpose Return the name of the .ecov file

Category Predefined method

Syntax covers.get_ecov_name(): string

Purpose Return the name of the current test

Category Predefined method

Syntax covers.get_test_name(): string

Purpose Return the value of the seed for the current test

Category Predefined method

Syntax covers.get_seed(): int
270 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
15. Macros

e is an extensible language. Its syntax and lexicon can be extended using macros—declared by define-as and
define-as-computed statements. Unlike macros in languages such as C, which are preprocessor-based,
e macros are real syntactic rules applied by the parser just like those for built-in constructs. Macros are used
to add new constructs to the language, possibly with new keywords and operators. The newly declared
constructs are implemented by defining a syntactic expansion, reducing them to existing constructs.

15.1 Overview

15.1.1 e syntactic structure

e syntax in general, and user-defined syntax (introduced by macros) in particular, is specified in terms
similar to Backus-Naur form (BNF). Each macro constitutes an alternative for the production of some non-
terminal. But, there are a number of essential differences between the e grammar thus specified and the input
of standard parser-generators, as follows:

a) The terminals of the grammar are simply characters from the input (after trivial normalization and
preprocessing). There are no separate lexical rules.

b) The term sequence in production rules can be expressed using regular-expression-like operators,
[akin to Extended BNF (EBNF)].

c) There is a total precedence order over alternatives of a given non-terminal.

15.1.2 Macro definition

The definition of a macro is analogous to that of a function. It consists of a header and a body. The header
declares the following:

a) Macro name

b) Syntactic type or category that it returns

c) Syntactic pattern of the new construct together with the syntactic arguments the macro takes. This
part is called the match expression.

The body specifies what code is expanded once the macro is matched. The resulting expansion may be any e
code that is appropriate in the context of the macro’s syntactic category. Simple and computed macros differ
in the way they define the rewrite rule:

— The rule for simple macros is given as a parameterized code segment (template) in which arguments
taken from the input are embedded at specified locations.

— The rule for computed macros is given as an e action block that executes at parse time and
procedurally computes the replacement code. Arguments taken from the input are available within
this block as string variables.
Copyright © 2015 IEEE. All rights reserved. 271

IEEE
Std 1647-2015 IEEE STANDARD
15.2 define-as statement

Syntax example:

define <largest’action> "largest <exp> <num>" as {

 if <num> > <exp> then {<exp> = <num>}

}

15.3 define-as-computed statement

The block of actions is treated as the body of a method that returns a string. Thus, either the result variable or
the return action should be used within it. The returned string must be a legal e construct of the same
category or a sequence thereof (see 15.5).

Purpose Define a new construct with parameterized code expansion

Category Statement

Syntax define <tag’non-terminal-type> “match-expression” as { replacement }

Parameters

tag An identifier that is used to name the macro. It needs to be unique in the
scope of the non-terminal type. The name plays no actual role in the
definition.

non-terminal-
type

A non-terminal of the e grammar corresponding to the syntactic category that
is being extended by this macro (see 4.2). It must be one of statement,
struct_member, action, exp, type, or cover_item.

match-expression A sequence of terminals and non-terminals that constitute a new choice for
the derivation of the specified non-terminal (see 15.4).

replacement The parameterized replacement code to which the new construct is expanded.
The expansion must constitute a legal e construct of the same category, or a
sequence thereof (see 15.6).

Purpose Define a new construct by reduction

Category Statement

Syntax define <tag’non-terminal-type> “match-string” as computed { action;... }

Parameters

tag An identifier that is used to name the macro. It needs to be unique in the
scope of the non-terminal type. The name plays no actual role in the
definition.

non-terminal-
type

A non-terminal of the e grammar corresponding to the syntactic category that
is being extended by this macro (see 4.2). It must be one of statement,
struct_member, action, exp, type, or cover_item.

match-expression A sequence of terminals and non-terminals that constitute a new choice for
the derivation of the specified non-terminal (see 15.4).

actions A block of actions that computes the expansion of the macro.
272 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
The macro body is executed during parsing whenever the match expression matches the input text. Parsing
of the entire module (or dependency unit in general, see Annex B) precedes semantic analysis for that
module, so definitions occurring within the same module cannot be used or presupposed for purposes of the
computation (even when they occur above the macro call).

Syntax example:

define <multi_field'struct_member> "[<MOD>private |protected]<name>,... :

<type>" as computed {

 for each (fname) in <names> do {

 result = append(result, <MOD>, fname, ":", <type>, ";")

 }

}

15.4 Match expression structure

The match expression consists of a sequence of terminals and non-terminals, possibly with regular
expression operators such as alternative and optional sub-sequences.

15.4.1 Match expression terms

Terminals in the e grammar are simply ASCII characters. The grammar does not presuppose independent
lexical analysis. The terminal part of a production is given literally in the match expression string. Some
characters have special meaning in a match expression (see 15.4.2), so they need to be escaped (\) to be
taken literally as terminals.

The non-terminal types for user macros are the same ones available for extension⎯statement,
struct_member, action, exp, type, and cover_item⎯which stand for a construct of the corresponding
syntactic category (see 4.2). A few “auxiliary” non-terminal types are also available: name, num, file, block,
and any. An occurrence of a non-terminal in the match expression is marked by enclosing it with < and >. It
consists of a non-terminal type selector, optionally preceded by an identifier serving as a tag (the format is
<[tag’]non-terminal-type>).

Non-terminals in the match expression declare formal syntactic arguments that can be used in the macro
body. For example, the occurrence of <left’exp> inside a match expression is a declaration of a
parameter by that name of the exp non-terminal type.

The role of the auxiliary non-terminals is shown in Table 36. See also 4.1.

15.4.2 Match expression operators

The characters [,], (,), and | are used as the standard regular-expression operators—option, grouping, and
alternation, respectively. These, along with < and > (marking the beginning and end of a syntactic
argument), are not taken literally inside a match expression unless they are escaped (\).

A restricted version of the repetition operator (akin to * in standard regular-expression languages) is marked
with ... (3 dots), preceded by a non-terminal specifier and a separator character. It is used to designate zero
or more occurrences of the specified non-terminal separated by the designated character. For example, the
syntax of the pseudo-routine out() is defined with the match-expression: “out\(<exp>,...\).”

NOTE—The character . (dot) does not need explicit escaping to be taken literally.
Copyright © 2015 IEEE. All rights reserved. 273

IEEE
Std 1647-2015 IEEE STANDARD
15.4.3 Submatches and labels

The part of the input text that is matched against the content of a grouping operator, an option operator, or a
non-terminal upon the successful matching of a match expression is called a submatch. All submatches can
be referenced inside the macro body.

A submatch may be given a label in the form <label-tag>, where label-tag is an identifier with capital letters
and underscores only, immediately following the left parenthesis or left square bracket. For example, when
the match expression “(<WORD>Hello|Goodbye) <name>” is matched against the input “Goodbye John,”
the label <WORD> will hold the value “Goodbye.”

15.4.4 Meta-grammar of match expression

The following grammar [usable in LALR (look-ahead, left-to-right) parsers] defines the syntax of match
expressions described informally in 15.2 (non-literal terminals are in italics).

a In this expression, the second parallel bar (|) is a required literal symbol and not a list separator.
b This (term) denotes an empty string.

Table 36—Auxiliary non-terminals

Parsing element Description

name A legal e name.

num A literal numeric constant.

file A UNIX-style file name.

block A series of actions delimited by ; and enclosed between { }.

any Any (possibly empty) sequence of characters from the input.

e_match_expression ::= sequence

| e_match_expression | sequence a

sequence ::= ε b

| sequence term
| sequence grouping
| sequence option
| sequence repetition

grouping ::= (optional_label e_match_expression)
option ::= [optional_label e_match_expression]
repetition ::= non_terminal character …

term ::= literal
| non_terminal

literal ::= character
| literal character

non_terminal ::= < nt_selector >
| < identifier ‘ nt_selector >

nt_selector ::= statement | struct_member | action | exp | type | name | num
| block | file | any

optional_label ::= ε
| < caps-identifier >
274 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
identifier is the standard e identifier and character is any ASCII character except the special ones: [,], (,), |,
<, >, and \, or any one of these special characters when preceded by \.

15.4.5 Proto-syntax

A number of characters have fixed syntactic function in e. They are [,], (,), {, }, and ". The syntactic role is
reflected also in the structure of macro match expressions.

a) Parentheses, square brackets, and braces—(), [], { } respectively—signify subordination of one
construct to another. Within a match expression they need to be balanced, enclosing only a single
non-terminal or a repetition thereof.

b) Double quotes signify string literal whose content is opaque. They may enclose only the <any> non-
terminal.

c) The function of semicolon (;) is fixed to the sequencing of constructs inside braces. It can be used in
a match expression only as the separator of a non-terminal repetition inside braces.

These restrictions can be expressed by adding the following rules to the grammar in 15.4.4:

Any use of ; (semicolon) in a match expression other than as a repetition separator character is illegal and so
it is excluded from the character terminal specified in the grammar in 15.4.4.

15.5 Interpretation of match expressions

This subclause defines how interpretation of match expressions occurs.

15.5.1 Priority on production choices

A macro associates a new match choice with the non-terminal that is being extended. Each non-terminal
already has a list of built-in production choices associated with it and might further have any number of
production choices defined by previous macros. This does not limit the new match expression in any way
and no ambiguity can be introduced thereby. The reason is that, unlike standard BNF interpretation, the
productions are prioritized. Match expressions are tested according to their priority—the first one that
succeeds gives the correct derivation for the input.

The priority is determined by the definition order of macros in the code—those whose definition appears
later get higher priority (see Annex B). Thus, production choices declared by macros always have higher
priority than built-in productions. In general, existing (built-in or user-defined) syntax can be overwritten by
a new macro.

term ::= literal
| subform
| bracketed_subform

bracketed_subform ::= \ (subform \)
| \ [subform \]
| { subform }
| " <any>"

subform ::= non-terminal
| repetition
Copyright © 2015 IEEE. All rights reserved. 275

IEEE
Std 1647-2015 IEEE STANDARD
15.5.2 Recursive-decent interpretation

The modification to the grammar introduced by macros is best understood in terms of a recursive-decent
backtracking parsing algorithm. Each non-terminal represents a routine that takes the string to be parsed as
input and either succeeds in consuming some prefix of it or fails to do so. A non-terminal routine succeeds if
at least one of the match expressions associated with it succeeds. The production that is actually used in this
case is the production of highest priority that consumes the whole input. A match expression applies to the
input if both its terminal parts match it and the substrings left for non-terminals succeed to be consumed by
the corresponding non-terminal routine.

The non-terminal fails if no match expression associated with it matches the actual input string. In this case,
the algorithm backtracks further.

The expansion rule declared by the macro is activated whenever the production has matched some section of
the input. The code generated by the macro body is normalized, preprocessed, and tested again against
productions of the original non-terminal. The matching rules for the generated code are the same as those for
the original code; the generated code can also match a user-defined construct and, thus, be transformed
again. This can fail if the expansion rule itself generates code that is not well formed. In this case,
backtracking proceeds further up (and might result in a syntax error).

15.6 Macro expansion code

The expansion rule is defined in the macro body. In the case of simple macros (define-as), it is given as
parameterized code segment. The expansion segment is taken literally, except for occurrences of syntactic
parameters. In the case of computed macros (define-as-computed), an action block procedurally computes
the expansion as a function of the syntactic parameters (available as string variables).

Syntactic parameters are formally declared in the match expression. Their actual values are the
corresponding string part of the input text that was actually matched in each case (possibly empty strings).

Parameters can be of four kinds, as follows:

a) Non-terminal parameters in the format <[tag’]non-terminal-type>—referring to the corresponding
non-terminal in the match expression. The reference is undefined if there is more than one non-
terminal of the same type in the match expression without a unique tag.

b) Non-terminal repetition parameters in the format: <[tag’]non-terminal-types> (note the addition of
the plural form “s” to the non-terminal type)—standing for to the entire submatch of non-terminal
repetition in the match expression in the case of simple macros, or a list of string variable whose ele-
ments are the (zero or more) occurrences of the required non-terminal type in the case of computed
macros.

c) Labeled submatch parameters in the format <caps-identifier> (where caps-identifier is an identifier
consisting only of capital letters and underscores)—referring to the submatch of the matched input
labeled accordingly.

d) Implicit submatch parameters in the format <n> (n being a positive integer)—referring to the nth
submatch of the matched input. Submatches are the sections of input text matched inside grouping
operators, option operators, or non-terminals. They are enumerated from left to right, the first of
which is 1.

Two special replacement operators are available only in the scope of simple macros:

1) Default values for syntactic parameters in the format: <param-selector|val> (where param-selector
is any of the above listed parameter kinds, and val being any text)—either referring to the
276 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
corresponding syntactic parameter, or replaced with val when the actual value of the parameter is the
empty string.

2) A generated unique identifier in the format <?>, possibly appended to a legal identifier (e.g., x<?>).
This is used for declaring entities (primarily variables) with names that are unique across all macro
expansions, thereby avoiding the risk of name-collision upon expansion. The unique identifier is
unique among all instantiations of a given macro, but identical for all references with the body of the
macro definition.

The code that is generated upon expansion is parsed again. It must be a legal construct of the same category
as the one being replaced or a series thereof. Thus, macro expansion can be viewed as a local transformation
on the syntax tree of a program, where some specific node is replaced by another without affecting its
descendants or parent nodes.

Example 1

This example is designed to demonstrate the principle of priority over productions determined by the order
of definition (see 15.5.1).

define <c_field1’struct_member> "C <num> <name>" as {
 %! <name>: uint(bits: <num>)
};

define <c_field2’struct_member> "C <exp> <name>" as {
 // The previous macro can never be matched because its pattern is
 // completely overshadowed by this one (<num> can always be parsed as
 // <exp>)
 %! <name>: uint(bits: <exp>)
};

define <c_field3’struct_member> "C <type’name> <name>" as {
 // This macro is not overshadowed by the previous (even though <name>
 // can be parsed as <exp>)
 %! <name>: <type’name>
};

extend sys {
 C byte f1; // matched first by <c_field3’struct_member>
 // replaced by ’!% f1: byte’
 C 4*WORD_SIZE f2 // matched first by <c_field2’struct_member>
 // replaced by ’!% f2: uint(bits: 4*WORD_SIZE)’
}

Example 2

The following is a definition of an action with the internal name swap_var. The match string contains two
parsing element items, <var1'exp> and <var2'exp>, so the <1> in the third line corresponds to
<var1'exp>, the first parsing element in the match string. The notation <2> could likewise be used for
<var2'exp>. Thus, the third line could be written as <1> = <2|z>.

define <swap_var’action> "swap <var1’exp>[<var2’exp>]" as {
 var tmp<?> := <var1’exp>;
 <1> = <var2’exp|z>;
 <var2’exp|z> = tmp<?>
};

extend sys {
 run() is also {
 var a := 5;
Copyright © 2015 IEEE. All rights reserved. 277

IEEE
Std 1647-2015 IEEE STANDARD
 var b := 9;
 var z := 13;

 swap a b; // a becomes 9, b becomes 5
 print a, b, z;
 swap a; // a becomes 13, z becomes 9
 print a, b, z
 }
}

Example 3

This code illustrates the use of repetition operators within the match expression in a computed macro, and
the corresponding use of list variables within its body.

define <multi_when'statement>
"extend \[<detr'name>,...\] <base'name> {<struct_member>;...}" as
computed {

for each in <detr'names> do {
result = appendf("%s extend %s %s {%s};",
result,it,<base'name>,str_join(<struct_members>,";"))

}
};

// override the clock definition in a number of my_bfm's subtypes

extend [RED, BLUE, GREEN] my_bfm {
event clock is only rise('clock2')@sim

}

278 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
16. Print, checks, and error handling

The e language has many constructs that print an expression, check for errors in the DUT, or add exception
handling and diagnostics to an e program.

16.1 print

This prints the value of the given expression. Each type of expression has a default format in which it is
printed.

— Scalars and string expressions print as expression = value-of-expression.

— Structs print in small tables, with a row for each field of a struct.

The predefined do_print() method of a struct performs the printing. Changing the do_print() method
modifies the default format for the struct.

a) Lists print in small tables with a row for each element in the list, except for scalar lists 16 bits or
smaller, which print horizontally.

b) Integers print leading zeros (0s), except for unbounded integers, 32-bit integers, or decimal integers.

Syntax example:

print byte_list using radix = hex

16.2 Handling DUT errors

There are several constructs that can be used to perform data or protocol checks on the DUT or to handle any
errors that occur.

Purpose Print an expression

Category Action

Syntax print exp[,…] [using print-options]

Parameters

exp Valid e expression.

print-options One or more of the print options, separated by commas (,). Print options are
partly implementation-dependent. See also 28.9.
Copyright © 2015 IEEE. All rights reserved. 279

IEEE
Std 1647-2015 IEEE STANDARD
16.2.1 check that

This performs a data comparison, and depending on the results, produces one of the following responses:

— If bool-exp is evaluated to TRUE, the check is considered to have passed. The first action block, if it
exists, is executed.

— If bool-exp is evaluated to FALSE, the check is considered to have failed. A DUT error message is
issued, and the second action block, if it exists, is executed only when the error is actually issued
(that is, if the check effect is not configured to IGNORE).

Use check that to track the number of failed checks with predefined session fields. When the else
dut_error clause is omitted, the e program uses the check that clause as the error message.

Syntax example:

check_count(i:int) is {
check that i == expected_count { out("check passed") } else

 dut_error("Bad i: ", i) { out("check failed") }
}

16.2.1.1 Using named check actions

The name argument is used to associate a name with a check action. Although check names have no direct
application in e code, they provide a meaningful way for programmers and tools to identify the respective
checks, for example, to determine their severity or collect coverage for them (such functionality is tool
specific).

Rules:

— A named check is implicitly declared for a struct by associating a name with some check action in a
method of that struct.

— Multiple check actions may be associated with the same name in the context of a given struct. All
actions are taken to be implementing the very same logical check.

— A named check cannot be introduced in the scope of a struct if a check by the same name is already
declared for a subtype of that struct.

Purpose Perform a data comparison, and produce a defined response depending on the result

Category Action

Syntax
check [[name] that] bool-exp [[then] {action; ...}][else dut_error(message: string-exp, ...)
[{action; ...}]]

Parameters

name Any legal e identifier.
When the argument name is used, the keyword that is mandatory.

bool-exp A Boolean expression that performs a data comparison.

action A series of zero or more actions enclosed in braces ({}) and separated by
semicolons (;).

message A string or an expression that can be converted to a string. If the bool-exp is
FALSE, the message expressions are converted to strings, concatenated, and
printed to the screen (and to the log file, if it is open).
280 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
— Expect/assume struct members are checks too. They share the same namespace and so their
rule_name argument (if used) must not collide with a check name or vice versa.

Example:

extend bus_e {
check() is also {

check bus_cycle_length that num_of_cycles < 1000;
}

}

16.2.2 dut_error()

This issues a DUT error message. The action block, if it exists, is executed only when the error is actually
issued (that is, if the check effect is not configured to IGNORE). This action is usually associated with an if
action, a check that action, or an expect struct member. Calling dut_error() directly is exactly equivalent
to:

check that FALSE else dut_error()

NOTE—When dut_error() is called directly or within an expect, session.check_ok shall always be FALSE.

Syntax example:

if ’data_out’ != ’data_in’ then {
dut_error("DATA MISMATCH: Expected ", ’data_in’)

}

Purpose Issue a DUT error message

Category Action

Syntax dut_error(message: string-exp, ...) [{action; ...}]

Parameters

message A string or an expression that can be converted to a string. The message
expressions are converted to strings, concatenated, and printed to the screen
(and to the log file, if it is open).

action A series of zero or more actions enclosed in braces ({}) and separated by
semicolons (;).
Copyright © 2015 IEEE. All rights reserved. 281

IEEE
Std 1647-2015 IEEE STANDARD
16.2.3 dut_errorf()

This issues a formatted DUT error message. The action block, if it exists, is executed only when the error is
actually issued (that is, if the check effect is not configured to IGNORE). This action is usually associated
with an if action, a check that action, or an expect struct member.

Purpose Issue a formatted DUT error message

Category Action

Syntax dut_errorf(format: string, item: exp ...) [{action; ...}]

Parameters

format A string expression containing a standard C formatting mask for each item
(see 28.7.3)

item A legal e expression. String expressions shall be enclosed in double quotes
(" "). If the expression is a struct instance, the struct ID is printed. If the
expression is a list, an error shall be issued.

action A series of zero or more actions enclosed in braces ({}) and separated by
semicolons (;).
282 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
16.2.4 dut_error_struct

This defines the DUT error response. To modify the error response, extend either write() or pre_error().
Only the write() and pre_error() methods are called directly by e programs, but the other fields and
predefined methods of dut_error_struct can also be used in extending write() or pre_error().

When a dut_error is triggered, the runtime engine shall call pre_error(), unless the check_effect is set to
IGNORE. Upon return of pre_error(), the write() method is called, causing a message to be printed. Both of
these methods can be customized.

The other dut_error_struct methods previously listed (as struct members) can also be used to create more
meaningful error messages or the response can be conditioned based upon the check_effect.

Purpose Define DUT error response

Category Predefined struct

Syntax

struct dut_error_struct {
get_message() : string;
source_struct() : any_struct;
source_location() : string;
source_struct_name() : string;
source_method_name() : string;
check_effect() : check_effect;
set_check_effect(effect:check_effect);
write();
pre_error() is empty

}

Struct
members

get_message() Returns the message defined by the temporal or data DUT check; this is
printed by dut_error_struct.write().

source_struct() Returns a reference to the struct where the temporal or data DUT check is
defined.

source_
location()

Returns a string giving the line number and source module name, e.g., at
line 13 in @checker.

source_struct_
name()

Returns a string giving the name of the source struct, e.g., packet.

source_method_
name()

Returns a string giving the name of the method containing the DUT data
check, e.g., done().

check_effect() Returns the check effect of that DUT check, e.g., ERROR_AUTOMATIC.

set_check_
effect()

Sets the check effect in this instance of the dut_error_struct. Call this
method from pre_error() to change the check effect of selected checks.

pre_error() The first method that is called when a DUT error occurs, unless the check
effect is IGNORE. This method is defined as empty, unless extended by the
user. Extending this method will modify error handling for a particular
instance or set of instances of a DUT error.

write() The method that is called after dut_error_struct.pre_error() is called when
a DUT error happens. This method causes the DUT message to be displayed,
unless the check effect is IGNORE. To perform additional actions, extend this
method.
Copyright © 2015 IEEE. All rights reserved. 283

IEEE
Std 1647-2015 IEEE STANDARD
NOTE—Do not use dut_error_struct.write() to change the value of the check effect. Use pre_error() instead.

Syntax example:

extend dut_error_struct {
write() is also {

if source_struct() is a XYZ_packet (p) then {
print p.parity_calc()

}
}

}

16.2.5 set_check()

This sets the severity or the check effect of specific DUT checks, so failing checks produce errors or
warnings. This routine affects only checks that are currently loaded.

Syntax example:

extend sys {
setup() is also {
 set_check("...", WARNING)
 }
}

Purpose Set check severity

Category Predefined routine

Syntax set_check(static-match: string, check-effect: keyword)

Parameters

static-match A regular expression enclosed in double quotes (" "). Only checks whose
message string matches this regular expression are modified. The pattern is
matched against the constant part of the message string.
The match string shall use the native e syntax or an AWK-like syntax (see
4.11).
Any AWK-like syntax shall be enclosed in forward slashes, e.g., /Vio/.
Also, the * character in native e syntax matches only non-white characters.
Use ... to match white or non-white characters.

check-effect check-effect is one of the following:

a) ERROR—Issues an error message, increases num_of_dut_errors,
breaks the run immediately, and returns to the simulator prompt.

b) ERROR_BREAK_RUN—Issues an error message, increases
num_of_dut_errors, and breaks the run at the next cycle boundary.

c) ERROR_AUTOMATIC—Issues an error message, increases
num_of_dut_errors, breaks the run at the next cycle boundary, and
performs the end of test checking and finalization of test data that is
normally performed when stop_run() is called.

d) ERROR_CONTINUE—Issues an error message, increases
num_of_dut_errors, and continues execution.

e) WARNING—Issues a warning, increases num_of_dut_warnings,
and continues execution.

f) IGNORE—Issues no messages, does not increase
num_of_dut_errors or num_of_dut_warnings, and continues
execution.
284 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
16.3 Handling user errors

The e language has several constructs for handling user errors, such as file input/output (I/O) errors or
semantic errors. This subclause describes the constructs used for handling these kinds of errors.

— warning() issues a warning message when a given error occurs.

— error() issues an error message and exits when a given error is detected.

— fatal() issues an error message and exits to the OS prompt when a given error is detected.

— try defines an alternative response for fixing or bypassing an error.

Errors handled by these constructs do not increase the session.num_of_dut_errors and
session.num_of_dut_warnings fields that are used to track DUT errors. In addition, the error responses
defined with these constructs are not influenced by modifications to dut_error_struct or by set_check()
configurations.

See also the run option (28.9).

16.3.1 warning()

This issues the specified warning error message. It does not affect execution.

Syntax example:

warning("len exceeds 50")

16.3.2 error()

This issues the specified error message and halts all methods being currently run. The only exception to this
is if the error action appears inside the first action block given in a try action. In that case, the e program
jumps to the else action block within the try action and continues running. Calling error() directly is exactly
equivalent to:

assert FALSE else error()

Purpose Issue a warning message

Category Action

Syntax warning(message: string-exp, ...)

Parameters
message A string or an expression that can be converted to a string. When the warning

action is executed, the message expressions are converted to strings,
concatenated, and printed to the screen.

Purpose Issue an error message and halt all method execution

Category Action

Syntax error(message: string-exp, ...)

Parameters
message A string or an expression that can be converted to a string. When the error

action is executed, the message expressions are converted to strings,
concatenated, and printed to the screen.
Copyright © 2015 IEEE. All rights reserved. 285

IEEE
Std 1647-2015 IEEE STANDARD
Unlike the check that action, error() does not use dut_error_struct.

Syntax example:

check_size() is {

if pkt.size != LARGE then {

 error("packet size is ", pkt.size)

 }

}

16.3.3 fatal()

Syntax example:

fatal(1,"Run-time error - exiting")

16.3.4 try

This executes the action block following try. If an error occurs, it executes the action block specified in the
else clause. If no error occurs, the else clause is skipped. When the else clause is omitted, execution after an
error continues normally from the first action following the try block.

Syntax example:

try {

var my_file : file = files.open(file_name, "w", "Log file")

} else {

 warning("Could not open ", file_name,

 "; opening temporary log file sim.log")

}

Purpose Issue error message and exit to the OS prompt

Category Action

Syntax fatal([status: int,] message: string, ...)

Parameters

status A numeric value to be returned to the OS shell. If omitted, −1 is returned.

message A string or an expression that can be converted to a string. When the fatal()
action is executed, the message expressions are converted to strings,
concatenated, and printed to the screen.

Purpose Define an alternative response for fixing or bypassing an error

Category Action

Syntax try {action; ...} [else {action; ...}]

Parameters
action A series of zero or more actions enclosed in braces ({}) and separated by

semicolons (;).
286 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
16.4 Handling programming errors: assert

The e language has a special construct, the assert action, for handling certain programming errors, such as
internal contradictions or invalid parameters. It checks the e code for correct behavior. Use this action to
catch coding errors.

When an assert fails, it prints the specified error message, plus the line number and name of the file in which
the error occurred. If the else error clause is omitted, assert prints a global error message.

When an error is encountered, assert stops the method being executed.

Syntax example:

assert a < 20

Purpose Check the e code for correct behavior

Category Action

Syntax assert bool-exp [else error(message: string-exp, ...)]

Parameters

bool-exp A Boolean expression that checks the behavior of the code.

message A string or an expression that can be converted to a string. If the bool-exp is
FALSE, the message expressions are converted to strings, concatenated, and
printed to the screen (and to the log file, if it is open).
Copyright © 2015 IEEE. All rights reserved. 287

IEEE
Std 1647-2015 IEEE STANDARD
288 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
17. Methods

e methods are similar to C functions, Verilog tasks, and VHDL processes. An e method is an operational
procedure containing actions that define its behavior. A method can have parameters, local variables, and a
return value. A method can only be defined within a struct, and an instance of the struct needs to be created
before executing the method. When a method is executed, it can manipulate the fields of that struct instance.

Methods can execute within a single point of simulation time (within zero time) or over multiple cycles. The
first type of method is referred to as a regular method. The second type is called a time-consuming method
or TCM.

TCMs can execute over multiple cycles and are used to synchronize processes in an e program with
processes or events in the DUT. TCMs can contain actions that consume time, such as wait, sync, and state
machine, and can call other TCMs. Within a single e program, multiple TCMs can execute in sequence or in
parallel, along separate threads. A TCM can also have internal branches, which are multiple action blocks
executing concurrently. See also Clause 11, Clause 12, Clause 13, and 31.1.

Methods defined in one module can later be overwritten, modified, or enhanced in subsequent modules by
using the extend mechanism (see 17.1).

e methods can be implemented in foreign languages such as C. Such methods shall be declared as
C routine.

17.1 Rules for defining and extending methods

There are two phases in the definition of regular methods and TCMs: introduction and extension. A method
needs to be introduced before it can be extended. The introduction can be in the same struct as the extension
or in any struct from which this struct inherits, but it needs to precede the extension during file loading.

To introduce a method, use:

is [C routine]

is undefined | empty

To extend a method, use:

is (also | first | only)

is only C routine

is can also be used to extend a method in the following cases:

— The method was previously introduced with is undefined or is empty and has not been previously
extended in this struct or in any struct that inherits from this struct.

— The method was previously introduced (and perhaps extended) in a struct from which this struct
inherits, as long as the method has not already been extended in this struct or in any struct that
inherits from this struct using like.

In these cases, using is after is or after is (also | first | only) in a when or like subtype is similar to using is
only in this context, except an error message shall be generated if the method was already extended in this
subtype or in any of its like subtypes (see Clause 6). The advantage of using is instead of is only is that an
error shall be reported when the method extensions do not occur in the expected order.

Table 37 summarizes the rules for introducing and extending methods. It uses the following keys:
Copyright © 2015 IEEE. All rights reserved. 289

IEEE
Std 1647-2015 IEEE STANDARD
a) The none heading in the table indicates the method has not been introduced yet.

b) The only heading represents is also, is first, and is only.

c) The + character indicates “is allowed.”

d) The - character indicates “is not allowed.”

e) The C character indicates “is allowed” only in a like or when child, or one of its descendents.

The following restrictions apply to all methods:

— Methods shall not be defined with variable argument lists; however, variable length list or structs
with conditional fields can be passed in a list.

For example, the following method accepts a list of structs and performs appropriate operations on
each struct in the list, depending on its type:

m(l: list of any_struct) is {
 for each (s) in l do {
 if s is a packet (p) then {};
 if s is a cell (c) then {}
 }
}

This method can then be called as follows:

m({my_cell; my_packet})

— Extending a method in a child is allowed, even if the method has been extended in a sibling’s
descendant.

— When is is used after is or after is (also | first | only) in a when or like child or one of their
descendents, then it shall not be used to redefine the method in the parent.

— Extending a child more than once with is shall generate an error.

— Extending a child with is after extending its descendant also shall generate an error.

Example

The following example shows how to use is to extend a method in a child after the method has already been
introduced with is in the parent.

struct A {
 my_type() is {
 out("I am type A")
 }
};

Table 37—Rules for method extension

Extending by Previous declaration

none undefined empty is only

undefined + - - - -

empty + - - - -

is + + + C C

only - + + + +
290 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
struct B like A {};

struct C like B {
 my_type() is {
 out("I am type C, grandchild of A")
 }
}

The following subclauses describe the syntax for defining and extending methods. See also 6.3 and 6.7.2.

To understand how e code is serialized, see Annex B.

17.1.1 method is

When a method is declared as final, this is considered to be its complete and final definition, and the method
cannot be redefined using is only, is first, or is also, neither in the same struct nor in any of its descendants.
This is in addition to the restrictions noted in 17.1.

In addition, defining a method as final suggests to the e compiler to generate the code inline. The e compiler
can place all the code for the method at each point in the code where the method is called. This inline
expansion allows the compiler to optimize the final method code for the best performance. Methods that are
frequently called and involve computation, such as the following one, are good candidates for final
definition. This method takes two integers as arguments and returns an integer:

struct meth {
 final get_free_area_size(size:int, taken:int):int is {
 result = size - taken

Purpose Declare a regular method

Category Struct member

Syntax [final] method-name ([parameter-list]) [: return-type] is {action;...}

Parameters

method-name A legal e name (see Clause 4).

parameter-list A list composed of zero or more parameter declarations of the form param-
name: [*]param-type [= default-exp] separated by commas (,).

a) param-name is a legal e name (see Clause 4).

b) When an asterisk (*) is prefixed to a scalar parameter type, the
parameter is passed by reference (see 17.3).

c) param-type specifies the parameter type.

d) default-exp, if given, must be a legal constant e expression of the
right type (see 17.3.4).

The parentheses [()] around the parameter list are required even if the
parameter list is empty.

return-type For methods that return values, this specifies the data type of the return value.
See Clause 5 for more information.

action;... A list of zero or more actions (see 4.2.3). Actions that consume time are ille-
gal in the action block of a regular method.

final The method is final and cannot be extended.
Copyright © 2015 IEEE. All rights reserved. 291

IEEE
Std 1647-2015 IEEE STANDARD
 }

}

See also 4.2.3 and Clause 27.

Syntax example:

struct print {
 print_length(length:int) is {
 out("The length is: ", length)
 }
}

17.1.2 method @event is

This defines a new TCM. TCMs shall implicitly synchronize on the designated sampling event upon entry,
as if the action sync @event was added at the top of the TCM code (see 13.1.2). No implicit synchronization
occurs upon return.

When a TCM is declared as final, this is considered to be its complete and final definition, and the TCM
cannot be redefined using is only, is first, or is also, neither in the same struct nor in any of its descendants.
This is in addition to the restrictions noted in 17.1.

Purpose Declare a TCM

Category Struct member

Syntax [final] method-name ([parameter-list]) [: return-type]@event is {action;...}

Parameters

method-name A legal e name (see Clause 4).

parameter-list A list composed of zero or more parameter declarations of the form param-
name: [*]param-type [= default-exp] separated by commas (,).

a) param-name is a legal e name (see Clause 4).

b) When an asterisk (*) is prefixed to a scalar parameter type, the
parameter is passed by reference (see 17.3).

c) param-type specifies the parameter type.

d) default-exp, if given, must be a legal constant e expression of the
right type (see 17.3.4).

The parentheses [()] around the parameter list are required even if the
parameter list is empty.

return-type For methods that return values, this specifies the data type of the return value.
See Clause 5 for more information.

@event Specifies a default sampling event that determines the sampling points of the
TCM. This event shall be a defined event in e and shall serve as the default
sampling event for the TCM itself, as well as for any time-consuming actions,
such as wait, within the TCM body. Other sampling points can also be added
within the TCM. See also Clause 12.

action;... A list of zero or more actions (see 4.2.3), either time-consuming actions or
regular actions.

final The TCM is final and cannot be extended.
292 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

struct meth {
 main() @pclk is {
 wait @ready;
 wait [2];
 init_dut();
 emit init_complete
 }
}

17.1.3 method [@event] is (also | first | only)

This replaces or extends the action block in the original method declaration with the specified action block.
It carries the following restrictions:

a) Methods that were originally defined as final cannot be extended or redefined.

b) An is first extension can manipulate the input of the original definition while an is also extension
can make use of its output. When an is first extension changes the value of a parameter, the new
value shall be passed to the existing definition, but if it assigns a value to result, this is not seen in
the existing definition. The case with is also is the opposite; it is not affected if the original defini-
tion changes the value of the parameters, but in its scope, result holds the value returned from the
existing definition.

c) An is also extension is executed not only after the existing definition of the method for that same
type, but also for all existing extensions in subtypes. The same applies for is first; it is executed first
for objects of that type, regardless of the different existing definitions they might have.

Purpose Extend a regular method or a TCM

Category Struct member

Syntax method-name ([parameter-list]) [: return-type] [@event-type] is
(also|first|only) {action;...}

Parameters

method-name The name of the original method.

parameter-list Specifies the same parameter list defined in the original method; otherwise, a
compile-time error shall be issued.

return-type Specifies the same return value defined in the original method; otherwise, a
compile-time error shall be issued.

@event Specifies the same sampling event defined in the original method; otherwise,
a compile-time error shall be issued.

also The new definition refining the method implementation is called after the
original body is executed.

first The new definition refining the method implementation is called before the
original body is executed.

only The new definition refining the method implementation is called instead of
the original body.

action;... A list of zero or more actions (see 4.2.3). Time-consuming actions shall not
be used in the action block of a regular method.
Copyright © 2015 IEEE. All rights reserved. 293

IEEE
Std 1647-2015 IEEE STANDARD
d) The following rules apply for return actions in extended methods, as illustrated in Figure 9,
Figure 10, and Figure 11.

1) When an extension issues a return, any actions following that return within the extension
itself are not executed.

2) When a method is extended with is also, the extension starts executing right after the older ver-
sion of the method completes execution.

3) is also extensions are executed regardless of whether the older version of the method issues a
return or not.

4) When a method is extended with is first, the older version of the method is never executed if
the extension issues a return.

5) When a method is extended with is only, the older version of the method is never executed,
whether the extension issues a return or not.

See also 30.3.

Figure 9 shows how a method with an is also extension is executed. The older version executes first and then
the is also extension. The "This is also2..." statement is not executed because it follows a return.

is also

older
version of

method

module methods1.e
<'
struct meth {
 m() is {
 out("This is...")
 }
};

extend sys {
 mi : meth
};

extend meth {
 m() is also {
 out("This is also...");
 return;
 out("This is also2...")
 }
}
'>

Result

This is...
This is also...

Figure 9—Execution of is also method extension
294 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Figure 10 shows the same method extended again, this time with is first. If a return statement is included in
the is first extension, the older version of the method (the original method definition and the is also
extension) do not execute. If the return statement is deleted, the is first extension executes and then the
older version of the method executes.

Figure 11 shows another extension with is also, which executes regardless of whether there is a return in the
older version of the method or not.

return?

is first

yes

no

older
version of

method

module methods2.e
<'
import methods1.e;
extend meth {
 m() is first {
 out("This is first...");
 return
 }
}
'>

Result with a return in is first

This is first...

Result with no return in is first

This is first...
This is...
This is also...

Figure 10—Execution of is first method extension

module methods3.e
<'
import methods2.e;
extend meth {

m() is also {
out("This is also3...")

}
}
'>

Result with a return in is first

This is first...
This is also3...

Result with no return in is first

This is first...
This is...
This is also...
This is also3...

is also

older
version of

method

Figure 11—Execution of is first method extension
Copyright © 2015 IEEE. All rights reserved. 295

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

struct meth {

 run() is also {

 out("Starting main...");

 start main()

 }

}

17.1.4 method [@event] is (undefined | empty)

This declares an abstract regular method or an abstract TCM with no defined functionality. Abstract
methods are place holders that can be extended at a later point.

Syntax example:

struct packet {

show() is undefined

}

Purpose Declare an abstract method

Category Struct member

Syntax method-name ([parameter-list]) [: return-type] [@event-type] is (undefined|empty)

Parameters

method-name A legal e name (see Clause 4).

parameter-list A list composed of zero or more parameter declarations of the form param-
name: [*]param-type separated by commas (,).

a) param-name is a legal e name (see Clause 4).

b) When an asterisk (*) is prefixed to a scalar parameter type, the
parameter is passed by reference (see 17.3).

c) param-type specifies the parameter type.

The parentheses [()] around the parameter list are required even if the
parameter list is empty.

return-type For methods that return values, this specifies the data type of the return value.
See Clause 5 for more information.

@event Specifies a default sampling event that determines the sampling points of the
TCM. This event shall be a defined event in e and shall serve as the default
sampling event for the TCM itself, as well as for any time-consuming actions,
such as wait, within the TCM body. Other sampling points can also be added
within the TCM. See also Clause 12.

undefined No action block is defined for the method yet; an action block needs to be
defined in a subsequent module before this method is called. A runtime error
shall be issued if the action block is called before it is defined.

empty The action block is empty, but no error is issued if it is called. Empty value-
returning methods return the default value for the type.
296 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
17.2 Invoking methods

Before invoking a method, an instance of the struct that contains it needs to be created first. The call shall
conform to the proper syntax and needs to be made from an appropriate context. See also 4.3 and Clause 13.

— To invoke a TCM, use tcm(), start tcm(), or compute action (if the TCM returns a value).

— To call regular methods, use method() or compute action.

— To return from any method to the method that called it, use the return action (see 17.2.5).

17.2.1 tcm()

This calls a TCM. A TCM can only be called from another TCM. To invoke a TCM from within a regular
method, use start (see 17.2.2).

A TCM that does not return a value can be called or started (see 17.2.2). A call of a TCM that does not return
a value is syntactically an action. A call of a TCM that returns a value is an expression, and the return type of
the TCM shall conform to the type of the variable or field to which it is assigned.

To call a value-returning method without using the value that is returned, use the compute action instead
(see 17.2.4).

A called TCM begins execution when its sampling event is emitted or immediately if the sampling event has
already been emitted for the current tick. The calling TCM waits until the called TCM returns before
continuing execution. In contrast, a started TCM runs in parallel with the TCM that started it.

Syntax example:

init_dut()

Purpose Call a TCM

Category Action or expression

Syntax [[struct-exp].]method-name([parameter-list])

Parameters

struct-exp The pathname of the struct that contains the method. If the struct expression
is missing, the implicit variable it is assumed. If both the struct expression
and the period (.) are missing, the method name is resolved according to the
scoping rules (see Clause 4).

method-name The method name as specified in the method definition.

parameter-list A list of zero or more expressions separated by commas (,), one expression
for each parameter in the parameter list of the method declaration. Parameters
are passed by their relative position in the list. Parameters at the end of the
parameter list may be omitted if the method declaration specifies defaults for
them (see 17.3.4). The parentheses [()] around the parameter list are
required even if the parameter list is empty.
Copyright © 2015 IEEE. All rights reserved. 297

IEEE
Std 1647-2015 IEEE STANDARD
17.2.2 start tcm()

This starts a TCM. It can be used within another method, either a TCM or a regular method. A TCM that has
a return value cannot be started with a start action.

A started TCM can be scheduled for execution only once the starting TCM has been suspended (see 13.1.1).
A started TCM runs in parallel with the method that started it.

NOTE—The recommended way to start an initial TCM, which can then invoke other TCMs, is to extend the related
struct’s predefined run() method (see 27.2.2.4).

Syntax example:

start main()

Purpose Start a TCM

Category Action

Syntax start [[struct-exp].]method-name([parameter-list])

Parameters

struct-exp The pathname of the struct that contains the method. If the struct expression
is missing, the implicit variable it is assumed. If both the struct expression
and the period (.) are missing, the method name is resolved according to the
scoping rules (see Clause 4).

method-name The method name as specified in the method definition.

parameter-list A list of zero or more expressions separated by commas (,), one expression
for each parameter in the parameter list of the method declaration. Parameters
are passed by their relative position in the list. Parameters at the end of the
parameter list may be omitted if the method declaration specifies defaults for
them (see 17.3.4). The parentheses [()] around the parameter list are
required even if the parameter list is empty.
298 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
17.2.3 method()

This calls a regular method. A call of a method that does not return a value is syntactically an action. A call
of a method that returns a value is an expression, and the return type of the method shall conform to the type
of the variable or the field to which it is assigned.

To call a value-returning method without using the value that is returned, use the compute action instead
(see 17.2.4).

Syntax example:

tmp1 = get_free_area_size(size, taken)

17.2.4 compute method() or tcm()

This calls a value-returning method or TCM without using the value that is returned.

Purpose Call a regular method

Category Action or expression

Syntax [[struct-exp].]method-name([parameter-list])

Parameters

struct-exp The pathname of the struct that contains the method. If the struct expression
is missing, the implicit variable it is assumed. If both the struct expression
and the period (.) are missing, the method name is resolved according to the
scoping rules (see Clause 4).

method-name The method name as specified in the method definition.

parameter-list A list of zero or more expressions separated by commas (,), one expression
for each parameter in the parameter list of the method declaration. Parameters
are passed by their relative position in the list. Parameters at the end of the
parameter list may be omitted if the method declaration specifies defaults for
them (see 17.3.4). The parentheses [()] around the parameter list are
required even if the parameter list is empty.

Purpose Compute a regular method or TCM

Category Action

Syntax compute [[struct-exp].]method-name([parameter-list])

Parameters

struct-exp The pathname of the struct that contains the method. If the struct expression
is missing, the implicit variable it is assumed. If both the struct expression
and the period (.) are missing, the method name is resolved according to the
scoping rules (see Clause 4).

method-name The method name as specified in the method definition.

parameter-list A list of zero or more expressions separated by commas (,), one expression
for each parameter in the parameter list of the method declaration. Parameters
are passed by their relative position in the list. Parameters at the end of the
parameter list may be omitted if the method declaration specifies defaults for
them (see 17.3.4). The parentheses [()] around the parameter list are
required even if the parameter list is empty.
Copyright © 2015 IEEE. All rights reserved. 299

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

if ’top.b’ > 15 then {

 compute inc_counter()

}

17.2.5 return

This returns immediately from the current method to the method that called it. The execution of the calling
method then continues.

It is not always necessary to provide a return action. When a value returning method ends without a return
action, the value of result is returned.

— The return action needs to be used carefully in method extensions (see 17.1.3).

— Any actions that follow a return action in the method definition or a method extension are ignored.

NOTE—For value-returning methods, instead of using return, the special variable result can be assigned and its value
shall be returned instead (see 4.3.3.3).

Syntax example:

return i*i

17.3 Parameter passing

How a parameter is passed depends on whether the parameter is scalar or compound.

17.3.1 Scalar parameter passing

Scalar parameters include numeric, Boolean, and enumerated types. When a scalar parameter is passed to a
method, by default, the value of the parameter is passed. This is called passing by value. Any change to the
value of that parameter by the method applies only within that method instance and is lost when the method
returns.

To allow a method to modify the parameter, prefix the parameter type with an asterisk (*). This is called
passing by reference. The asterisk shall only be used in the method definition, not in the method call. See
also 17.3.3.

Purpose Return from regular method or a TCM

Category Action

Syntax return [exp]

Parameters
exp In value-returning methods, an expression specifying the return value is

required in each return action. In non-value-returning methods, expressions
are not allowed in return actions.
300 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Example 1

The increment() method defined as follows increments the value of the parameter passed to it:

increment (cnt:int) is {
cnt = cnt + 1

};

m() is {
var tmp : int = 7;

increment(tmp);
print tmp

}

However, since cnt is passed by value, the variable tmp retains its original value, and the print statement
displays:

tmp = 7

Example 2

If increment() is changed so the parameter can be modified [prefixing with an asterisk (*)]:

increment (cnt:*int) is {
cnt = cnt + 1

};

m() is {
var tmp : int = 7;

increment(tmp);
print tmp

}

then the print statement displays:

tmp = 8

17.3.2 Compound parameter passing

Compound parameters are either structs or lists. Passing a struct or a list to a method allows the method to
modify the struct fields and the list items. This is called passing by reference. To completely replace the
struct or list, prefix the struct type or list with an asterisk (*). See also 17.3.3.

Example 1

The increment_list() method defined as follows accepts a list:

increment_list(cnt:list of int) is {
 for each in cnt do {
 cnt[index] += 1
 }
}

If a list of integers is passed to it, each item in the list reflects its incremented value after the method returns.
Copyright © 2015 IEEE. All rights reserved. 301

IEEE
Std 1647-2015 IEEE STANDARD
Example 2

The create_if_illegal() method defined as follows accepts a struct instance of type packet:

create_if_illegal(pkt:*packet) is {

 if not pkt.legal then {

 pkt = new

 }

}

If it determines that the legal field of struct instance is FALSE, it allocates a new struct instance of type
packet.

17.3.3 Passing by reference

Several restrictions apply when passing parameters by reference, as follows:

— There is no automatic casting to a reference parameter. Thus, an attempt to pass a variable that is a
different type than the type declared within the calling method shall result in a compile-time error.

— A list element shall not be passed by reference.

— An expression that cannot be placed on the LHS of an assignment shall not be passed by reference.

— Called TCMs can accept reference parameters, but started TCMs shall not.

17.3.4 Default parameter values

Default values may be defined for method or TCM parameters using the assignment ('=') operator. The
following rules hold for parameter defaults:

— If a default is specified for some parameter, providing a value to that parameter in the invocation is
optional. If a value is provided it is passed to the respective parameter, and otherwise the default is
passed.

— Defaults may be specified in the method declaration only for consecutive parameters at the end of the
parameter list. A default may not be specified to a parameter that is followed by a parameter without
default.

— Actual parameters in the invocation are associated with formal parameters of the method in order
from left to right. Parameters at the end of the parameter list may be omitted in the call if defaults
exist for them. There is no way in a method call to pass a value to a parameter without providing
values to all parameters preceding it.

— Default values may be specified only in the initial declaration of the method. No default value
specification is allowed in method extensions.

— Default values are specified with constant expressions only. No variables of any kind are allowed
within these expressions.

17.4 Using the C interface

This syntax allows the user to attach a C implementation to an e method or routine header, as well as
exporting e types to C.
302 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
17.4.1 routine … is C routine

Declares a global e routine with the specified name, parameters, and result-type. The global e routine is
implemented by the specified C routine. If the optional c-routine-name is omitted, the assumed name of the
C routine is the e-routine-name. A C routine cannot have the same name as an existing method of global.

Syntax example:

routine mean_sqrt(l:list of int): int is C routine wrap_mean_sqrt

Purpose Declare a global e routine that is implemented in C

Category Statement

Syntax routine e-routine-name([parameter-list]) [:result-type] is C routine [c-routine-name]

Parameters

e-routine-name The name used to call the C routine from e.

parameter-list A list composed of zero or more parameter declarations of the form param-
name: [*]param-type separated by commas (,).

a) param-name is a legal e name (see Clause 4).

b) When an asterisk (*) is prefixed to a scalar parameter type, the
parameter is passed by reference (see 17.3).

c) param-type specifies the parameter type.

The parentheses [()] around the parameter list are required even if the
parameter list is empty.

result-type The type of value returned by the C routine.

c-routine-name The name of the routine as defined in C.
Copyright © 2015 IEEE. All rights reserved. 303

IEEE
Std 1647-2015 IEEE STANDARD
17.4.2 method … is C routine

Declares an e method that is implemented by a C routine. When the e method is called, the C routine is
executed. If the declaration states is only, the C implementation is called instead of the original body. When
an e method whose functionality is implemented as a C routine is called, the struct instance of the called
method is passed as the first parameter to the C routine.

Syntax example:

encrypt(data:byte): byte is C routine proprietary_encrypt

17.4.3 C export

Marks the e declared type or method for inclusion in a generated C header file. To use e data types and e
methods in C files, first create a C header file that declares these types and methods, and then include it in
the C file. The following considerations also apply:

— The export statement can appear in any e module (where the types or methods are known).

— when subtypes (for example, small packet) cannot be exported.

Syntax example:

C export packet;
C export packet.add()

Purpose Declare an e method that is implemented in C

Category Struct member

Syntax e-method-name([parameter-list]) [:result-type] is [only] C routine [c-routine-name]

Parameters

e-method-name The name used to call the C routine from e.

parameter-list A list composed of zero or more parameter declarations of the form param-
name: [*]param-type separated by commas (,).

a) param-name is a legal e name (see Clause 4).

b) When an asterisk (*) is prefixed to a scalar parameter type, the
parameter is passed by reference (see 17.3).

c) param-type specifies the parameter type.

The parentheses [()] around the parameter list are required even if the
parameter list is empty.

result-type The type of value returned by the C routine.

c-routine-name The name of the routine as defined in C.

Purpose Export the e declared type or method to C

Category Statement

Syntax C export type-name
C export type-name.method-name()

Parameters
type-name The type to export.

method-name The method to export.
304 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
18. Creating and modifying e variables

This clause describes how to create and assign values to e variables.

18.1 About e variables

An e variable is a named data object of a declared type. e variables are declared and manipulated in methods.
They are dynamic; they do not retain their values across subsequent calls to the same method. Some
e actions create implicit variables (see 4.3.3).

The scope of an e variable is the action block that encloses it. If a method contains nested action blocks,
variables in the inner scopes hide the variables in the outer scopes. Variable scoping is described in more
detail in 4.3.

The following subclauses describe the actions that create and modify e variables explicitly.

18.2 var

This declares a new variable with the specified name as an element or list of elements of the specified type
and having an optional initial value. The var action is legal in any place that an action is legal and the
variable is recognized from that point on. The scope of an e variable starts at the var action and ends at the
bottom of the action block that encloses it. If a method contains nested action blocks, variables in the inner
scopes hide the variables in the outer scopes.

Type information for var actions without an explicit type shall be inferred according to the following rules:

— If the name is the same as a declared type, that type shall be used.

— If the initial value expression is typed, that type shall be used.

— Otherwise, an error shall occur.

See also 4.3.

Syntax example:

var a : int

Purpose Variable declaration

Category Action

Syntax var name [: [type] [= exp]]

Parameters

name A legal e name.

type A declared e type. The type can be omitted if the variable name is the same as
the name of a struct type or if the variable is assigned a typed expression.

exp The initial value of the variable. If no initial value is specified, the variables
are initialized to 0 for integer types, NULL for structs, FALSE for Boolean
types, and empty lists for lists.
Copyright © 2015 IEEE. All rights reserved. 305

IEEE
Std 1647-2015 IEEE STANDARD
18.3 =

This assigns the value of the RHS expression to the LHS expression (see also Clause 5).

NOTE—There are two other places within the e language that make use of the equal sign. These are a double equal sign
(==) for specifying equality in Boolean expression and a triple equal sign (===) for the Verilog-like identity operator.
Do not confuse these two operators with the single equal sign (=) assignment operator.

Syntax example:

sys.u = 0x2345

18.4 op=

This performs the specified operation on the two expressions and assigns the result to the LHS expression.

Syntax example:

sys.c.count1 += 5

Purpose Simple assignment

Category Action

Syntax lhs-exp=exp

Parameters

lhs-exp A legal e expression that evaluates to a variable of a method, a global vari-
able, a field of a struct, or an HDL object. The expression can contain the list
index operator [n], the bit access operator [i:j], or the bit concatenation
operator %{}.

exp A legal e expression, either an untyped expression (such as an HDL object) or
an expression of the same type as the lhs-exp.

Purpose Compound assignment

Category Action

Syntax lhs-exp op=exp

Parameters

lhs-exp A legal e expression that evaluates to a variable of a method, a global vari-
able, a field of a struct, or an HDL object.

op A binary operator, including binary bitwise operators (except ~), the Boolean
operators and and or, and the binary arithmetic operators.

exp A legal e expression of the same type as the lhs-exp.
306 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
18.5 <=

The delayed assignment action assigns a struct field just before the next @sys.new_time (see 11.1.4.2) after
the action. The purpose is to support raceless coding in e by providing the same results regardless of the
evaluation order of TCMs and TEs. Both expressions are evaluated immediately (not delayed) in the current
context. The assignment is not considered a time-consuming action; it can be used in both TCMs and in
regular methods, in on action blocks and in exec action blocks.

a) If a field has multiple delayed assignments in the same cycle, they are performed in the specified
order. The final result is taken from the last delayed assignment action.

b) Unlike in HDL languages, the delayed assignment in e does not emit any events; thus, zero-delay
iterations are not supported.

c) The LHS expression in the delayed assignment action can only be a field. Unlike the assignment
action, the delayed assignment action does not accept any assignments to the following:

1) Variable of a method

2) List item

3) Bit

4) Bit slice

5) Bit concatenation expression

Example

The following example shows how delayed assignment provides raceless coding. In this example, there is
one incrementing() TCM, which repeatedly increments the sys.a and sys.da fields, and one
observer() TCM, which observes their value.

<’
extend sys {
 !a : int;
 !da : int;

 incrementing()@any is {
 for i from 1 to 5 do {
 a = a + 1;
 da <= da + 1;
 wait cycle
 };
 stop_run()
 };

 observer()@any is {

Purpose Delayed assignment

Category Action

Syntax [struct-exp.]field-name <= exp

Parameters

struct-exp A legal e expression that evaluates to a struct. The default is me.

field-name A field of the struct referenced by struct-exp.

exp A legal e expression, either an untyped expression (such as an HDL object) or
an expression of the same type as the lhs-exp.
Copyright © 2015 IEEE. All rights reserved. 307

IEEE
Std 1647-2015 IEEE STANDARD
 while TRUE do {

 out("observing ’a’ as ", a, " observing ’da’ as ", da);

 wait cycle

 }

 };

 run() is also {

 start observer();

 start incrementing()

 }

}

’>

The following results show the value of sys.a observed by the observer() TCM is order-dependent,
depending on whether observer() is executed before or after incrementing(). The observed value
of sys.da, however, is independent of the execution order. Even if incrementing() runs first,
sys.da gets its incremented value just before the next new_time event, and thus is not be seen by
observer().

If observer() runs before incrementing():

observing 'a' as 0 observing 'da' as 0

observing 'a' as 1 observing 'da' as 1

observing 'a' as 2 observing 'da' as 2

observing 'a' as 3 observing 'da' as 3

observing 'a' as 4 observing 'da' as 4

If incrementing() runs before observer():

observing 'a' as 1 observing 'da' as 0

observing 'a' as 2 observing 'da' as 1

observing 'a' as 3 observing 'da' as 2

observing 'a' as 4 observing 'da' as 3

observing 'a' as 5 observing 'da' as 4

308 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
19. Packing and unpacking

Packing and unpacking operate on scalars, strings, lists, and structs. The following subclauses show how to
perform basic packing and unpacking of these data types using two of the e basic packing tools, the pack()
and unpack() methods. See also 5.2.

19.1 Basic packing

The following subclauses detail how to pack, unpack, and swap data.

19.1.1 pack()

This performs concatenation of items, including items in a list or fields in a struct, in the order specified by
the pack options parameter, and returns a list of bits. This method also performs type conversion between
any of the following:

— Scalars

— Strings

— Lists and list subtypes (derived structs)

Packing is commonly used to prepare high-level e data into a form that can be applied to a DUT. It operates
on scalar or compound (struct or list) data items. Pack expressions are untyped expressions. In many cases,
the e program can deduce the required type from the context of the pack expression (see 5.2). An unbounded
integer cannot be packed.

Syntax example:

i_stream = pack(packing.high, opcode, operand1, operand2)

Purpose Perform concatenation and type conversion

Category Pseudo-routine

Syntax pack(option:pack option, item: exp, ...): list of bit

Parameters

option For basic packing, this parameter is one of the following choices. See 19.3 for
information on other pack options.

a) packing.high—Places the LSB of the last physical field declared or
the highest list item at index [0] in the resulting list of bit. The MSB
of the first physical field or lowest list item is placed at the highest
index in the resulting list of bit.

b) packing.low—Places the LSB of the first physical field declared or
the lowest list item at index [0] in the resulting list of bit. The MSB
of the last physical field or highest list item is placed at the highest
index in the resulting list of bit.

c) NULL—If NULL is specified, the global default is used. This global
default is set initially to packing.low.

item A legal e expression that is a path to a scalar or a compound data item, such
as a struct, field, list, or variable.
Copyright © 2015 IEEE. All rights reserved. 309

IEEE
Std 1647-2015 IEEE STANDARD
19.1.2 unpack()

This converts a raw bit stream into high-level data by storing the bits of the value expression into the target
expressions. If the value expression is not a list of bit, it is first converted (see 19.5) into a list of bit by
calling pack() using packing.low. Then, the list of bits is unpacked into the target expressions.

The value expression is allowed to have more bits than are consumed by the target expressions. In that case,
if packing.low is used, the extra high-order bits are ignored; if packing.high is used, the extra low-order
bits are ignored.

Unpacking is commonly used to convert raw bit stream output from the DUT into high-level e data. It
operates on scalar or compound (struct or list) data items.

Syntax example:

unpack(packing.high, lob, s1, s2)

Purpose Unpack a bit stream into one or more expressions

Category Pseudo-routine

Syntax unpack(option: pack option, value: exp, target1: exp [, target2: exp, ...])

Parameters

option For basic packing, this parameter is one of the following choices. See 19.3 for
information on other pack options.

a) packing.high—Places the MSB of the list of bits at the MSB of the
first field or lowest list item. The LSB of the list of bits is placed into
the LSB of the last field or highest list item.

b) packing.low—Places the LSB of the list of bits at the LSB of the
first field or lowest list item. The MSB of the list of bits is placed
into the MSB of the last field or highest list item.

c) NULL—If NULL is specified, the global default is used. This global
default is set initially to packing.low.

value A scalar expression or list of scalars that provides a value that is to be
unpacked.

target1, target2 One or more expressions separated by commas (,). Each expression is a path
to a scalar or a compound data item, such as a struct, field, list, or variable.
310 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
19.1.3 swap()

This predefined list method accepts a list of bits, changes the order of the bits, and then returns the reordered
list of bits. This method is often used in conjunction with pack() or unpack() to reorder the bits in a bit
stream going to or coming from the DUT.

— If large is not a factor of the number of bits in the entire list, an error message shall result.

— If small is not a factor of large, an error message shall also result. The only exception is if large is
UNDEF and small is not a factor, the swap is not performed and no error message is issued.

Example

Figure 12 shows two swaps. The first swap reverses the order of nibbles in every byte. The second swap
reverses the whole list.

Syntax example:

s2 = s1.swap(2, 4)

Purpose Swap small bit chunks within larger chunks

Category Pseudo-routine

Syntax list-of-bit.swap(small: int, large: int): list of bit

Parameters

small An integer that is a factor of large.

large An integer that is either UNDEF or a factor of the number of bits in the entire
list. If UNDEF, the method reverses the order of small chunks within the entire
list, e.g., lob.swap(1, UNDEF) is the same as lob.reverse().

0 000 1 00 1 1 001 1 11 1
my_list

1 000 0 10 0 1 110 1 10 1

my_list.swap(4, 8)

1 111 0 11 0 0 110 0 00 0

my_list.swap(1, UNDEF)

0 000 1 00 1 1 001 1 11 1
my_list

Figure 12—Swapping examples
Copyright © 2015 IEEE. All rights reserved. 311

IEEE
Std 1647-2015 IEEE STANDARD
19.2 Predefined pack options

This subclause details the predefined pack options: packing.high, packing.low, and
packing.global_default.

19.2.1 pack_options struct

The predefined instances are all instances of the pack_options struct. The pack_options declaration is:

struct pack_options {

 reverse_fields : bool;

 reverse_list_items : bool;

 final_reorder : list of int;

 scalar_reorder : list of int

}

The following subclauses describe each of its fields.

19.2.1.1 reverse_fields

If this flag is set to FALSE, the fields in a struct are packed in the order they appear in the struct declaration;
if TRUE, they are packed in reverse order. The default is FALSE.

19.2.1.2 reverse_list_items

If this flag is set to FALSE, the items in a list are packed in ascending order; if TRUE, they are packed in
descending order. The default is FALSE.

19.2.1.3 final_reorder

The final_reorder field can be used after packing each element in the packing expression to perform final
swapping on the resulting bit stream. The list in the final_reorder field shall include an even number of
items. Each pair of items in the list is the parameter list of a swap() operation (see 19.1.3). To perform
multiple swaps, use multiple pairs of parameters (each parameter pair corresponds to a pair of swap
parameters).

19.2.1.4 scalar_reorder

The scalar_reorder field can be used to perform one or more swap() operations on each scalar before
packing. The list in the scalar_reorder field shall include an even number of items. Each pair of items in the
list is the parameter list of a swap() operation (see 19.1.3). To perform multiple swaps, use multiple pairs of
parameters (each parameter pair corresponds to a pair of swap parameters).

19.2.2 Predefined settings

Table 38 shows the corresponding settings for each of the predefined pack options (packing.high,
packing.low, and packing.global_default). To customize a packing option, see 19.3.
312 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
19.2.3 packing.high

This pack_options instance traverses the source fields or variables in the reverse order from the order in
which they appear in code, placing the LSB of the last field or list item at index [0] in the resulting list of bit.
The MSB of the first field or list item is placed at the highest index in the resulting list of bit.

19.2.4 packing.low

This pack_options instance traverses the source fields or variables in the order they appear in code, placing
the LSB of the first field or list item at index [0] in the resulting list of bit. The MSB of the last field or list
item is placed at the highest index in the resulting list of bit.

19.2.5 packing.global_default

This pack_options instance is used when the first parameter of pack(), unpack(), do_pack(), or
do_unpack() is NULL. It has the same flags as packing.low.

19.3 Customizing pack options

Each of the predefined instances defined within the pack_options struct (see 19.2.1) can also be modified.
To customize the packing options:

a) Create an instance of the pack_options struct;

b) Modify one or more of its fields;

c) Pass the struct instance as the first parameter to pack(), unpack(), do_pack(), or do_unpack().

19.4 Packing and unpacking specific types

This subclause defines how to operate on structs, lists, scalars, and strings.

19.4.1 Packing and unpacking structs

Packing a struct creates an ordered bit stream from all the physical fields (marked with %) in the struct,
starting with the first physical field declared. Other fields (called virtual fields) are ignored by the packing
process. If a physical field is of a compound type (struct or list), the packing process descends recursively
into the struct or list.

Table 38—Predefined packing options

Flag packing.high packing.low packing.global_default

reverse_fields True False False

reverse_list_items True False False

final_reorder 0 0 0

scalar_reorder 0 0 0
Copyright © 2015 IEEE. All rights reserved. 313

IEEE
Std 1647-2015 IEEE STANDARD
Unpacking a bit stream into a struct fills the physical fields of the struct, starting with the first field declared
and proceeding recursively through all the physical fields of the struct. Unpacking a bit stream into a field
that is a list follows some additional rules (see 19.4.2).

Unpacking a struct that has not yet been allocated (with new) causes the e program to allocate the struct and
run the struct’s init() method. Unlike new, the struct’s run() method is not called.

19.4.1.1 Customizing packing for a particular struct

A struct is packed or unpacked using its predefined methods do_pack() and do_unpack(). It is possible to
modify these predefined methods for a particular struct. These methods are called automatically whenever
data is packed from or unpacked into the struct.

19.4.1.1.1 do_pack()

The do_pack() method of a struct is called automatically whenever the struct is packed. This method
appends data from the physical fields (the fields marked with %) of the struct into a list of bits according to
flags determined by the pack options parameter. The virtual fields of the struct are skipped. The method
shall issue a runtime error message if this struct has no physical fields.

The do_pack() method can be extended to create a unique packing scenario for that struct by creating a
custom pack_options instance (see 19.3).

The following considerations also apply:

— Do not call the do_pack() method of any struct directly, e.g., my_struct.do_pack(). Use
pack() instead, e.g., pack(packing.high, my_struct).

— Do not call pack(me) in the do_pack() method. This causes infinite recursion. Call
packing.pack_struct(me) instead.

— Append the results of any pack operation within do_pack() to the empty list of bits referenced in the
do_pack() parameter list.

— If the do_pack() method is modified and then physical fields are added later in an extension to the
struct, that do_pack() might need to be modified again.

Example

The following assignment to lob

lob = pack(packing.high, i_struct, p_struct)

makes the following calls to the do_pack method of each struct, where tmp is an empty list of bits:

i_struct.do_pack(packing.high, *tmp);

Purpose Pack the physical fields of the struct

Category Predefined method of any_struct

Syntax do_pack(options:pack options, l: *list of bit)

Parameters

options This parameter is an instance of the pack_options struct (see 19.3).

l An empty list of bits that is extended as necessary to hold the data from the
struct fields.
314 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
p_struct.do_pack(packing.high, *tmp)

Syntax example:

do_pack(options:pack_options, l:*list of bit) is only {
 var L : list of bit = pack(packing.low, operand2,
 operand1, operand3);

 l.add(L)
}

19.4.1.1.2 do_unpack()

The do_unpack() method is called automatically whenever data is unpacked into the current struct. This
method unpacks bits from a list of bits into the physical fields of the struct. It starts at the bit with the
specified index, unpacks in the order defined by the pack options, and fills the current struct’s physical fields
in the order they are defined.

This method returns an integer, which is the index of the last bit unpacked into the list of bits.

The method shall issue a runtime error message if the struct has no physical fields. If there are leftover bits at
the end of packing, it is not an error. If more bits are needed than currently exist in the list of bits, a runtime
error shall be issued.

The do_unpack() method can be extended to create a unique unpacking scenario for that struct by creating a
custom pack_options instance (see 19.3).

The following considerations also apply:

— Do not call the do_unpack() method of any struct directly, e.g., my_struct.do_unpack(). Use
unpack() instead, e.g., unpack(packing.high, lob, my_struct).

— When the do_unpack() method is modified, the index of the last bit in the list of bits that was
unpacked also needs to be calculated and returned.

Example

The following call to unpack()

unpack(packing.low, lob, c1, c2)

makes the following calls to the do_unpack method of each struct:

Purpose Unpack a packed list of bit into a struct

Category Predefined method of any_struct

Syntax do_unpack(options:pack options, l: list of bit, from: int): int

Parameters

options This parameter is an instance of the pack_options struct (see 19.3).

l A list of bits containing data to be stored in the struct fields.

from An integer that specifies the index of the bit to start unpacking.

int (return value) An integer that specifies the index of the last bit in the list of bits that was
unpacked.
Copyright © 2015 IEEE. All rights reserved. 315

IEEE
Std 1647-2015 IEEE STANDARD
c1.do_unpack(packing.low, lob, index);

c2.do_unpack(packing.low, lob, index)

Syntax example:

do_unpack(options:pack_options, l:list of bit, src:int): int is only {

 var L : list of bit = l[src..];

 unpack(packing.low, L, op2, op1, op3);

 return src + 8 + 5 + 3 //bit-width of operands

}

19.4.1.2 A simple example of packing

This example shows how packing converts data from a struct into a stream of bits. An instruction
struct is defined as:

struct instruction {

 %opcode : uint (bits:3);

 %operand : uint (bits:5);

 %address : uint (bits:8);

 !data_packed_low : list of bit;

 keep opcode == 0b100;

 keep operand == 0b11001;

 keep address == 0b00001111

}

The post_generate() method of this struct is extended to pack the opcode and the operand fields into
two variables. The order in which the fields are packed is controlled with the packing option parameter.

data_packed_low = pack(NULL, opcode, operand)

When NULL is passed as the packing option parameter, the LSB of the first expression in pack(), opcode,
is placed at index [0] in the resulting list of bit. The MSB of the last expression, operand, is placed at the
highest index in the resulting list of bit. Figure 13 shows this packing order.

The “instruction” struct with two fields:

opcode == 0x4

operand == 0x19

1

1 0 0

1 1 10 0

1 001 10 0

The two fields packed into a bit stream, using the default ordering

opcode operand

list of bit [7] list of bit [0]

Figure 13—Simple packing example showing packing.low
316 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
19.4.1.3 A simple example of unpacking

This example shows how packing fills the fields of a struct instance with data from a bit stream. An
instruction struct is defined as:

struct instruction {
 %opcode : uint (bits:3);
 %operand : uint (bits:5);
 %address : uint (bits:8)
}

The extension to post_generate() shown as follows unpacks a list of bits, packed_data, into a variable
inst of type instruction using the packing.high option. The results are shown in Figure 14.

extend sys {
 post_generate() is also {
 var inst : instruction;
 var packed_data : list of bit;

 packed_data = {1;1;1;1;0;0;0;0;1;0;0;1;1;0;0;1};
 unpack(packing.high, packed_data, inst)
 }
}

In this case, the expression that provides the value, packed_data, is a list of bits. When a value
expression is not a list of bits, e uses implicit packing to store the data in the target expression (see 19.5).

19.4.2 Packing and unpacking lists

Packing a list creates a bit stream by concatenating the list items together, starting with the item at index [0].

Unpacking a bit stream into a list fills the list item-by-item, starting with the item at index [0]. The size of
the unpacked list is determined by whether the list is sized and whether it is empty.

— Unpacking into an empty list expands the list as needed to contain all the available bits.

— Unpacking into a non-empty list unpacks only until the existing list size is reached.

— Unpacking to a struct fills the sized lists only to their defined size, regardless of their actual size at
the time.

The packed data

1 1 10 0 10 0

The result of unpacking the data with packing.high:

0 010 1 11 0

opcode == 0x4

operand == 0x19

1 0 0

1 1 10 0

address == 0x0f 1 110 0 10 0

Figure 14—Simple unpacking example showing packing.high
Copyright © 2015 IEEE. All rights reserved. 317

IEEE
Std 1647-2015 IEEE STANDARD
— Unpacking into an unsized, uninitialized list shall cause a runtime error message, because the list is
expanded as needed to consume all the given bits.

NOTE—When a struct is allocated, the lists within it are empty. If the lists are sized, unpacking is performed until the
defined size is reached.

See Clause 4 for more information on sizing lists.

Example

This example shows the recommended way to get a variable number of list items. The specification order is
important because the len1 and len2 values need to be set before initializing data1 and data2.
Declaring len1 and len2 before data1 and data2 ensures the list length is generated first. Unpacking
into a list with a variable number of items requires packing and passing the number of items in the list before
unpacking the list.

struct packet {

 %len1 : int;

 %len2 : int;

 %data1[len1] : list of byte;

 %data2[len1 + len2] : list of byte

}

19.4.3 Packing and unpacking scalar expressions

Packing a scalar expression creates an ordered bit stream by concatenating the bits of the expression
together. Unpacking a bit stream into a scalar expression fills the scalar expression by putting the lowest bit
of the bit stream into the lowest bit of the scalar expression. If a list is unpacked into one or more scalar
expressions and there are not enough bits in the list to put a value into each scalar, a runtime error shall be
issued.

Packing and unpacking of a scalar expression is performed using the expression’s inherent size, except when
the expression contains a bit-slice operator. Missing bits are assumed to be zero (0) and extra bits are
allowed (and ignored). See also 5.1.

The bit-slice operator [:] can also be used to select a subrange of an expression to be packed or unpacked.
This operator does not change the type of the pack or unpack expression.

19.4.4 Packing and unpacking strings

Packing a string creates an ordered bit stream by concatenating each ASCII byte of the string together from
left-to-right, ending with a byte with the value zero (the final NULL byte). Unpacking a string places the
bytes of the string into the target expression, starting with the first ASCII byte in the string up to and
including the first byte with the value zero (0).

The as_a() method, which converts directly between the string and list of byte types, can also be used to
obtain different results (see 5.8.1).

19.4.5 Packing values for real types

Real values take up 64 bits when packed. These bits are actual bit representations of the double value. The
effect of the various packing options on real type objects is similar to their effect on an integer (bits:64)
value.
318 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
19.5 Implicit packing and unpacking

Implicit packing and unpacking is always performed using the parameters of packing.low as follows.

— When an untyped expression is assigned to a scalar or list of scalars, it is implicitly unpacked before
it is assigned. Untyped expressions include HDL signals, pack expressions, and bit concatenations
(see 5.2).

var my_list : list of int = {1; 2; 3};
var int_10 : int(bits:10);

my_list = ’top.foo’;
int_10 = pack(NULL, 5))

— When a scalar or list of scalars is assigned to an untyped expression, it is implicitly packed before it
is assigned:

’top.foo’ = {1; 2; 3}

— When the value expression of an unpack action is other than a list of bits, it is implicitly packed
before it is unpacked:

unpack(packing.low, 5, my_list)

Implicit packing and unpacking is not supported for strings, structs, or lists of non-scalar types.
Copyright © 2015 IEEE. All rights reserved. 319

IEEE
Std 1647-2015 IEEE STANDARD
320 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
20. Control flow actions

This clause describes the e control flow actions.

20.1 Conditional actions

Conditional actions are used to specify code segments that execute only when a specific condition is met.

20.1.1 if then else

If the first bool-exp is TRUE, the then action block is executed. If the first bool-exp is FALSE, the else if
clauses are executed sequentially: if an else if bool-exp is found that is TRUE, its then action block is
executed; otherwise, the final else action block is executed.

Because if then else is a single action, no semicolons (;) should appear between if and else, unless they are
required to separate two or more actions within one of the action blocks.

NOTE—Since else if then clauses can be used for multiple Boolean checks (comparisons), consider using a case bool-
case-item action (see 20.1.3) when there are a large number of comparisons to perform.

Syntax example:

if a > b then {
 print a, b
} else if a == b then {
 print a
} else {
 print b, a
}

Purpose Perform an action block if a given Boolean expression is TRUE or a different action if the
expression is FALSE

Category Action

Syntax if bool-exp [then] {action; ...} [else if bool-exp [then] {action; ...}] [else {action; ...}]

Parameters

bool-exp A Boolean expression.

action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).
Copyright © 2015 IEEE. All rights reserved. 321

IEEE
Std 1647-2015 IEEE STANDARD
20.1.2 case labeled-case-item

This evaluates the case-exp and executes the first action-block for which label-exp matches the case-exp. If
no label-exp matches the case-exp, it executes the default-action block, if specified.

Whether or not a label-exp matches the case-exp is determined as follows:

— If case-exp and label-exp are of comparable types, that is, the equality operator (==) is applicable to
two operands of these types, then matching is determined by applying the equality operator to the
two expressions: label-exp matches the case-exp if case-exp==label-exp returns TRUE.

— Otherwise, matching is determined by applying the inclusion operator (in) to the two expressions:
label-exp matches the case-exp if case-exp in label-exp returns TRUE.

After an action-block is executed, the e program proceeds to the line that immediately follows the entire
case statement.

Syntax example:

case packet.length {

 64 : {out("minimal packet") };

 [65..256] : {out("short packet") };

 [257..512] : {out("long packet") };

 default : {out("illegal packet length")}

}

Purpose Execute an action block based on whether a given comparison is TRUE

Category Action

Syntax case case-exp {labeled-case-item; ... [default[:] {default-action; ...}]}

Parameters

case-exp A legal e expression.

labeled-case-
item

label-exp[:] action-block
where

label-exp is a legal e expression or an enumerated constant range, as
follows:

if case-exp is of a numeric type, label-exp must be of a
numeric type, or of a numeric list type, or of the set type

if case-exp is of an enumerated type, label-exp must be
of the same or comparable enumerated type, or of a list
type thereof, or it must be a range of enumerated item
constants thereof

if case-exp is of another type, label-exp must be of a
comparable type or of a list type thereof

action-block is a list of zero or more actions separated by semicolons
and enclosed in braces. Syntax: {action;...}

The entire labeled-case-item is repeatable, not just the action-block related to
the label-exp.

default-action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).
322 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
20.1.3 case bool-case-item

This evaluates the bool-exp conditions one after the other and executes the action-block associated with the
first TRUE bool-exp. If no bool-exp is TRUE, it executes the default-action-block, if specified. After an
action-block is executed, the e program proceeds to the line that immediately follows the entire case
statement.

Each of the bool-exp conditions is independent of the other bool-exp conditions and there is no main case-
exp to which all cases refer, unlike the case labeled-case-item (see 20.1.2).

NOTE—This case action has the same functionality as a single if then else action, where each bool-case-item is
specified as a separate else if then clause.

Syntax example:

case {
 packet.length == 64 {out("minimal packet")};
 packet.length in [65..255] {out("short packet") };
 default {out("illegal packet")}
}

20.2 Iterative actions

Iterative actions are used to specify code segments that execute in a loop, for multiple times, in a sequential
order.

NOTE 1—A repeat until action performs the action block at least once. A while action might not perform the action
block at all.

NOTE 2—The optional do syntax used in some of the constructs of this subclause is purely syntactic sugar.

Purpose Execute an action block based on whether a given comparison is TRUE

Category Action

Syntax case {bool-case-item; ... [default {default-action; ...}]}

Parameters

bool-case-item bool-exp[:] action-block
where

bool-exp is a Boolean expression

action-block is a list of zero or more actions separated by semicolons
and enclosed in braces. Syntax: {action;...}

The entire bool-case-item is repeatable, not just the action-block related to the
bool-exp.

default-action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).
Copyright © 2015 IEEE. All rights reserved. 323

IEEE
Std 1647-2015 IEEE STANDARD
20.2.1 while

This executes the action block repeatedly in a loop while bool-exp is TRUE. This construct can be used to set
up a perpetual loop as while TRUE {}. The loop shall not execute at all if the bool-exp is FALSE when
the while action is encountered.

Syntax example:

while a < b do {
 a += 1
}

20.2.2 repeat until

This executes the action block repeatedly in a loop until bool-exp is TRUE. The action block is executed at
least once.

Syntax example:

repeat {
 i += 1
} until i == 3

Purpose Execute an action block repeatedly as long as a Boolean expression evaluates to TRUE

Category Action

Syntax while bool-exp [do] {action; ...}

Parameters

bool-exp A Boolean expression.

action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

Purpose Execute an action block repeatedly as long as a Boolean expression evaluates to FALSE

Category Action

Syntax repeat {action; ...} until bool-exp

Parameters

action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

bool-exp A Boolean expression.
324 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
20.2.3 for each in

For each item in list-exp, if its type matches type, this executes the action block. Inside the action block, the
implicit variable it (if no item-name is specified) or the optional item-name (when specified) refers to the
matched item, and the implicit variable index (or the optional index-name) reflects the index of the current
item. If reverse is specified, list-exp is traversed in reverse order, from last to first. The implicit variable
index (or the optional index-name) starts at zero (0) for regular loops and at list.size()-1 for reverse
loops.

Each for each in action defines two new local variables for the loop, named by default it and index. The
following restrictions also apply:

a) When loops are nested inside one another, the local variables of the internal loop hide those of the
external loop. To overcome this, assign each item-name and index-name unique names.

b) Within the action block, a value cannot be assigned to it or index—or to item-name or index-name.

Syntax example:

for each transmit packet (tp) in sys.pkts do {
 print tp // "transmit packet" is a type
}

Purpose Execute an action block once for every element of a list expression

Category Action

Syntax for each [type] [(item-name)] [using index (index-name)]
in [reverse] list-exp [do] {action; ...}

Parameters

type A type of the struct comprising the list specified by list-exp. Elements in the
list shall match this type.

item-name The name of the current item in list-exp. If this parameter is not specified, the
item can be referenced using the implicit variable it.

index-name The name of the index of the current list item. If this parameter is not speci-
fied, the item can be referenced using the implicit variable index.

list-exp An expression that results in a list.

action;... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).
Copyright © 2015 IEEE. All rights reserved. 325

IEEE
Std 1647-2015 IEEE STANDARD
20.2.4 for each in set

For each numeric included in set-exp, this executes the action block. If type is specified, the element is
automatically cast to type; otherwise, an unbounded integer is used. Inside the action block, the implicit
variable it (if no item-name is specified) or the optional item-name (when specified) refers to the element. If
reverse is specified, the elements are traversed in decreasing order; otherwise, they are traversed in
increasing order.

Each for each in set action defines a new local variable for the loop, named by default it. The following
restrictions also apply:

a) When loops are nested inside one another, the local variable of the internal loop hide that of the
external loop. To overcome this, assign each item-name a unique name.

b) Within the action block, a value cannot be assigned to it or to item-name .

Syntax example:

for each uint (n) in my_set do {
print n

}

Purpose Execute an action block once for every element included in a set

Category Action

Syntax for each [type] [(item-name)] in [reverse] set set-exp [do] {action; ...}

Parameters

type A numeric type.

item-name The name of the current set element. If this parameter is not specified, the ele-
ment can be referenced using the implicit variable it.

set-exp An expression that results in a set.

action;... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).
326 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
20.2.5 for from to

This creates a temporary variable var-name of type int and repeatedly executes the action block while
incrementing (or decrementing if down is specified) its value from from-exp to to-exp in interval values
specified by step-exp (which defaults to 1), i.e., the loop is executed until the value of var-name is greater
than the value of to-exp or less than to-exp.

The temporary variable var-name is visible only within the for from to loop where it was created.

Syntax example:

for i from 5 down to 1 do {

 out(i)

} // Outputs 5,4,3,2,1

20.2.6 for

The for loop works similarly to the for loop in the C language. This for loop executes the initial-action
once and then checks the bool-exp. If the bool-exp is TRUE, it executes the action block followed by the
step-action. It repeats this sequence in a loop for as long as bool-exp is TRUE. The following restrictions also
apply:

a) When a loop variable is used within a for loop, it needs to be declared before the loop (unlike the
temporary variable of type int automatically declared in a for from to loop).

Purpose Execute a for loop for the number of times specified

Category Action

Syntax for var-name from from-exp [down] to to-exp [step step-exp] [do] {action; ...}

Parameters

var-name A temporary variable of type int.

from-exp, to-exp,
step-exp

Valid e expressions that resolve to type int.
The default value for step-exp is 1.

action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

Purpose Execute a C style for loop

Category Action

Syntax for {initial-action; bool-exp; step-action} [do] {action; ...}

Parameters

initial-action An action.

bool-exp A Boolean expression

step-action An action.

action;... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).
Copyright © 2015 IEEE. All rights reserved. 327

IEEE
Std 1647-2015 IEEE STANDARD
b) Although this action is similar to a C-style for loop, the initial-action and step-action need to be
e style actions.

Syntax example:

for i from 5 down to 1 do {
 out(i)
} // Outputs 5,4,3,2,1

20.3 File iteration actions

This subclause describes loop constructs, which are used to manipulate general ASCII files.

20.3.1 for each line in file

This executes the action block for each line in the text file file-name. Inside the block, it (if no name is
specified) or name (if specified) refers to the current line (as a string) without the final line feed (\n)
character.

NOTE—The optional line syntax is purely syntactic sugar.

Syntax example:

for each line in file "signals.dat" do {
 ’(it)’ = 1
} // Reads a list of signal names and assigns to each the value 1

Purpose Iterate a for loop over all lines in a text file

Category Action

Syntax for each [line] [(name)] in file file-name-exp [do] {action; ...}

Parameters

name Variable referring to the current line in the file.

file-name-exp A string expression that gives the name of a text file.

action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).
328 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
20.3.2 for each file matching

For each file (in the file search path) whose name matches file-name-exp, this executes the action block.
Inside the block, it (if no name is specified) or name (if specified) refers to the matching file name.

Syntax example:

for each file matching "*.e" do {
 out(it)
} // lists the ’e’ files in the current directory

20.4 Actions for controlling the program flow

These actions alter the flow of the program in places where the flow would otherwise continue differently.

20.4.1 break

This breaks the execution of the nearest enclosing iterative action (for or while). When a break action is
encountered within a loop, the execution of actions within the loop is terminated and the next action to be
executed is the first one following the loop.

break actions shall not be placed outside the scope of a loop (or the compiler shall report an error).

Syntax example:

break

Purpose Iterate a for loop over a group of files

Category Action

Syntax for each file [(name)] matching file-name-exp [do] {action; ...}

Parameters

name Variable referring to the current line in the file.

file-name-exp A string expression that gives the name of a text file.

action; ... A list of zero or more actions separated by semicolons (;) and enclosed in
braces ({}).

Purpose Break the execution of a loop

Category Action

Syntax break
Copyright © 2015 IEEE. All rights reserved. 329

IEEE
Std 1647-2015 IEEE STANDARD
20.4.2 continue

This stops the execution of the nearest enclosing iteration of a for or while loop, and continues with the next
iteration of the same loop. When a continue action is encountered within a loop, the current iteration of the
loop is aborted, and execution continues with the next iteration of the same loop.

continue actions shall not be placed outside the scope of a loop (or the compiler shall report an error).

Syntax example:

continue

Purpose Stop executing the current loop iteration and start executing the next loop iteration

Category Action

Syntax continue
330 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
21. Importing and preprocessor directives

This clause contains the following subclauses:

a) Importing e modules—Defines how to use the import statement.

b) #ifdef/#ifndef—Use these preprocessor directives to control e processing. The preprocessor direc-
tives check for the existence of a #define for a given name.

1) #ifdef—If a given name is defined, use the attached code; otherwise, use different code.

2) #ifndef—If a given name is not defined, use the attached code; otherwise, use different code.

The #ifdef and #ifndef directives can be used as statements, struct members, or actions.

c) #define—Defines a preprocessor replacement rule (or flag).

d) #undef—Removes the definition of the replacement rule (or flag).

See also Clause 15 and Annex B.

21.1 Importing e modules

Import statements declare dependency between two modules (e files). An import statement ensures entities
(types, methods, fields, etc.) declared in the imported module are available in the importing module. See
also 4.1.1.

21.1.1 import

Source files in e are taken as modules. A module bears the name of the file from which it was read (without
the extension) and this name serves to identify it.

An e environment can load a module only once. Thus, an import statement shall cause the imported module
to be loaded into the environment only if no module by that name is already loaded.

When a module is required by an import statement and that module is not already loaded, the file is
searched for in the file system according to some (implementation-dependent) set of search priorities.

import statements determine not only which modules need to be loaded, but also the order in which they are
loaded. The exact order can have implications on the semantics of the program. See also B.4.

Syntax example:

import test_drv.e

Purpose Declare dependency of the current module on others.

Category Statement

Syntax import file-name, ... | (file-name, ...)

Parameters

 file-name, ... One or more names of e files, separated by commas (,). If no extension is
given for a file name, an .e extension is assumed. File names can contain
references to environment variables using the POSIX-style notation $name or
${name}. The relative path indicators ./ and ../ can be used in file names.
Enclosing the file-name list in parentheses [()] signifies explicit cyclic
import (see 21.1.2).
Copyright © 2015 IEEE. All rights reserved. 331

IEEE
Std 1647-2015 IEEE STANDARD
21.1.2 Cyclic referencing and importing

e allows mutually dependent definitions both within a single module and between different modules
(forward referencing). A dependency unit is a portion of code in which use can be made of entities declared
anywhere within it. By default, each module (source file) is a dependency unit by itself. When the
definitions in one module presuppose entities declared in another and vice versa, both modules shall belong
to a single dependency unit. The same holds for cyclic dependencies of any number of modules.

import statements are used to handle cyclic dependencies between modules either implicitly or explicitly. In
both cases, code anywhere inside the set of modules can make use of entities declared anywhere else in these
modules.

— Implicit cycles in the import graph are cases where module m1 imports module m2, which imports
m3, ... and module mn imports m1 again. All of these are taken as a single dependency unit.

— Explicit cycles are declared by an import statement with a list of modules enclosed in parentheses
[()]. In this case, the modules stated are taken as a dependency unit on which the current module
depends.

See B.3 for more on cyclic importing.

21.2 #ifdef, #ifndef

The #ifdef and #ifndef preprocessor directives can be used along with #define to cause the e parser to
process particular code or ignore it, depending on whether a given name has been defined.

— The #ifdef syntax checks whether the name has been defined and, if it has, includes the code inside
the (first) braces ({}).

— The #ifndef syntax checks whether the name has been defined and if it has not, includes the code
inside the (first) braces ({}).

The optional #else syntax provides an alternative statement when the condition of the #ifdef or #ifndef does
not hold.

— For #ifdef, if the name has not been defined, the #else code is included.

— For #ifndef, if the name has been defined, the #else code is included.

Purpose Conditionally include a set of constructs at compile-time

Category Statement, struct member, action

Syntax #if[n]def [`]name [then] {e-code}
[#else {e-code}]

Parameters

name An e identifier. When preceded by backtick (‘), a Verilog-style define is
intended.

e-code e code to be included, based on whether the preprocessor define has been
defined.

— For an #ifdef or #ifndef statement, only e statements can be used in
e-code.

— For an #ifdef or #ifndef struct member, only struct members can be
used in e-code.

— For an #ifdef or #ifndef action, only actions can be used in e-code.
332 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

#ifdef MEM_LG then {
import mml.e

}

21.3 #define

The defined name functions both as a preprocessor flag and replacement rule. As a flag, it affects subsequent
conditional compilation directives (#ifdef and #ifndef). As a replacement rule, the given text is substituted
for every occurrence of the name in subsequent code, except inside string literals.

A #define statement applies only to code that comes later with respect to the preprocessing order. In
particular, a #define statement before an import statement might affect the code in the imported module;
but it does not affect it when the module is already loaded or in some cases of cyclic import. See also B.5.

The replacement in a #define statement can contain line breaks (newline characters) only if preceded by
backslash (\). The replacement shall not contain the name; if it does, this shall result in a runtime error.

Use parentheses around the replacement when they are needed to ensure proper associativity, e.g.,

define LX len + m

is different from:

define LX (len + m)

In an expression like lenx = 2*LX, the first case becomes lenx = 2*len + m, while the second case
becomes lenx = 2*(len+m).

Syntax example:

#define PLIST_SIZE 100

Purpose Define a preprocessor flag and replacement rule

Category Statement

Syntax [#]define [`]name [replacement]

Parameters

name Any legal e identifier (case-sensitive). A backtick (‘) prefix signifies a
Verilog-style define. The backtick is taken as part of the defined name
(i.e., defining `X is not equivalent to defining X).

replacement Any syntactic element, for example, an expression or an HDL variable. This
replaces the name wherever the name appears in the e code that follows the
#define statement.
Copyright © 2015 IEEE. All rights reserved. 333

IEEE
Std 1647-2015 IEEE STANDARD
21.4 #undef

This removes a preprocessor rule that was defined previously by a #define statement. The name is not
recognized by the preprocessor from that point onward. Just like #define statements, #undef statements
apply to code that comes later with respect to the preprocessing order. An #undef statement before an
import statement might affect the code in the imported module and other modules imported by it. See also
B.5.

The following rules also apply:

— A preprocessor rule that is undefined in a compiled e module is not accessible to the C interface.

— A preprocessor rule that has been undefined can be redefined later, with any value. The last value is
accessible to the C interface.

— If the undefined preprocessor rule was not previously defined, #undef has no effect.

Syntax example:

#undef PLIST_SIZE

Purpose Undefine a preprocessor rule

Category Statement

Syntax #undef [`]name

Parameters
name An e identifier. When preceded by backtick (‘), a Verilog-style define is

intended.
334 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
22. Encapsulation constructs

This clause contains the syntax and descriptions of the e statements used to create packages and modify
access control.

22.1 package: package-name

This associates a module with a package. Only one package statement can appear in a file and it shall be the
first statement in the file. A file with no package statement is equivalent to a file beginning with the
package main statement (main is the default package).

Syntax example:

package vr_xb

22.2 package: type-declaration

The package modifier can be used to shield the defined struct member from code outside the package files.
This includes declaring a variable of the type, extending, inheriting, casting using the as_a operator, and all
other contexts in which the name of a type is used. It is equivalent to the default (package) access level for
classes in Java™.11

— The definition of a when subtype (using a when or extend clause) does not allow for an access mod-
ifier. A when subtype is public, unless its base struct or one of its determinant fields is declared
package. A when subtype cannot have a private or protected determinant field.

— Any reference to such a when subtype (i.e., with a private or protected determinant field), even in a
context in which the when determinant field is accessible, shall result in a compilation error.

— A package type defined in the main package is visible only inside the main package; this has no
bearing on what the global visibility is when no package restriction is specified.

Purpose Associates a module with a package

Category Statement

Syntax package package-name

Parameters package-name A standard e identifier that assigns a unique name to the package. It is legal
for a package name to be the same as a module or type name.

Purpose Modifies access to a type or a struct

Category Statement

Syntax [package] type-declaration

Parameters type-declaration An e type declaration (for a struct, unit, enumerated list, or other type).

11Java is a trademark of Sun Microsystems, Inc. in the United States and other countries. This information is given for the convenience
of users of this standard and does not constitute an endorsement by the IEEE of these products. Equivalent products may be used if they
can be shown to lead to the same results.
Copyright © 2015 IEEE. All rights reserved. 335

IEEE
Std 1647-2015 IEEE STANDARD
Without the package modifier, the type or struct has no access restriction.

See also D.3.2 and D.3.3.

Syntax example:

package type t : int(bits:16)

22.3 package | protected | private: struct-member

A struct member declaration can include a package, protected, or private keyword to modify access to the
struct member. If no access modifier exists in the declaration of a struct member, the struct member has no
access restriction (the default is public).

— The package modifier means code outside the package files cannot access the struct member. It is
equivalent to the default (package) access level for fields and methods in Java.

— The protected modifier means code outside the struct family scope cannot access the struct member.
It is similar (although not equivalent) to the protected semantics in other OO languages.

The struct family scope is the code within the definition of a struct (declaration and extensions), as
well as the definition of all when and like subtypes.

— The private modifier means only code within both the package and the struct family scope can
access the struct member. This means code within the extension of the same struct in a different
package is outside its accessibility scope.

This modifier is less restrictive than the private attribute of other OO languages, as methods of
derived structs or units within the same package can access a private struct member.

Only fields, methods, and events can have access restrictions. There are other named struct members in e,
namely cover groups and named expects, to which access control does not apply—they are completely
public. However, cover groups and expects are defined in terms of fields, methods, and events, and can
refer to other entities in their definitions according to the accessibility rules.

a) An extension of a struct member can restate the same access modifier as the declaration has or omit
the modifier altogether. If a different modifier appears, the compiler shall issue an error.

b) All references to a struct member outside its accessibility scope shall result in an error at compile
time. Using an enumerated field’s value as a when determinant is considered such a reference, even
if the field name is not explicitly mentioned.

c) If the type of a field or the return type or any parameter type of a method has package access and the
field or method is a member of a struct that is not declared package, the field or method shall be
explicitly declared package or private. If the field or method is not declared package or private
under these conditions, the compiler shall issue an error.

Purpose Modifies access to a struct field, method, or event

Category Keyword

Syntax
package struct-member-definition
protected struct-member-definition
private struct-member-definition

Parameters struct-member-
definition

A struct or unit field, method, or event definition. See Clause 6 for the syn-
tax of struct and unit member definitions.
336 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax examples:

private f : int;
protected m() is {};
package event e

22.4 Scope operator (::)

The scope operator qualifies the name for a given struct, unit, or scalar type by defining the package where
the type belongs. This is required if it would be unclear which type is being referenced. Each type referenced
is evaluated according to the type-scoping rules; an error shall occur if the reference is ambiguous. See also
Annex D.

Syntax example:

xbus_evc : vr_xbus::env_u

Purpose Identify the package scope for the given type reference

Category Special purpose operator

Syntax package-name :: type-name

Parameters
package-name The name of the package where the type was declared.

type-name The name of a struct, unit, or scalar type.
Copyright © 2015 IEEE. All rights reserved. 337

IEEE
Std 1647-2015 IEEE STANDARD
338 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
23. Simulation-related constructs

This clause describes simulation-related actions, expressions, and routines. See also Clause 9.

Simulators can be attached to the e runtime environment by means of a simulator adapter. In addition, it may
be necessary to infer support structures, such as extra registers, to facilitate the integration. Such structures
are placed in a stubs file, which can be generated by the e compiler. The simulation interface and stub file
generation functions are implementation-dependent.

23.1 force

This forces an HDL object to a specified value, overriding the current value and preventing the DUT from
driving any value. The HDL object remains at the specified value until a subsequent force action from e or
until freed by a release action (see 23.2). The following also apply:

— If part of a vectored object is forced, the force action is propagated to the rest of the object.

— To force single elements of an array of a scalar integer or enumerated type, use the predefined rou-
tine simulator_command() (see 23.4).

Syntax example:

force '~/top/sig' = 7

23.2 release

This releases the HDL object that previously has been forced (see 23.1).

Syntax example:

release 'top.sig'

Purpose Force a value on an HDL object

Category Action

Syntax force 'HDL-pathname' = exp

Parameters

HDL-pathname The full pathname of an HDL object (see 23.3), including any expressions.

exp Any scalar expression or literal constant, as long as it is composed only of 1's
and 0's. No x or z values are allowed. Thus, 16'hf0f1 or
sys.my_val+5 are legal values.

Purpose Remove a force action from an HDL object

Category Action

Syntax release 'HDL-pathname'

Parameters HDL-pathname The full pathname of an HDL object previously specified in a force action.
Copyright © 2015 IEEE. All rights reserved. 339

IEEE
Std 1647-2015 IEEE STANDARD
23.3 Tick access: 'hdl-pathname'

This accesses Verilog and VHDL objects from e.

Syntax example:

'~/top/sig' = 7;

print '~/top/sig'

23.4 simulator_command()

This passes a command to the HDL simulator from e. The command shall not return a value. The output of
the command is sent to the standard output and log file.

Purpose Access HDL objects, using full-path-names

Category Expression

Syntax 'HDL-pathname[index-exp | bit-range] [@(x | z | n)]'

Parameters

HDL-pathname The full pathname of an HDL object, including any expressions and
composite data.

index-exp Accesses a single bit of a Verilog vector, a single element of a Verilog mem-
ory, or a single vector of a VHDL array of vectors.

bit-range bit-range has the format [high-bit-num:low-bit-num] and is extracted from
the object from the high bit to low bit. Slices of buses are treated exactly as
they are in HDL languages. They need to be specified in the same direction as
in the HDL code and reference the same bit numbers.

@x | @z Sets or gets the x or z component of the value. When this notation is not used
in accessing an HDL object, e translates the values of x to zero (0) and z to
one (1).
When reading HDL objects using @x (or @z), e translates the specified
value (x or z) to one (1) and all other values to zero (0).
When writing HDL objects, if @x (or @z) is specified, e sets every bit that
has a value of 1 to x (or z).
In this way, @x or @z acts much like a data mask, manipulating only those
bits that match the value of x or z.

@n When this specifier is used for driving HDL objects, the new (simulator)
value is visible immediately (now). The default mode is to buffer projected
values and update only at the end of the tick.

Purpose Issue a simulator command

Category Predefined routine

Syntax simulator_command(command: string)

Parameters

command A valid simulator command, enclosed in double quotes (" ").
simulator_command() cannot be used to pass commands that change the
state of simulation, such as run, restart, restore, or exit (to the
simulator).
340 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

simulator_command("force -deposit memA(31:0)")

23.5 stop_run()

This stops the simulator and initiates post-simulation phases. This method needs to be called by a user-
defined method or TCM to stop the simulation run cleanly. The following things occur when stop_run() is
invoked:

a) The quit() method of each struct under sys is called. Each quit() method emits a “quit” event for that
struct instance at the end of the current tick.

b) All executing threads shall continue until the end of the current tick.

c) At the end of the current tick, the extract, check, and finalize test phases are performed.

d) If a simulator is linked here, e terminates the simulation cleanly after the test is finalized.

Plus, the following restrictions also apply:

— Executing a tick after calling stop_run() shall be considered an error.

— If the simulator exit command is called before stop_run(), the global methods for extracting,
checking, and finalizing the test are called.

NOTE—Use sys.extract() and extend that to make something happen right after stopping a run [rather then extending or
modifying the stop_run() method].

See also 27.2.2.5 and the run option of 28.9.

Syntax example:

stop_run()

Purpose Stop a simulation run cleanly

Category Predefined routine

Syntax stop_run()
Copyright © 2015 IEEE. All rights reserved. 341

IEEE
Std 1647-2015 IEEE STANDARD
342 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
24. Messages

24.1 Overview

The messaging feature is a centralized and flexible mechanism used to send messages to various
destinations, such as log files, display, waveforms or databases. It lets a developer easily insert formatted
messages into code and provides the user with powerful and flexible controls to selectively enable or disable
groups of messages.

The three most typical uses for messages are the following:

a) Summaries—Writing summary information at the beginning or end of significant chunks of activity.

b) Tracing—Writing detailed trace messages during the simulation upon interesting events.

c) Debugging—Writing detailed debug messages during the run to help the user or developer debug
unexplained behaviors.

Messages are different from plain out() and outf() calls (see 28.7); they have an optional standard-format
prefix and their actions can be disabled or redirected. Messages are also different from dut_error() calls
(see 16.2.2); they do not signify failure, increment error counters, or increment warning counters.

24.2 Message model

There are two kinds of message actions in the e language: structured debug messages (SDM) and regular
messages.

Structured debug messages have a standard pre-defined structure, arguments, and attributes. Each kind of
SDM has a specific purpose and is used for reporting specific kind of events, such as the beginning or the
end of a transaction spanning over time. Some kinds of SDMs sample data objects given as arguments which
can further be used for data flow analysis (e.g. using a waveform viewer). The sampling of the arguments of
SDM actions is related to transaction recording.

Regular messages are used to report “general” events. They do not have specific structure, but define a text
string to be printed or recorded.

Upon execution, the message action (SDM or regular) creates a message and sends it to the context unit for
further handling. Each unit can be configured to filter messages in various ways, format the enabled
messages in various ways (adding the time, name of the unit, etc.), and send them to various destinations
(such as files and the screen).

24.3 Message execution

When a message action (SDM or regular) is executed, the following happens:

— For SDM messages, if an action-block exists, it gets executed. This typically contains assignments to
message instance optional parameters. The specific parameters differ between the various SDM
kinds (see 24.4).

— The message body is created as follows:

— For a SDM, the message body consists of the body text, appended to a predefined prefix that con-
tains information on the SDM kind and id. The body text is determined by the body_text parameter
assigned in the action block, if any. If no body_text is assigned, the default text specific to each
SDM kind is used.
Copyright © 2015 IEEE. All rights reserved. 343

IEEE
Std 1647-2015 IEEE STANDARD
— For regular messages, the message body is created by appending expressions, similarly to out()
or outf().

Then, if an action-block exists, it gets executed. It typically contains further output-producing
actions, calls to reporting methods, etc. The output of all of those is added, as a list of string, to the
message body.

For message(), the message body is created by appending all of the expressions, like out() does.

For messagef(), the message body is created using the format-exp, similar to outf().

— messagef() does not automatically add a newline (\n) to the message string. Therefore, if
the optional action-block requires a newline to be written before it is executed, terminate the
format-exp using \n.

— If the fully composed message string – including that portion written by the optional action-
block – is not terminated by a newline, a newline is appended. messagef() also allows append-
ing of the action-block output to the messagef() header output.

The context unit of the message is the unit instance in the context of which the message action is being
executed. If the message action resides in the context of a unit type, that is the context unit. If it resides in the
context of a struct type, the context unit is the parent unit of the struct instance (see 7.5.1).

According to the current message selection settings of the context unit, and according to the message tag, the
list of destinations to which the message has to be sent is determined. If there are no destinations, the
processing of the message ends here.

The message is sent for each destination as follows:

— For a text destination, the message is formatted by calling create_formatted_message(). The body
text created above is passed to the buffer parameter of that method. The current message format set-
tings of the context unit are used. If there are no extensions of create_formatted_message(), the
default formatting is used according to the format settings of the context unit.

The resulting message text is sent to the destination accordingly.

— For a non-text destination, such as a wave form or a database, the message is sent or handled accord-
ing to the nature of that destination. This behavior is implementation-dependent, and various tools
may handle it differently. For example, a wave form can display matching pairs of msg_started and
msg_ended messages (with the same message id and data item) as a transaction.

Some messages may not be handled at all by some destinations. For example, regular (non-SDM)
messages may not be handled by a transaction database.

Message code shall not modify the flow of the simulation in any way. Time-consuming operations in
message headers or action blocks are strictly disallowed.

24.4 Structured debug messages

The e language provides the following methods for defining structured debug message actions:

— msg_started() — Marks the beginning of a sequence of events that can be logged as a transaction.

— msg_ended() — Marks the end of a sequence of events that can be logged as a transaction.

— msg_transformed() — Marks a data transformation. It can be used to link transactions that have
been indicated by structured debug messages.

— msg_changed() — Marks a change to an object, such as a state variable changing from transmit to
idle. This message action marks a one-time event. It is logged as a transaction with a single attribute,
the result of the state expression.
344 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
— msg_info() — Reports any other kind of significant event in the environment. Events reported by
msg_info() cannot be logged as transactions.

SDM actions have the generic format described in Table 39. The specifics for each of the SDMs are
described in separate/dedicated sections.

Table 39—SDM Action Generic Format

Purpose Reports the start of a transaction

Syntax msg_<sdm specifier>([tag,]verbosity, msg-id, <sdm-specific-arguments>) [{action-block}].
Note: sdm specifier can be any of the following: started (see 24.4.1), ended (see 24.4.2), trans-
formed (see 24.4.3), changed (see 24.4.4), info (see 24.4.5). It determine two aspects:

— List of arguments
— Message instance parameters that can be accessed within the action block scope

Parameters

tag A constant of type message_tag, either NORMAL or a user-defined tag
(see 24.6). If no tag is specified, NORMAL is assumed by default.

verbosity A constant of type message_verbosity, one of the following: NONE,
LOW, MEDIUM, HIGH, or FULL (see 24.7).

msg_id Message ID. A string expression that identifies the specific occurrence
reported by the message (i.e., message ID uniquely identifies a transaction
stream).
When a literal string is provided (as opposed to a string expression that is
computed at runtime), the text can be used for static message filtering.

SDM specific
arguments

These are determined by each SDM action and they are described in the sec-
tions 24.4.1 through 24.4.5, for each of the SDM actions.
Usually these are objects that will be sampled for later analysis purposes.

action_block A list of zero or more actions separated by semicolons and enclosed in curly
braces. Syntax: {action;...}
The action block may be or not executed depending on the configuration and
this aspect is implementation dependent.
In the scope of this action-block, the pseudo-variable it refers to an object of
type sdm_handler (see 24.8) and specifically to its concrete subclass
according to the SDM kind (for example, sdm_started_handler in case of
msg_started(), and so on).
The primary use of this action-block is to initialize configurable message
instance parameters (described below) to be stored in the fields of it.
Example:
msg_started(HIGH," monitoring transfer",cur_trans) {

it.parent = cur_burst;
};
The following sdm_handler fields that can be set in the action block are
common to all SDM actions; the ones specific to each SDM kind (fields of
subclasses of sdm_handler) are described in the specific sections:

scope Identifies the unit context where the action occurs. This can
be used, for example, to hide the actual unit and use an
enclosing unit as the message scope.
If scope is not assigned, the default is used. If the message
action resides in the context of a unit type, that is the context
unit. If it resides in the context of a struct type, the context
unit is the parent unit of the struct instance (see 7.5.1).

body_text Defines a text string to be displayed with the message. Used
to override the message’s default text, which depends on the
specific SDM kind.
Copyright © 2015 IEEE. All rights reserved. 345

IEEE
Std 1647-2015 IEEE STANDARD
The developer can configure transaction recording process and specify what to sample from a transaction
object and when to sample it. For more information see 24.9.2.1, 24.9.2.2 and 24.9.2.3.

24.4.1 msg_started()

Syntax example:

on burst_started {
msg_started(LOW,"monitoring burst", driven_burst);

};

Purpose Reports the start of a transaction

Category Action

Syntax msg_started([tag,]verbosity, msg-id, data-item) [{action-block}]

Parameters

tag, verbosity,
msg_id

See Table 39, “SDM Action Generic Format”.

data_item Struct that contains the data that is being processed

action_block See the action-block description in Table 39, “SDM Action Generic
Format”. For msg_started(), the following fields of
sdm_started_handler can also be set, besides the ones presented in
Table 39:

parent Identifies the higher-level (parent) transaction containing
the current transaction.
If specified, the struct assigned to the .parent field
becomes the parent transaction, and the data item of the
current transaction becomes the child transaction.
This can be useful, for example, for showing to which
burst a set of packets belongs. (Transactions are usually
used to model “packets,” and bursts are the children of
“transfers”; thus, the parent attribute for each packet points
to the “burst” message, and parent of the burst points to a
transfer.)
If both matching msg_started and msg_ended actions
assign a parent, which is not the same, the behavior is
undefined.

body_text The default contains a hyperlink to the transaction data
item
346 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
24.4.2 msg_ended()

It reports the end of each transaction that you want to track. Unless the sample points are specified with the
recording configuration API, data is sampled as follows:

— When a msg_ended() action has a corresponding msg_started() action, data is sampled at both the
beginning and end of the transaction.

— When a msg_ended() action has no corresponding msg_started() action, the start time can be
specified in the body of the msg_ended() action. In this case, data is sampled at the end of the
transaction.

— When a msg_ended() action has no corresponding msg_started() action, and no start time is set in
the action body, a 0-time transaction is created, and data is sampled at the end of the transaction.

Syntax example:

on burst_ended {
msg_ended(LOW,"monitoring burst", driven_burst);
burst_ended_o$.write(driven_burst);

Purpose Reports the end of a transaction

Category Action

Syntax msg_ended([tag,]verbosity, msg-id, data-item) [{action-block}]

Parameters

tag, verbosity,
msg_id

See Table 39, “SDM Action Generic Format”.

data_item Struct that contains the data that is being processed

action_block See the action-block description in Table 39, “SDM Action Generic
Format”. For msg_ended(), the following fields of
sdm_started_handler can also be set, besides the ones presented in
Table 39:

parent Identifies the higher-level (parent) transaction containing
the current transaction.
If specified, the struct assigned to the .parent field
becomes the parent transaction, and the data item of the
current transaction becomes the child transaction.
This can be useful, for example, for showing to which
burst a set of packets belongs. (Transactions are usually
used to model “packets,” and bursts are the children of
“transfers”; thus, the parent attribute for each packet points
to the “burst” message, and parent of the burst points to a
transfer.)
If both matching msg_started and msg_ended actions
assign a parent, which is not the same, the behavior is
undefined.

start_time The time at which this transaction started (by default
UNDEF, which indicates that the starting of the transac-
tion was already reported by a msg_started() action).
Must be a value of type time. If assigned, no corresponding
msg_started action is considered to indicate the transac-
tion start.

body_text The default contains a hyperlink to the transaction data
item
Copyright © 2015 IEEE. All rights reserved. 347

IEEE
Std 1647-2015 IEEE STANDARD
};

24.4.3 msg_transformed()

Syntax example:

match_write(m:burst) is {
if not exp_items.is_empty() {

var exp_i:=exp_items.pop0();
msg_transformed(MEDIUM, "Matching bursts", exp_i, m);

};
};

24.4.4 msg_changed()

Purpose Reports the transformation of an existing data item or items, or the outcome of a relationship
between data items

Category Action

Syntax msg_transformed([tag,]verbosity, msg-id, from-item, to-item) [{action-block}]

Parameters

tag, verbosity,
msg_id

See Table 39, “SDM Action Generic Format”.

from_item Struct that contains the data that is being processed.

to_item Struct that contains the data after transformation.

action_block See the action-block description in Table 39, “SDM Action Generic
Format”. For msg_transformed(), the following field of
sdm_started_handler can also be set, besides the ones presented in
Table 39:

body_text The default contains a hyperlink to both transaction data
items.

Purpose Reports a significant state change taking place in this scope

Category Action

Syntax msg_changed([tag,]verbosity, msg-id, new_state_exp) [{action-block}]

Parameters

tag, verbosity,
msg_id

See Table 39, “SDM Action Generic Format”.

new_state_exp Text string describing the new state this unit assumes.

action_block See the action-block description in Table 39, “SDM Action Generic
Format”. For msg_changed(), the following field of
sdm_started_handler can also be set, besides the ones presented in
Table 39:

body_text The default contains the new state string.
348 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

drive_burst(new_burst:burst)@clk is {
driven_burst = new_burst;
emit burst_started;
msg_changed(MY_TAG, HIGH, "burst state", "started");

};

24.4.5 msg_info()

Syntax example:

body()@driver.clock is only {
do s1;
wait [10]; driv-er.drop_objection(TEST_DONE);
msg_info(LOW,"end of test ", s2);

};

24.5 message and messagef

Purpose Reports a significant event in the environment, that occurs at a certain point in time, possibly
related to the provided data items or items, and which is not applicable to the other kinds of
structured debug messages.

Category Action

Syntax msg_info([tag,]verbosity, msg-id, [data-item1, [data-item2]]) [{action-block}]

Parameters

tag, verbosity,
msg_id

See Table 39, “SDM Action Generic Format”.

data_item1,
data_item2

References to data items involved in the reported event. Up to two data
items can be specified (both are optional).

to_item Struct that contains the data after transformation.

action_block See the action-block description in Table 39, “SDM Action Generic
Format”. For msg_info(), the following field of sdm_started_handler
can also be set, besides the ones presented in Table 39:

body_text The default contains a hyperlink to the data items, if any.

Purpose Create a text message and send it to the one or more destinations

Category Action

Syntax message ([tag], verbosity, exp, ...) [action_block]
messagef ([tag], verbosity, format_exp, [exp, ...]) [action_block]
Copyright © 2015 IEEE. All rights reserved. 349

IEEE
Std 1647-2015 IEEE STANDARD
Syntax examples:

message(HIGH, "Master ", me, " has received ", the_packet) {
 write the_packet
};
 -- Output this message and write the packet, at verbosity HIGH.

message(VR_XBUS_FILE, MEDIUM, "Packet ", num, " sent: ", data)
 -- Output this message at verbosity MEDIUM.
 -- Use VR_XBUS_FILE as the message-tag.

24.6 Tag

All kinds of messages have an optional first parameter of type message_tag, which is initially defined as:

type message_tag : [NORMAL]

This can be extended, e.g.,

extend message_tag : [VR_XBUS_PACKET]

If a tag is not specified [i.e., the first parameter of a message is a legal value for verbosity], then the value
NORMAL is prepended. Thus, the following two lines are the same:

message(MEDIUM, "Packet done: ", packet);
message(NORMAL, MEDIUM, "Packet done: ", packet)

Message tags are used for associating specific message actions with a class of actions or an aspect. This
gives you more flexibility when it comes to determine the behavior of the message actions.

24.7 Verbosity

The verbosity parameter can be set to NONE, LOW, MEDIUM, HIGH, or FULL (from lowest to highest).
Since a lower verbosity setting means fewer messages are shown, important messages should be assigned a
lower verbosity parameter value.

Table 46 shows the recommended usage of verbosity. Each level can assume that all lower levels are also
writing (thus, there is no need to repeat them).

Parameters

tag A constant of type message_tag, either NORMAL or a user-defined tag
(see 24.6). If no tag is specified, NORMAL is assumed by default.

verbosity A constant of type message_verbosity: one of NONE, LOW,
MEDIUM, HIGH, or FULL (see 24.7).

exp Value(s) to write.

action_block A block of actions to perform, the output of which is appended to the message
body.
Note: If the action block has any side effects, other than text output, the
behavior is undefined and implementation dependent. Depending on whether
or not there are text destinations to which the message is being sent, and
whether there are more than one such destinations, the action block may not
be actually executed (if there are no text destinations), or it may be executed
more than once.

format_exp For messagef(), an outf()-style format string for the output.
350 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
24.8 Predefined type sdm_handler

The predefined type sdm_handler is used to represent the specific properties of a given SDM at run time. It
provides API that can be used to query specific information about a given SDM, in the context of an
extension of create_formatted_message() hook method (see 24.9.2.14.1). In addition, some of its fields can
be assigned in the context of an SDM optional action-block (Table 39).

sdm_handler has several subclasses, used to represent the different SDM kinds.

24.8.1 sdm_handler

This struct provides API fields and methods common to all SDM kinds.

— sdm_handler.scope: any_unit

Holds a reference to the unit instance to which the message belongs. This can be assigned in the
SDM action-block. If not assigned, it holds a reference to the context unit, or to the owing unit of the
context struct.

— sdm_handler.id_str: string

Holds the msg-id string, as specified in the SDM action.

— sdm_handler.body_text: string

Holds a text string to be displayed with the message. This can be assigned in the SDM action-block.
If not assigned, it holds an empty string.

— sdm_handler.get_kind_string(): string

Returns a string that represents the SDM kind: “started” for msg_started, “changed” for
msg_changed, and so on.

— sdm_handler.get_attribute_string(inst: any_struct): string

Returns the string that displays the registered text attributes for the specified data object inst, or an
empty string if there are no text attributes. Text attributes are those for which set_text_attribute() or
(in case of msg_changed()) set_text_state_var() was called after registering them (see 24.9.2.1.13
and 24.9.2.1.14).

— sdm_handler.collect_text_attributes(inst: any_struct, names: list of string, values: list of string)

Table 46—Verbosity Levels

Level Recommended use Examples

NONE Critical messages. "WARNING: Running in reduced mode"

LOW Messages that happen once per run or once
per reset.

"Master M3 was instantiated"
"Device D6 got out of reset"

MEDIUM Short messages that happen once per data
item or sequence.

"Packet-@36 was sent to port 7"
"A write request to pci bus 2 with
address=0xf2223, data=0x48883"

HIGH More detailed per-data-item information,
including:

— Actual value of the packet

— Sub-transaction details

"Full details for packet-@36:
len=5 kind=small ..."

FULL Anything else, including writing by using
specific methods (just to follow the algo-
rithm of that method).
Copyright © 2015 IEEE. All rights reserved. 351

IEEE
Std 1647-2015 IEEE STANDARD
Collects the names and printed string values of the registered text attributes for the specified data
object inst, and adds them to the two provided lists, names and values respectively. Both lists are
cleaned before collecting attributes, and any items present in them prior to calling this method are
removed. Text attributes are those for which set_text_attribute() or (in case of msg_changed())
set_text_state_var() was called after registering them (see 24.9.2.1.13 and 24.9.2.1.14).

24.8.2 sdm_started_handler

This struct like-inherits from sdm_handler (see 24.8.1). It provides API fields specific to msg_started() (see
24.4.1).

— sdm_started_handler.data_item: any_struct

Holds a reference to the data-item struct, as specified in the msg_started() action.

— sdm_started_handler.parent: any_struct

Holds a reference to a struct that represents the parent transaction of the current transaction. This can
be assigned in the action-block of the msg_started. If not assigned, it holds NULL.

24.8.3 sdm_ended_handler

This struct like-inherits from sdm_handler (see 24.8.1). It provides API fields specific to msg_ended() (see
24.4.2).

— sdm_ended_handler.data_item: any_struct

Holds a reference to the data-item struct, as specified in the msg_ended() action.

— sdm_ended_handler.parent: any_struct

Holds a reference to a struct that represents the parent transaction of the current transaction. This can
be assigned in the action-block of the msg_ended. If not assigned, it holds NULL.

— sdm_ended_handler.start_time: time

Holds the time at which this transaction started. This can be assigned in the action-block of the
msg_ended. If not assigned, it holds UNDEF.

24.8.4 sdm_transformed_handler

This struct like-inherits from sdm_handler (see 24.8.1). It provides API fields specific to
msg_transformed() (see 24.4.3).

— sdm_transformed_handler.from_item: any_struct

Holds a reference to the from-item struct, as specified in the msg_transformed() action.

— sdm_transformed_handler.to_item: any_struct

Holds a reference to the to-item struct, as specified in the msg_transformed() action.

24.8.5 sdm_changed_handler

This struct like-inherits from sdm_handler (see 24.8.1). It provides API fields specific to msg_changed()
(see 24.4.4).

— sdm_changed_handler.new_state: string

Holds the string value of new-state-exp, as specified in the msg_changed() action.

24.8.6 sdm_info_handler

This struct like-inherits from sdm_handler (see 24.8.1). It provides API fields specific to msg_info() (see
24.4.5).
352 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
— sdm_info_handler.item1: any_struct

Holds a reference to the data-item-1 struct, as specified in the msg_info() action. If none specified,
holds NULL.

— sdm_info_handler.item2: any_struct

Holds a reference to the data-item-2 struct, as specified in the msg_info() action. If none specified,
holds NULL.

24.9 Messages Interface

24.9.1 Message configuration and customization

24.9.1.1 Initial pre-supplied Default Message Settings

Every message is assigned a verbosity level and a tag. By default, every unit instance is configured to send
to the screen those messages that have both a NORMAL tag and a verbosity that is at or below the LOW
level. Furthermore, by default:

— no destinations other than screen are initially set.

— no handling of messages with a tag other than NORMAL is defined.

— the default format used for all messages is short.

24.9.1.2 Modifying Initial Default Message Settings

To modify the defaults from these initial settings, the set_..._messages() and/or set_message_format()
methods (see 24.9.2.5 and 24.9.2.5.7) are used. Normally these methods are used within extensions of
post_generate().

Example

extend my_env {
post_generate() is also {

message_manager.set_screen_messages(me, NORMAL, MEDIUM);
message_manager.set_screen_messages(me.agent.monitor, NORMAL, HIGH);

};
};

24.9.2 Predefined Types and methods

24.9.2.1 recording_config

The recording configuration API allows to control the attributes and state variables that are reported by
messages.

The recording_config predefined struct encapsulates transaction recording configuration for a unit or for
numerous units at once. The configuration is determined procedurally through API calls.

Predefined methods of recording_config are described in the following subsections.
Copyright © 2015 IEEE. All rights reserved. 353

IEEE
Std 1647-2015 IEEE STANDARD
24.9.2.1.1 register_all_field_attributes()

24.9.2.1.2 register_callback_attribute()

Whenever a transaction of the given type needs to be sampled, the hook method is called on the data-item,
with the scope unit passed as parameter. If this call returns an empty string, the same method is called on the
scope unit, with the data-item passed as parameter. The value returned from either of the calls becomes the
value of the attribute.

The callback method default implementation returns an empty string.

Example

In this example, the attribute destination is calculated by the monitor when the message is recorded.

extend frame_monitor {
connect_pointers() is also {

var tr_cfg:recording_config = new;
tr_cfg.register_field_attributes("frame",{"addr";});
tr_cfg.register_callback_attribute("frame","destination");
assign_recording_config(tr_cfg)

}

tr_get_attribute_value(inst:any_struct,name:string):string is also {
if inst is a frame (f) and name == "destination" then {

result = append(me.base_addr + f.addr)
}

}
}

Purpose Defines all user-defined public fields to be recorded as transaction attributes for data-items of the
specified type

Category Predefined method

Syntax register_all_field_attributes(type-name: string)

Parameters type-name Any struct type name, including “when” subtypes and template instances

Purpose
Defines an attribute for transactions of the specified type, the value of which is determined
dynamically by the hook method tr_get_attribute_value() (see 24.9.2.3.1).

Category Predefined method

Syntax register_callback_attribute(type-name: string, attr-name: string)

Parameters
type-name Any struct type name, including “when” subtypes and template instances

attr-name Attribute name to be associated with the struct
354 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
24.9.2.1.3 register_callback_attributes()

24.9.2.1.4 register_callback_state_var()

24.9.2.1.5 register_field_attribute()

Example

This example specifies that the field addr of the frame should be recorded, in all messages issued by the
xbus_monitor.

extend xbus_monitor {
connect_pointers() is also {

var tr_cfg : recording_config = new;
tr_cfg.register_field_attribute("frame", "addr");
assign_recording_config(tr_cfg)

}
}

Purpose Defines a set of callback attributes for transactions of the specified type. Calling this method is
equivalent to calling “register_callback_attribute()” for each of the given names.

Category Predefined method

Syntax register_callback_attributes(type-name: string, attr-names: list of string)

Parameters
type-name Any struct type name, including “when” subtypes and template instances

attr-names List of attribute names to be associated with the struct

Purpose
Defines a state variable, the value of which is determined dynamically by the unit hook method
tr_get_state_var_value() (see 24.9.2.2.3). The value is sampled by calling the hook method
upon the execution of msg_changed() when the scope unit is of the specified type.

Category Predefined method

Syntax register_callback_state_var(unt-name: string, var-name: string)

Parameters
unit-name Name of a unit type (including “when” subtypes and template instances)

var-name State variable name to be associated with the unit

Purpose
Defines the specified data item field to be recorded as a transaction attribute. The field is sampled
upon the execution of structured messages of certain kinds with given data-items of the specified
type as parameters.

Category Predefined method

Syntax register_field_attribute(type-name: string, field-name: string)

Parameters
type-name Any struct type name, including “when” subtypes and template instances

field-name Name of a field declared for the struct
Copyright © 2015 IEEE. All rights reserved. 355

IEEE
Std 1647-2015 IEEE STANDARD
24.9.2.1.6 register_field_attributes()

Example

This example specifies that the field addr and data of the frame should be recorded, in all messages issued by
the xbus_monitor.

extend xbus_monitor {
connect_pointers() is also {

var tr_cfg : recording_config = new;
tr_cfg.register_field_attributes("frame", {"addr"; "data"});
assign_recording_config(tr_cfg)

}
}

24.9.2.1.7 register_field_state_var()

24.9.2.1.8 register_method_attribute()

Purpose Defines a set of field attributes for transactions of the specified type. Calling this method is equiv-
alent to calling “register_field_attribute()” for each of the given field names.

Category Predefined method

Syntax register_field_attributes(type-name: string, field-names: list of string)

Parameters
type-name Any struct type name, including “when” subtypes and template instances

field-names List of field names declared for the struct

Purpose Defines the specified field to be recorded as a state variable. The field is sampled on the execution
of msg_changed() when the scope unit is of the specified type.

Category Predefined method

Syntax register_field_state_var(unt-name: string, field-name: string)

Parameters
unit-name Name of a unit type (including “when” subtypes and template instances)

field-name Name of a field declared for the unit

Purpose
Defines an attribute for transactions of the specified type, the value of which is determined
dynamically by calling the specified hook method of the specified type.

Category Predefined method

Syntax register_method_attribute(type-name: string, method-name: string)

Parameters
type-name Any struct type name, including “when” subtypes and template instances

method-name Name of a method declared for the struct
356 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Notes

— Whenever a transaction of the given type needs to be sampled, the hook method by the specified
name is called on the data-item, possibly with the scope unit passed as parameter. The value
returned from the call becomes the value of the attribute.

— If the struct does not have a declared method by the specified name, the behavior is undefined.

— The callback method must meet the following conditions:

— It must not be a time-consuming method.

— It must have a return type.

— It must either have no parameters, or have exactly one parameter of type any_unit which is
not passed by reference.

If any of these conditions is not met, the behavior is undefined

Example

In this example, the attribute destination is calculated by a hook method

extend frame_monitor {
connect_pointers() is also {

var tr_cfg:recording_config = new;
tr_cfg.register_field_attributes("frame",{"addr";});
tr_cfg.register_method_attribute("frame","destination");
assign_recording_config(tr_cfg)

}
}

extend frame {
destination(scope: any_unit): uint is {

if scope is a frame_monitor (m) then {
result = append(m.base_addr + me.addr)

}
}

}

24.9.2.1.9 register_method_state_var()

Notes

— Upon the execution of msg_changed(), the hook method by the specified name is called on the
scope unit. The value returned from the call becomes the value of the state variable.

— If the unit does not have a declared method by the specified name, the behavior is undefined.

— The callback method must meet the following conditions:

Purpose
Defines a state variable, the value of which is determined dynamically by the specified unit hook
method. The value is sampled by calling the hook method upon the execution of
msg_changed() when the scope unit is of the specified type.

Category Predefined method

Syntax register_method_state_var(unit-name: string, method-name: string)

Parameters
unit-name Name of a unit type, including “when” subtypes and template instances

method-name Name of a method declared for the unit
Copyright © 2015 IEEE. All rights reserved. 357

IEEE
Std 1647-2015 IEEE STANDARD
— It must not be a time-consuming method.

— It must have a return type.

— It must have no parameters.

If any of these conditions is not met, the behavior is undefined.

24.9.2.1.10 set_attribute_format()

Notes

— When an attribute format is set using this method, the attribute value is formatted using the specified
format string prior to being displayed at destinations.

— The string specified by format must be a valid format string that contains exactly one “%...”
parameter applicable to the attribute type (see 28.7.3). If this condition is not met, the behavior is
undefined.

Example

In this example, the attribute addr is set to be displayed in the hexadecimal format.

extend frame_monitor {
connect_pointers() is also {

var tr_cfg:recording_config = new;
tr_cfg.register_field_attribute("frame","addr");
tr_cfg.set_attribute_format("frame","addr","%#x");
assign_recording_config(tr_cfg)

}
}

24.9.2.1.11 set_attribute_sampling()

Purpose Determines the textual format in which an already registered attribute is to be displayed.

Category Predefined method

Syntax set_attribute_format(type-name: string, attr-name: string, format: string)

Parameters

type-name Any struct type name, including “when” subtypes and template instances

attr-name Registered attribute name for the given struct type. The behavior is not
defined for the case that attribute attr-name is not registered within this
recording_config object.

format Format string to be used.

Purpose Determines that an already registered attribute is to be sampled and recorded at the specified sam-
pling points.

Category Predefined method

Syntax set_attribute_sampling(type-name: string, attr-name: string, points: list of tr_sampling_point_t)
358 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
24.9.2.1.12 set_label_attribute()

Note: The actual effect of this setting is implementation dependent. Typically it only affects the
implementation-specific transaction database (see 24.9.2.5.3).

24.9.2.1.13 set_text_attribute()

Note: This setting does not affect destinations other than screen and log files.

Parameters

type-name Any struct type name, including “when” subtypes and template instances

attr-name Registered attribute name for the given struct type. The behavior is not
defined for the case that attribute attr-name is not registered within this
recording_config object.

points A list of zero or more values representing structured message sampling
points.
The sampling points correspond to different roles of the data item within
structured messages. The setting for the specified attribute overrides the pre-
vious setting.
The possible sampling points are item of predefined type
tr_sampling_point_t (see 24.9.2.4).
The default setting for all attributes is the element list {STARTED;
ENDED}.

Purpose Sets an already registered attribute as the transaction label for transaction of the given type.

Category Predefined method

Syntax set_label_attribute(type-name: string, attr-name: string)

Parameters

type-name Any struct type name, including “when” subtypes and template instances

attr-name Registered attribute name for the given struct type. The behavior is not
defined for the case that attribute attr-name is not registered within this
recording_config object.

Purpose Determines that an already registered attribute is to be written to text destinations (screen and log
files).

Category Predefined method

Syntax set_text_attribute(type-name: string, attr-name: string)

Parameters

type-name Any struct type name, including “when” subtypes and template instances

attr-name Registered attribute name for the given struct type. The behavior is not
defined for the case that attribute attr-name is not registered within this
recording_config object.
Copyright © 2015 IEEE. All rights reserved. 359

IEEE
Std 1647-2015 IEEE STANDARD
24.9.2.1.14 set_text_state_var()

Note: This setting does not affect destinations other than screen and log files.

24.9.2.2 any_unit Recording Configuration API extensions

This section contains the Recording Configuration methods belonging to any_unit.

24.9.2.2.1 assign_recording_config()

24.9.2.2.2 get_recording_config()

Purpose Determines that an already registered state variable is written to text destinations (screen and log
files).

Category Predefined method

Syntax set_text_state_var(unit-name: string, var-name: string)

Parameters

unit-name Name of a unit type (including “when” subtypes and template instances)

var-name Registered state variable name for the given unit type. The behavior is not
defined for the case that state variable var-name is not registered within this
recording_config object.

Purpose
Assigns the given recording_config object to this unit instance. This also affects the configura-
tion of all descendant units that have not been assigned a recording_config object explicitly, or
associated with one through a closer parent.

Category Predefined method

Syntax assign_recording_config(rec: recording_config)

Parameters rec The recording_config object to be assigned to the unit instance tree under and
including the current unit.

Purpose

Returns the recording_config object that is associated with this unit instance. A unit is associ-
ated with a recording_config object either by explicit assignment using
assign_recording_config() (see 24.9.2.2.1), or otherwise inherits the association from its
parent unit (recursively). Units with no parent unit(e.g., sys) are associated by default with an
empty recording_config object.

Category Predefined method

Syntax get_recording_config(): recording_config

Return value The recording_config object that is associated with this unit instance.
360 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
24.9.2.2.3 tr_get_state_var_value()

Note: The default value returned by this method is "" (an empty string).

24.9.2.3 any_struct Recording Configuration API extensions

This section contains the Recording Configuration methods belonging to any_struct.

24.9.2.3.1 tr_get_attribute_value()

Note: The default value returned by this method is "" (an empty string).

Example 1

In this example, the tr_get_attribute_value() callback method is extended to calculate and return the frame
address when the message is emitted by the monitor:

Purpose

Callback method that returns the value of a registered callback state variable for this unit instance.
It is invoked on scope units for which the state variable was registered upon execution of
msg_changed(). (see “register_callback_state_var()”). The value returned by it is written to
the message destination.

Category Predefined method

Syntax tr_get_state_var_value(attr-name: string): string

Parameters attr-name Name of the registered attribute

Return value Value of a registered state variable.

Purpose

Callback method that returns the value of a registered callback attribute. When called on a non-
unit struct with a unit parameter, it returns the value of the callback attribute for this data-item
instance in the given scope unit. When called on a unit with a non-unit struct parameter, it returns
the value of the callback attribute for the given data-item instance in this scope unit. (It is never
called on a non-unit struct with a non-unit struct parameter.)
It is invoked on data-item instances for which the attribute was registered at the appropriate sam-
pling points by calling register_callback_attribute() (see
“register_callback_attribute()”).

Category Predefined method

Syntax tr_get_attribute_value(inst: any_struct, attr-name: string): string

Parameters

inst Depending on usage, either of the following:
— Reference to the data item instance that is being considered (when

called on a scope unit)

— Reference to the unit in the scope where the attribute should be eval-
uated (when called on a data item instance).

attr-name Name of the registered attribute.

Return value String value of a registered attribute specified by attr-name.
Copyright © 2015 IEEE. All rights reserved. 361

IEEE
Std 1647-2015 IEEE STANDARD
extend frame {
tr_get_attribute_value(scope: any_struct, attr_name: string): string is also
{
if scope is a monitor (m) {

if attr_name == "address" then {
result = append(m.base_addr + header.addr);

};
if attr_name == "direction" then {

result = append(header.dir);
};

};
};

};

Example 2

In this example, the attribute destination is calculated by the monitor when the message is recorded.

extend frame_monitor {
tr_get_attribute_value(inst: any_struct, name: string): string is also {

if inst is a frame (f) and name == "destination" then {
result = append(me.base_addr + f.addr);

};
};

};

24.9.2.4 tr_sampling_point_t

This enumerated type is used by set_attribute_sampling() (see 24.9.2.1.11) to define sampling points for
data item attributes. Possible sampling points are:

— STARTED – The data-item argument of msg_started()

— ENDED – The data-item argument of msg_ended()

— TRANSFORMED – The from-item (first) or to-item (second) argument of msg_transformed()

— CHANGED – State variables of the scope unit, used with msg_changed()

— INFO – The data-item arguments of msg_info()

24.9.2.5 message_manager API

All methods presented in this section belong to the message_manager predefined type. There is a singleton
object of this type, the instance of which is under global.

24.9.2.5.1 set_screen_messages

Purpose
Selects which messages from the unit and its subtree with the specified tag will be sent to the
screen destination. The selection is done according to the verbosity, modules, and text-pattern
parameters

Category Predefined method

Syntax set_screen_messages(root-unit: any_unit, tag: message_tag, verbosity: message_verbosity [,
modules: string [, text_pattern: string [, rec: bool]]])
362 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Example

extend my_env {
post_generate() is also {

message_manager.set_screen_messages(me.the_agent.the_monitor, NORMAL,
HIGH);

};
};

24.9.2.5.2 set_screen_messages_off

Example

Parameters

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

verbosity Highest verbosity level for messages. A given message is issued to the screen
only if its verbosity is equal to or lower than the specified verbosity.
Valid values are: NONE, LOW, MEDIUM, HIGH, and FULL.

modules String pattern used for matching module names (wild cards permitted). A
given message is issued to the screen only if it is defined in the specified mod-
ule(s). Default value is “*” which matches any module name.

text_pattern String pattern used for matching the message text (default = “...” which
matches any string). A given message is issued to the screen only if its mes-
sage string matches the specified text-pattern string (see 4.11). For SDMs, the
ID string is considered as the message string for this purpose.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

Purpose Disables the sending of messages with the specified tag to the screen destination

Category Predefined method

Syntax set_screen_messages_off(root-unit: any_unit, tag: message_tag [, rec: bool])

Parameters

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.
Copyright © 2015 IEEE. All rights reserved. 363

IEEE
Std 1647-2015 IEEE STANDARD
extend my_env {
post_generate() is also {

message_manager.set_screen_messages_off(me, NORMAL);
};

};

24.9.2.5.3 set_transaction_messages

Example

extend my_env {
post_generate() is also {

message_manager.set_transaction_messages(me.the_agent.the_monitor,
NORMAL, HIGH);

};
};

24.9.2.5.4 set_transaction_messages_off

Purpose
Selects which SDM transaction messages from the unit and its subtree with the specified tag will
be sent to an implementation specific transaction database. The selection is done according to the
verbosity, modules, and text-pattern parameters

Category Predefined method

Syntax set_transaction_messages(root-unit: any_unit, tag: message_tag, verbosity: message_verbosity
[, modules: string [, text_pattern: string [, rec: bool]]])

Parameters

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

verbosity Highest verbosity level for messages. A given message is issued to the trans-
action database only if its verbosity is equal to or lower than the specified ver-
bosity.
Valid values are: NONE, LOW, MEDIUM, HIGH, and FULL.

modules String pattern used for matching module names (wild cards permitted). A
given message is issued to the transaction database only if it is defined in the
specified module(s). Default value is “*” which matches any module name.

text_pattern String pattern used for matching the message text (default = “...” which
matches any string). A given message is issued to the transaction database
only if its message string matches the specified text-pattern string (see 4.11).
For SDMs, the ID string is considered as the message string for this purpose.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

Purpose Disables the sending of messages with the specified tag to an implementation specific transaction
database.
364 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Example

extend my_env {
post_generate() is also {

message_manager.set_transaction_messages_off(me, NORMAL);
};

};

24.9.2.5.5 set_file_messages

Category Predefined method

Syntax set_transaction_messages(root-unit: any_unit, tag: message_tag [, rec: bool])

Parameters

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

Purpose
Selects which messages from the unit and its subtree with the specified tag will be sent to the
specified log file. The selection is done according to the verbosity, modules, and text-pattern
parameters.

Category Predefined method

Syntax set_file_messages(file-name: string, root-unit: any_unit, tag: message_tag, verbosity:
message_verbosity [, modules: string [, text_pattern: string [, rec: bool]]])
Copyright © 2015 IEEE. All rights reserved. 365

IEEE
Std 1647-2015 IEEE STANDARD
24.9.2.5.6 set_file_messages_off

24.9.2.5.7 set_message_format

Parameters

file-name Log file to which the new setting will be applied.

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

verbosity Highest verbosity level for messages. A given message is issued to the screen
only if its verbosity is equal to or lower than the specified verbosity.
Valid values are: NONE, LOW, MEDIUM, HIGH, and FULL.

modules String pattern used for matching module names (wild cards permitted). A
given message is issued to the file only if it is defined in the specified mod-
ule(s). Default value is “*” which matches any module name.

text_pattern String pattern used for matching the message text (default = “...” which
matches any string). A given message is issued to the file only if its message
string matches the specified text-pattern string (see 4.11). For SDMs, the ID
string is considered as the message string for this purpose.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

Purpose Disables the sending of messages with the specified tag to the log file.

Category Predefined method

Syntax set_file_messages_off(file-name: string, root-unit: any_unit, tag: message_tag [, rec: bool])

Parameters

file-name Log file to which the new setting will be applied.

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

Purpose Modifies the format of messages that are issued by the specified unit or unit subtree with the spec-
ified tag when sending them to the specified text destination(s).

Category Predefined method
366 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Example

unit my_env {
post_generate() is also {

message_manager.set_message_format(me, NORMAL, {}, long);
};

};

24.9.2.6 message_format

This enumerated type defines possible message formats, used when messages are sent to text destinations. It
is used in set_message_format() to set the format to be used by messages from a given unit or unit tree with
a given tag. It is also used in create_formatted_message() hook method to identify which formatting option
should be applied to the current message.

Predefined values are short, long and none. One can extend this type to include specific user-defined
formatting.

24.9.2.7 message_action

The predefined struct type message_action represents a specific actual message that occurs during a run. It
is used in create_formatted_message() and provides information about the current message.

Predefined methods of message_action are described in the following subsections.

24.9.2.7.1 get_id()

Syntax
set_message_format(root-unit: any_unit, tag: message_tag, file-names: list of string, format:
message_format [, rec: bool])

Parameters

root-unit Unit to which the new setting will be applied.

tag Message tag to which the new setting applies. The new setting will only affect
messages of the specified tag.

file-names List of file names to which the new format settings will be applied. An empty
string in the list denotes the screen. If the entire list is empty, the new settings
will be applied to all text destinations.

format Format to be used for messages. Valid predefined values: none, short, and
long. Other values can be added by extending the message_format type (see
24.9.2.6).
none specifies no additions to the bare message text. Any styles implied by
the other formats are implementation-dependent.

rec Recursion indicator (default = TRUE):

— If TRUE, the new setting will apply to all units in the unit
subtree under the given unit.

— If FALSE, the new setting will apply to the given unit instance
only, and will not apply to other units in its unit subtree.

Description Get the message's unique id

Category Predefined method
Copyright © 2015 IEEE. All rights reserved. 367

IEEE
Std 1647-2015 IEEE STANDARD
24.9.2.7.2 get_tag()

24.9.2.7.3 get_verbosity()

24.9.2.7.4 get_source_method_layer()

24.9.2.7.5 get_source_line_num()

24.9.2.7.6 get_source_struct()

Syntax get_id(): int

Return value Unique id of this message action.

Description Get the message tag.

Category Predefined method

Syntax get_tag(): message_tag

Return value Tag of this message.

Description Get the message verbosity.

Category Predefined method

Syntax get_verbosity(): message_verbosity

Return value Verbosity of this message.

Description Get the source method layer of a message.

Category Predefined method

Syntax get_source_method_layer(): rf_ method_layer

Return value Method layer in which this message action resides.

Description Get the source line number of a message.

Category Predefined method

Syntax get_source_line_num(): int

Return value Source line number in which this message action resides.

Description Get the actual struct instance that issued the message.
368 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
24.9.2.7.7 get_time()

24.9.2.7.8 get_format()

24.9.2.7.9 get_sdm_handler()

24.9.2.8 sdm_handler

The predefined struct type sdm_handler represents SDM-specific data on messages. It is used in
create_formatted_message() and provides additional information about the current message.

sdm_handler is an abstract class, and each SDM kind is represented by its subtype. Predefined fields and
methods of sdm_handler, common to all SDM kinds, are described in the following subsections.

24.9.2.8.1 Predefined fields

— scope: any_unit

The unit instance to which the message belongs. By default, it is the unit in the context of which the
message is executed; this can be modified in the message's optional action block (see Table 39).

Category Predefined method

Syntax get_source_struct(): any_struct

Return value Struct instance that issued the message.

Description Get the message time.

Category Predefined method

Syntax get_time(): string

Return value Properly formatted string for the current value of sys.time.

Description Get the message format.

Category Predefined method

Syntax get_format(): message_format

Return value Format being used for this message.

Description Get the SDM handler.

Category Predefined method

Syntax get_sdm_handler(): sdm_handler

Return value The sdm_handler object for this message, or NULL if this message is not SDM (see 24.9.2.8).
Copyright © 2015 IEEE. All rights reserved. 369

IEEE
Std 1647-2015 IEEE STANDARD
— id_str: string

The msg-id string, as specified in the SDM action.

— body_text: string

The text assigned in the optional action block (see Table 39), or an empty string if none.

24.9.2.8.2 get_kind_string()

24.9.2.8.3 get_attribute_string()

24.9.2.8.4 collect_text_attributes()

This method collects the names and printed string values of the text attributes for the specified data object
inst, and adds them to the two provided lists, names and values respectively. Both lists are cleaned before
collecting attributes, and any items present in them prior to calling this method are removed.

Note: Text attributes are those for which set_text_attribute() was called (see 24.9.2.1.13); or in case of
msg_changed those for which set_text_state_var() was called (see 24.9.2.1.14).

24.9.2.9 sdm_started_handler

This inherits from sdm_handler (see 24.9.2.8) and represents msg_started actions.

24.9.2.9.1 Predefined fields

— data_item: any_struct

Description Get the SDM handler.

Category Predefined method

Syntax get_kind_string(): string

Return value
String representing the SDM kind. For example, “started” for msg_started, “changed” for
msg_changed.

Description Get string representation for text attributes.

Category Predefined method

Syntax get_attribute_string(inst: any_struct): string

Return value

The string to display the registered text attributes for the specified data object (or an empty string
if there are no text attributes) after registering them. Text attributes are those for which
set_text_attribute() was called (see 24.9.2.1.13); or in case of msg_changed those for which
set_text_state_var() was called (see 24.9.2.1.14).

Description Collect text attributes and their values.

Category Predefined method

Syntax collect_text_attributes(inst: any_struct, names: list of string, values: list of string)
370 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Data item object specified in the msg_started action.

— parent: any_struct

Parent transaction object specified in the optional action block, or NULL if none.

24.9.2.10 sdm_ended_handler

This inherits from sdm_handler (see 24.9.2.8) and represents msg_ended actions.

24.9.2.10.1 Predefined fields

— data_item: any_struct

Data item object specified in the msg_ended action.

— parent: any_struct

Parent transaction object specified in the optional action block, or NULL if none.

— start_time: time

Start time specified in the optional action block, or UNDEF if none.

24.9.2.11 sdm_transformed_handler

This inherits from sdm_handler (see 24.9.2.8) and represents msg_transformed actions.

24.9.2.11.1 Predefined fields

— from_item: any_struct

First data item object specified in the msg_transformed action.

— to_item: any_struct

Second data item object specified in the msg_transformed action.

24.9.2.12 sdm_changed_handler

This inherits from sdm_handler (see 24.9.2.8) and represents msg_changed actions.

24.9.2.12.1 Predefined fields

— new_state: string

State string specified in the msg_changed action.

24.9.2.13 sdm_info_handler

This inherits from sdm_handler (see 24.9.2.8) and represents msg_transformed actions.

24.9.2.13.1 Predefined fields

— item1: any_struct

First data item object specified in the msg_info action, or NULL if none.

— item2: any_struct

Second data item object specified in the msg_info action, or NULL if none.
Copyright © 2015 IEEE. All rights reserved. 371

IEEE
Std 1647-2015 IEEE STANDARD
24.9.2.14 any_unit message API

24.9.2.14.1 create_formatted_messsage()

Notes:

— By default this method does not modify the original content of buffer, when get_format() of mes-
sage is none or a user-defined value. When get_format() of message is short or long, the result is
implementation-dependent.

— There are no guarantees on the number of times this method is actually called for a given message.
Thus, if an extension of this method produces any side effects (other than the actual message format-
ting), the behavior is undefined.

— If a user extension of create_formatted_message() uses is also, the content of buffer at the begin-
ning of the user's extension contains the default formatting. If it uses is only, the default formatting is
not performed, and the content of buffer is just the base text of the message.

Example

extend message_format: [MY_FORMAT};
unit env_u {

post_generate() is also {
message_manager.set_message_format(me, MY_TAG, {},MY_FORMAT);

};
};

extend any_unit {
create_formatted_message(message: message_action, buffer: list of string)
is also {

if message.get_format() == MY_FORMAT {
var src_module: rf_module =
message.get_source_method_layer().get_module();
var src: string = append("at line ",
message.get_source_line_num(),
" in @",
src_module.get_name()); outf("sys.time is %s\n", get_time());
buffer.add0(src); buffer.add0(append("sys.time is %s\n",
message.get_time()));

};
};

};

Description This method is a hook (callback) predefined method used for implementing user-defined format-
ting on message output to text destinations.

Category Predefined method

Syntax create_formatted_message(message: message_action, buffer: list of string)

Parameters

message Object that represents that current message being issued. (see 24.9.2.7)

buffer Buffer for the formatted message. At the start of this method, buffer contains
the base text of the message before formatting.
372 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
25. Sequences

25.1 Overview

Sequences provide a uniform way to define streams of data items and compose them into verification
scenarios of growing complexity. Sequence items are typically driven into a DUT, but the details of the
interaction with the DUT are decoupled from the data stream creation and hidden behind a standard
interface.

For defining sequences, it is also necessary to define standard interfacing entities between the sequence and
the DUT. Therefore, the sequence model has three main entities, as follows:

a) Item—A struct that represents the main input to the DUT (e.g., packet, transaction, or instruction).

b) Sequence—A struct that defines a stream of items representing a high-level stimuli scenario. This is
done by generating items one after the other, according to some specific rules. The sequence struct
has a set of predefined fields and methods. The user can also extend this struct.

c) Sequence driver—A unit that serves as the mediator between the sequences and a verification envi-
ronment. The generated items are passed from the sequence to the sequence driver; the sequence
driver acts upon them one-by-one, typically passing them to some kind of bus functional model
(BFM).

1) The sequence driver and the BFM work as a pair, where the sequence driver serves as the inter-
face upwards toward the sequences so the sequences can always see a standard interface to the
DUT. The BFM serves as the interface downwards to the DUT, allowing the user to write
sequences as appropriate. The importance of maintaining the separation between the sequence
driver and the BFM becomes clear when implementing virtual sequences (see 25.1.2).

2) To complete the picture:

i) A TCM does the actual driving of items into a specific DUT channel.

ii) The TCM resides in a BFM unit.

iii) For the purpose of driving data into the DUT, the sequence driver interacts only with the
BFM.

From the point of view of a programming language, a sequence is best described as the instantiation of a
design pattern. The same pattern needs to be instantiated separately for every type of data item that
constitutes verification scenarios for the DUT. The basic implementation of the pattern is given to a user-
defined sequence through like inheritance, and through type-parameterized code (a template), where the
parameter is the data-item type.
Copyright © 2015 IEEE. All rights reserved. 373

IEEE
Std 1647-2015 IEEE STANDARD
25.1.1 Object model

The actual sequence object model consists of six struct types and their relationships, shown as a Unified
Modeling Language (UML) diagram in Figure 15.

For a UML diagram of this type, the styles of arrow heads are significant. There are two kinds of
relationships depicted in Figure 15, the directional association (the horizontal connectors from user-
sequence) and inheritance. The inheritance relationship in UML is depicted by a open, triangular arrowhead
pointing to the base class (e.g., user-driver to any_sequence_driver). One or more lines proceed from the
base of the arrowhead connecting it to the derived classes (e.g., for any_sequence_item).

25.1.2 Virtual sequences

BFM sequences are tightly connected to their own type and items; BFM sequences cannot do sequences
created by other sequence statements. Virtual sequences, however, are not tightly connected and can do
sequences of other types (but not items). Hence, they can be used to drive more than one agent, model a
generic driver, or to synchronize and dispatch BFM sequences to several BFM drivers.

A virtual sequence is driven by a virtual sequence driver, which typically has references to the individual
BFM sequence drivers; however, a virtual sequence driver is not connected to a specific BFM. Therefore, it
lacks the logic and functionality of a BFM driver, e.g., a virtual sequence driver does not schedule items—it
only drives sequences. As part of a driver’s functionality is aimed at controlling and manipulating the
scheduling of items, any method that controls this functionality cannot be called for a virtual sequence. For
the full list of driver interface methods that cannot be used for virtual sequences, see Table 49.

NOTE—To activate single items from a virtual sequence, use the SIMPLE sequence. To pass any parameters to the
item, define the parameters as fields in the SIMPLE sequence and propagate them by constraining the item.

any_sequence_driver a

any_sequence a

any_sequence_item a

user-item b user-sequence c user-driver cdriver

parent_sequence

a Built-in struct type.
b Declared by user.
c Declared by a sequence statement.

Figure 15—UML diagram of sequence object model types
374 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
25.2 Sequence statement

The sequence statement creates a new sequence struct, which inherits from the predefined any_sequence,
which in turn inherits from any_sequence_item. It also creates a new sequence driver unit, which inherits
from any_sequence_driver. Finally, it extends the (user-defined) item struct. For more details on all the
resulting struct type members, see 25.4. For further details about the resulting predefined sequence kinds,
see 25.2.1.

Syntax example:

sequence ex_atm_sequence using item=ex_atm_cell

25.2.1 Predefined sequence kinds

The enumerated type of the sequence kind field contains the predefined values MAIN, RANDOM, and
SIMPLE for BFM sequences and only MAIN and RANDOM for virtual sequences.

25.2.1.1 MAIN

This sequence subtype is instantiated directly under the sequence driver and is started by default. It is used
as the root of the whole sequence tree. See also the gen_and_start_main driver field, which controls
automatic start of MAIN sequence, in Table 49.

define MAX_RANDOM_COUNT 10;

Purpose
Declare and partially define the sequence struct, the sequence driver unit, and the sequence kind
enumerated type. For BFM sequences, extend the item struct for collaboration in the sequence
pattern

Category Statement

Syntax sequence sequence_type_name [using sequence_option, ...]

Parameters

sequence_type_
name

The name of the new sequence.

sequence_option sequence_option is one of the following:

a) item = item_type—the item to use in the sequence. This struct type
shall already be defined and inherit from any_sequence_item. The
item struct is extended by the sequence statement; the sequence is a
BFM sequence.

If this option is not used, this sequence is a virtual sequence.

b) created_kind = kind_type_name—the associated kind enumerated
type to create; the default is sequence_type_name_kind.

c) created_driver = driver_type_name—the associated sequence
driver to create; the default is sequence_type_name_driver.

d) sequence_type = base_sequence_type—the sequence struct used for
inheritance. This struct shall inherit from any_sequence; the default
is any_sequence.

e) sequence_driver_type = base_sequence_driver_type—the se-
quence driver unit used for inheritance. This unit shall inherit from
any_sequence_driver; the default is any_sequence_driver.
Copyright © 2015 IEEE. All rights reserved. 375

IEEE
Std 1647-2015 IEEE STANDARD
extend MAIN sequence_name {
 count : uint;
 !sequence : sequence_name;

 keep soft count > 0;
 keep max_random_count <= MAX_RANDOM_COUNT;
 keep soft count <= MAX_RANDOM_COUNT;
 keep sequence.kind not in [RANDOM, MAIN];

 body() @driver.clock is only {
 for i from 1 to count do {
 do sequence
 }
 }
}

25.2.1.2 SIMPLE

This sequence subtype generates and executes a single item for BFM sequences.

extend SIMPLE sequence_name {
 !seq_item: item;

 body() @driver.clock is only {
 do seq_item
 }
}

25.2.1.3 RANDOM

This sequence subtype is used for creating random scenarios based on SIMPLE and user-defined sequence
subtypes.

extend RANDOM sequence_name {
 count : uint;
 !sequence : sequence_name;

 keep all of {
 soft count > 0;
 max_random_count <= MAX_RANDOM_COUNT;
 soft count <= MAX_RANDOM_COUNT;
 sequence.kind not in [RANDOM, MAIN];
 depth_from_driver >= driver.max_random_depth =>
 sequence.kind == SIMPLE
 };

 body() @driver.clock is only {
 for i from 1 to count do {
 do sequence
 }
 }
}

376 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
25.2.2 Examples

Example 1

This example defines a BFM sequence for ATM cells.

sequence ex_atm_sequence using item=ex_atm_cell

It assumes the ex_atm_cell struct already exists and establishes the following definitions:

Example 2

This example defines a virtual sequence for an SOC environment; it defines the soc_sequence struct, the
soc_sequence_kind type, and the soc_sequence_driver unit.

sequence soc_sequence

25.3 do sequence action

The do action performs the following steps (see also Table 48 and Table 49 and Figure 17, Figure 18,
Figure 19, and Figure 20).

a) On a subsequence:

1) Generates the field, considering the constraints, if any.

2) Calls its body() TCM.

The do action finishes when the subsequence body() returns.

b) On an item:

1) Waits until the driver is ready to perform the do action.

2) Generates the field, considering the constraints, if any.

The item is returned by get_next_item().

The do action finishes when driver.item_done is emitted.

struct ex_atm_sequence (inherits from any_sequence)

type ex_atm_sequence_kind (predefined items MAIN, RANDOM, and SIMPLE).

unit ex_atm_sequence_driver (inherits from any_sequence_driver)

Purpose Generate and drive an item or subsequence declared as fields in the enclosing sequence

Category Action

Syntax do field_name [keeping {constraint [; constraint] ...}]

Parameters

field_name A field in the current struct. It shall be an ungeneratable field, as indicated by
a leading exclamation mark (!), and also needs to be a basic item or a
sequence.

constraint Any generation constraints on field_name.
Copyright © 2015 IEEE. All rights reserved. 377

IEEE
Std 1647-2015 IEEE STANDARD
The following considerations also apply:

— do is a time-consuming, atomic action—as observed from the thread executing the do action—that
activates an item or sequence.

— The do action can only be activated inside sequences.

— BFM sequences cannot do sequences created by other sequence statements.

— When do-ing an item, emit the event driver.item_done to let the sequence complete the do action
and inform the driver the item was processed (typically, after the transmission of the item via the
BFM). Otherwise, the sequence cannot continue and the driver cannot drive more items.

— For items, waiting for the sequence driver to be ready is performed before generation to ensure
generation is done as close to the actual driving as possible. Thus, if the constraints depend on the
current status of the DUT/environment, that status is as accurate as possible.

— The sequence driver decides when the item is ready by managing a FIFO that also considers any
grab/ungrab actions done by the various sequences and the is_relevant() sequence value. If no
grab is done and is_relevant() returns TRUE for all sequences, the order of doing the items is
determined by the order of the do actions in the various sequences that refer to the sequence driver,
regardless of their depth or origin. Sequences and items can also be done in parallel, using the all of
and first of actions. [See also grab() and is_relevant() in Table 48.]

Syntax example:

extend FOO ex_atm_sequence {
 // Parameters
 i : int;
 b : bool;

 // Items/subsequences
 !cell : ex_atm_cell;
 !seq : BAR ex_atm_sequence;

 // The body() method
 body() @driver.clock is {
 do cell keeping {.len == 4};
 do cell;

 for i = 1 to 20 do {
 do cell keeping {.address == i}
 };

 do seq keeping {.f == 2}
 }
}

25.4 Sequence struct types and members

This subclause describes the entities the sequence statement extends (the sequence-item structs) or creates
(the sequence and sequence-driver structs). For the RO/RW columns in Table 47, Table 48, and Table 49,
RO designates a read-only member (which can only be read or invoked) and RW designates a read/write
member (which can also be set, constrained, or implemented).

25.4.1 Sequence item API

The sequence statement does not create the item struct, but it extends it. The user needs to create the item
struct, which inherits from any_sequence_item. The main members that are added to the item struct are
shown in Table 47.
378 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
25.4.2 Sequence API

The sequence statement creates a new sequence struct, which inherits from the predefined any_sequence,
which in turn inherits from any_sequence_item. The main members of the created sequence struct are
shown in Table 48.

Table 47—Sequence item struct members

Struct member Description RO/RW

do_location(): string Returns a string describing the source location of the do action that
generated the current item.
Not relevant for sequence_items not created via the do action.

RO

driver: driver_type Driver for the item, soft-constrained to its parent sequence’s driver. RW

get_depth(): int Depth from the sequence driver, valid from pre-generation. RO

get_driver(): driver_type Returns the driver for an item. RO

nice_string():
string is empty

A short string representing the sequence item that may be used to aid
debug tracing.

RW

!parent_sequence:
any_sequence

Back-pointer to the sequence in which an item was created. Assigned
automatically in the pre_generate() of the item. a

RO

aNever use is only on the pre_generate() or post_generate() of items or sequences. The field parent_sequence is
assigned in the pre_generate() of any_sequence_item.

Table 48—Sequence struct members

Struct member a Description RO/RW

body() @driver.clock
is empty

Main method called by do of parent sequence after it generates the
current sequence.

RW

do_location(): string Returns a string describing the source location of the do action that
generated the current item.
Not relevant for sequence_items not created via the do action.

RO

driver: driver_type Driver for the sequence, soft-constrained to its parent sequence’s driver. RW

event ended Emitted immediately after body() is finished. As part of the service API,
this event shall not be explicitly emitted by the sequence user.

RO

event started Emitted just before body() is called. As part of the service API, this
event shall not be explicitly emitted by the sequence user.

RO

get_depth(): int Depth from the sequence driver, valid from pre-generation. RO

get_driver(): driver_type Returns the driver for the sequence. RO

get_index(): int Starts at zero (0) and gets incremented after every do. RO

grab(driver:
any_sequence_driver)
@sys.any

Grabs the sequence driver for exclusive access and returns when
exclusive access has been granted.

RO

is_blocked(): bool Returns TRUE if the sequence is blocked by another sequence that
grabbed the sequence driver.

RO
Copyright © 2015 IEEE. All rights reserved. 379

IEEE
Std 1647-2015 IEEE STANDARD
25.4.3 Sequence driver API

The sequence statement creates a new sequence driver unit, which inherits from any_sequence_driver. The
main members of the created driver unit are shown in Table 49.

is_relevant(): bool Returns TRUE (the default) if the sequence is currently allowed to do
items. Use this to respond to the changing conditions of the simulation.
See also Figure 18 and Figure 19.

RW

kind: kind_type The kind field that determines which sequence it is (within its when
family). kind is declared const and hence cannot change value after the
sequence struct generation (see 6.8).

RW

mid_do(s:
any_sequence_item)
is empty

A hook method called in the middle of do, just after item s is generated
and before it is executed by calling the body() TCM.

RW

nice_string(): string is
empty

A short string representing the sequence item that may be used to aid
debug tracing.

RW

!parent_sequence:
any_sequence

Back-pointer to the sequence in which this sequence was created.
Assigned automatically in the pre_generate() of the sequence if such a
parent exists. b

RO

post_body()
@sys.any is empty

A hook method called after body() when sequence is started using the
start_sequence() method.

RW

post_do(s:
any_sequence_item)
is empty

A hook method called at the end of a do, just after the execution of
s.body().

RW

post_do_tcm(s:
any_sequence_item)
@sys.any is empty

A hook TCM called after post_do() that extends the life of a do after its
item_done event is emitted. The sequence driver, freed by the
item_done event, no longer manages the current item so it can now
handle other items.

RW

pre_body()
@sys.any is empty

A hook method called before body() when a sequence is started using the
start_sequence() method.

RW

pre_do(is_item: bool)
@sys.any is empty

A hook TCM called at the start of a do performed by the sequence.
is_item specifies whether the context is do-ing an item or a sequence.

RW

start_sequence() Starts sequence activity by starting body().
Call this method instead of starting body() directly.

RO

stop() Terminates (on the cycle boundary) the execution of the thread of that
sequence’s body TCM if it is executing at that time. It consequently
terminates other enclosed sequences. The post_body() of a stopped
sequence is not called nor is the post_do() of the do-ing sequence.

RO

ungrab(driver:
any_sequence_driver)

Releases the grab on a sequence driver and returns immediately. RO

aSome of these methods are inherited from the any_sequence_item interface shown in Table 47.
bNever use is only on the pre_generate() or post_generate() of items or sequences.

Table 48—Sequence struct members (continued)

Struct member a Description RO/RW
380 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Table 49—Sequence driver unit members

Struct member Description RO/RW BFM
only a

bfm_interaction_mode:
bfm_interaction_mode_t

Specifies the way the driver and the BFM interact with each
other. Possible options are PULL_MODE (the default) and
PUSH_MODE. It can be constrained.

RW Yes

branch_terminated() Enables resumption of normal operation in the current cycle
after the enclosing first of completes.

RO No

check_is_relevant() Forces a driver to recheck the relevance [value of
is_relevant()] for each sequence that has items in the
driver’s item queue. Useful when something has changed in
the BFM that affects the relevance of some sequences.

RO Yes

current_grabber():
any_sequence

Indicates which sequence (if any) has exclusive control over
a sequence driver.

RO Yes

delay_clock() @sys.any Emits the driver’s clock with an inter-cycle delay to allow
the environment to execute before the sequences. For
example, a BFM may need to export its status before its
sequences are evaluated so they can use the new status to
generate updated data. This TCM replaces the regular clock
connection so the clock event should not be emitted.

RW No

event clock The main clock. The user needs to tie this to a TE during the
sequence driver hook-up.

RW No

event item_done Synchronization event for the do action in PULL_MODE.
Emit this event to complete the do item and let the driver get
more items using get_next_item().

RW Yes

gen_and_start_main: bool Enables or disables automatic generation and launch of the
MAIN sequence upon run(). The default is TRUE (the MAIN
sequence is generated and started).

RW No

get_current_item():
any_sequence_item

Returns the item currently being sent.
(NULL if the BFM is currently idle.)

RO Yes

get_next_item():
item_type @clock

Call this TCM in PULL_MODE to receive the next item from
the BFM driver. This TCM is blocked until there is an item
to do in the driver.

RO Yes

get_num_items_sent():
int

Returns the count of items sent (excluding current_item, if
any).

RO Yes

get_sub_drivers(): list of
any_sequence_driver
is empty

For virtual sequence drivers, the writer of the specific
sequence driver needs to fill in this method. It needs to
return the list of subdrivers of the sequence driver. For a
BFM sequence driver, this would be unchanged, i.e., it
returns an empty list.

RW Virtual
only b

is_grabbed(): bool Indicates the grab status of the sequence driver. RO Yes

last(index):
any_sequence_item

Enables access to previously sent items in the sequence
driver.

RO Yes

max_random_count: int Sets the maximum number of subsequences in a RANDOM or
MAIN sequence, e.g.,

keep soft max_random_count ==
MAX_RANDOM_COUNT;
// Defined to be 10

RW No
Copyright © 2015 IEEE. All rights reserved. 381

IEEE
Std 1647-2015 IEEE STANDARD
max_random_depth: int Sets the maximum depth inside a RANDOM sequence
(beyond that depth, RANDOM creates only SIMPLE
sequences), e.g.,

keep soft max_random_depth ==
MAX_RANDOM_DEPTH;
// Defined to be 4

RW No

num_of_last_items: int Sets the length of the history of previously sent items. The
default is 1.

RW Yes

regenerate_data()
is empty

Hook method to regenerate driver’s data upon rerun().
Never use is only on the run() or rerun() of drivers. Some
important initializations are performed in those methods.

RW No

send_to_bfm(seq_item:
item_name)
@clock is empty

When working in PUSH_MODE, sends the item to the
corresponding BFM. The user needs to implement this as
part of achieving the hookup.

RW Yes

try_next_item():
item_type @clock

Call this TCM in PULL_MODE when the BFM has to
receive an item or perform some default behavior. Unlike
get_next_item(), when there is no available item waiting to
be done in the current cycle, this TCM returns NULL.
try_next_item() returns in the same cycle if there is no
pending do action. However, if a do action started
execution, then try_next_item() might take longer than a
cycle, e.g., if the pre_do() TCM has been extended to take
longer than a cycle.

RO Yes

wait_for_sequences()
@sys.any

Call this TCM to delay the return of try_next_item() and let
sequences create items. It may also be used to effect a thread
context switch to force a sequence producer to be evaluated
before a consumer. The body of this TCM may be replaced
["wait_for_sequences() @sys.any is only
{...}"] to implement an alternate synchronization
algorithm. However, this also influences the behavior of
try_next_item().

RW Yes

aSome of the driver members are relevant only for BFM drivers.
bThis method can only be used for virtual sequences.

Table 49—Sequence driver unit members (continued)

Struct member Description RO/RW BFM
only a
382 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
25.5 BFM-driver-sequence flow diagrams

This subclause shows how the BFM, driver, and sequences interact with each other.

25.5.1 sequence.start_sequence() flow

Figure 16 describes the flow for starting a sequence using the start_sequence() method. This flow does not
depend on the driver.bfm_interaction_mode.

For more information on the start_sequence() method, see Table 48.

25.5.2 do subsequence flow

Figure 17 describes the flow for do-ing a subsequence. This flow does not depend on the
driver.bfm_interaction_mode.

The sequence driver only
schedules items.
Therefore, when starting a
sequence, no
synchronization is done
between the driver and the
started sequence.

Sequence driver Sequence

start_sequence()
− Parent sequence is NULL.
− Sequence is already generated.
− Driver is not NULL.

emit @started

Start TCM that:
− Calls pre_body() TCM
− Calls body() TCM

execute sequence activity
(doing items/subsequences)

− Calls post_body() TCM

emit @ended

Return of start_sequence()

Figure 16—sequence.start_sequence() flow
Copyright © 2015 IEEE. All rights reserved. 383

IEEE
Std 1647-2015 IEEE STANDARD
For more information on the do action, see 25.3.

25.5.3 do item flow in push mode

Figure 18 describes the flow for do-ing an item when driver.bfm_interaction_mode (see Table 48) is
set to PUSH_MODE.

Sequence driver (driver)
(1)

Sequence
(n)

do subsequence

Call pre_do() TCM, with is_item = FALSE
Generate subsequence with:
− parent_sequence = sequence
− driver = sequence.driver (by constraint)

End of do subsequence

The sequence driver only
schedules items.
Therefore, when do-ing a
sequence, no
synchronization is done
between the driver and
the doing sequence or the
done subsequence.

Call subsequence.body()
TCM

execute sequence activity
(doing items/subsequences

Emit @subsequence.started

Call mid_do()

Call post_do()

Emit @subsequence.ended

Figure 17—do subsequence flow

BFM
(1)

Sequence
(n)

Driver
(1)

do item

The do action is listed in the driver’s queue

Wait for the driver acknowledgement

End of do item

Choose a do action to be
executed on a first-come-
first-served basis, considering
grabbers, and
sequence.is_relevant()

Call mid_do()

Call pre_do() TCM, with is_item = TRUE

Wait for @driver.item_done

Acknowledge to driver that item is ready
to be sent

Add item to driver’s last() buffer

Generate item with:
− parent_sequence = sequence
− driver = sequence.driver (by constraint)

Call post_do()

Sends item to DUT

Wait until item is generated

Acknowledge the sequence

Call send_to_bfm(item)
Emit @item_done

Figure 18—do item flow in push mode
384 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
For more information on the do action, see 25.3.

25.5.4 do item flow in pull mode using get_next_item()

Figure 19 describes the flow for do-ing an item when driver.bfm_interaction_mode (see Table 48) is
set to PULL_MODE and driver.get_next_item() (see Table 49) is used to receive items from the driver.

For more information on the do action, see 25.3.

25.5.5 do item flow in pull mode using try_next_item()

Figure 20 describes the flow for do-ing an item when driver.bfm_interaction_mode (see Table 48) is
set to PULL_MODE and driver.try_next_item() (see Table 49) is used to receive items from the driver. When
a do is chosen and pre_do() takes more than a cycle, driver.try_next_item() might also take more than a
cycle.

BFM SequenceDriver

do item

The do action is listed in the driver’s queue

Wait for the driver acknowledgement

End of do item

Call mid_do()

Call pre_do() TCM, with is_item = TRUE

Wait for @driver.item_done

Acknowledge to driver that item is
ready to be sent

Add item to driver’s last() buffer

Generate item with:
− parent_sequence = sequence
− driver = sequence.driver (by constraint)

Call post_do()

Emit @item_done
Sends item to DUT

Choose a do action to be
executed on a first-come–
first-served basis,
considering grabbers, and
sequence.is_relevant()

Acknowledge the sequence

Wait until item is generated

get_next_item() returns

Call
driver.get_next_item()

Figure 19—do item flow in pull mode using get_next_item()
Copyright © 2015 IEEE. All rights reserved. 385

IEEE
Std 1647-2015 IEEE STANDARD
For more information on the do action, see 25.3.

BFM Driver

Call driver.try_next_item()

Create a default item

First of:

YesNo

Send item to the DUT

Continue as in
get_next_item() flow.
try_next_item() returns
an item.

try_next_item()
returns with NULL

{
choose a do action
}
{
wait_for_sequences()
}

A do action is chosen before
wait_for_sequences returns?

Figure 20—do item flow in pull mode using try_next_item()
386 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26. List pseudo-methods library

This clause describes the pseudo-methods used to work with lists.

26.1 Pseudo-methods overview

A pseudo-method is a type of method unique to the e language. Pseudo-methods are e macros that look like
methods. They have the following characteristics:

— Unlike methods, pseudo-methods are not restricted to structs.

— They can be applied to any expression, including literal values, scalars, and compound arithmetic
expressions.

— Pseudo-methods cannot be extended.

— Pseudo-methods are defined by using define as (see 15.2).

— List pseudo-methods are associated with list data types, as opposed to being within the scope of a
struct.

If a method is added that uses the same name as one of the pseudo-methods for a built-in struct, that user-
defined method shall take precedence over the built-in struct.

See also 4.10.5, 4.15, 5.1, and Clause 27.

26.2 Using list pseudo-methods

A list pseudo-method can be used to operate on a (previously declared) list field or variable by attaching the
pseudo-method name, preceded by a period (.), to the list name. Any parameters required by the pseudo-
method go in parentheses [()] after the pseudo-method name.

Example

The following calls the apply() pseudo-method for the list named p_list, with the expression .length
+ 2 as a parameter. The pseudo-method returns a list of numbers found by adding 2 to the length field
value in each item in the list.

n_list = p_list.apply(.length + 2)

Many list pseudo-methods take expressions as parameters and operate on every item in the list. In those
pseudo-methods, the it variable can be used in an expression to refer to the current list item, and the index
variable can be used to refer to the current item’s list index number.

Pseudo-methods that return values can only be used in expressions.

26.3 Pseudo-methods to modify lists

This subclause describes the pseudo-methods that change one or more items in a list.

See also 4.16.2, 10.5.1, 19.1.2, 27.4.1, and 28.1.1.
Copyright © 2015 IEEE. All rights reserved. 387

IEEE
Std 1647-2015 IEEE STANDARD
26.3.1 add(item)

This adds the item to the end of the list. If the item is a struct, no new struct instance is generated; a pointer
to the existing instance of the struct is simply added to the list.

Syntax example:

var i_list : list of int;
i_list.add(5)

26.3.2 add(list)

This adds a copy of list_2 to the end of list_1.

Syntax example:

i_list.add(l_list)

Purpose Add an item to the end of a list

Category Pseudo-method

Syntax list.add(item: list-item-type)

Parameters

list A list.

item An item of list-item type, which is to be added to the list. The item is added at
index list.size(), e.g., if the list contains five items, the last item is at
index list.size()-1 or 4. Adding an item to this list places it at index 5.

Return value None

Purpose Add a list to the end of another list

Category Pseudo-method

Syntax list_1.add(list_2: list)

Parameters

list_1 A list.

list_2 An item of the same type as list_1, which is to be added to the end of list_1.
The list is added at index list.size(), e.g., if the list contains five items,
the last item is at index list.size()-1 or 4. Adding an item to this list
places it at index 5.

Return value None
388 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26.3.3 add0(item)

This adds a new item to an existing list. The item is placed at the head of the existing list, as the first position
(that is, at index 0). All subsequent items are then reindexed by incrementing their old index by 1.

If the item is a struct, no new struct instance is generated: a pointer to the existing instance of the struct is
simply added to the list.

Syntax example:

var l_list : list of int = {4; 6; 8};

l_list.add0(2)

26.3.4 add0(list)

This adds a new list to an existing list. A copy of the list_2 list is placed at the head of the existing list_1 list,
starting at the first list_1 index. All subsequent items are then reindexed by incrementing their old index by
the size of the new list being added.

Syntax example:

var i_list : list of int = {1; 3; 5};

var l_list : list of int = {2; 4; 6};

i_list.add0(l_list)

Purpose Add an item to the head of a list

Category Pseudo-method

Syntax list.add0(item: list-type)

Parameters

list A list.

item An item of the same type as the list items, which is to be added to the head of
the list.

Return value None

Purpose Add a list to the head of another list

Category Pseudo-method

Syntax list_1.add0(list_2: list)

Parameters

list_1 A list.

list_2 An item of the same type as list_1, which is to be added to the end of list_1 (at
list_1 index 0).

Return value None
Copyright © 2015 IEEE. All rights reserved. 389

IEEE
Std 1647-2015 IEEE STANDARD
26.3.5 clear()

This deletes all items in the list.

26.3.6 delete()

This removes item number index from list (indexes start counting from 0). The indexes of the remaining
items are adjusted to keep the numbering sequential. If the index does not exist in the list, an error shall be
issued.

NOTE—list.delete() cannot be used to delete a range of items (in a single call).

Syntax example:

var i_list : list of int = {2; 4; 6; 8};
i_list.delete(2)

Purpose Delete all items from a list

Category Pseudo-method

Syntax list.clear()

Parameters list A list.

Return value None

Purpose Delete an item from a list

Category Pseudo-method

Syntax list.delete(index: int)

Parameters
list A list.

index The index of the item to delete from the list.

Return value None
390 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26.3.7 fast_delete()

This removes item number index from list (indexes start counting from 0). The index of the last item in the
list is changed to the index of the item that was deleted, so all items following the deleted item keep their
original indexes, except the original last index is removed. If the index does not exist in the list, an error
shall be issued.

Syntax example:

var l_list : list of int = {2; 4; 6; 8};

l_list.fast_delete(2)

26.3.8 insert(index, item)

This inserts the item at the index location in the list. If index is the size of the list, then the item is simply
added at the end of the list. All indexes in the list are adjusted to keep the numbering correct. If the number
of items in the list is smaller than index, an error shall be issued.

If the item is a struct, no new struct instance is generated: a pointer to the existing instance of the struct is
simply added to the list.

Syntax example:

var l_list := {10; 20; 30; 40; 50};

l_list.insert(3, 99)

Purpose Delete an item without adjusting all indexes

Category Pseudo-method

Syntax list.fast_delete(index: int)

Parameters
list A list.

index The index of the item to delete from the list.

Return value None

Purpose Insert an item in a list at a specified index

Category Pseudo-method

Syntax list.insert(index: int, item: list-type)

Parameters

list A list.

index The index in the list where the item is to be inserted.

item An item of the same type as the list.

Return value None
Copyright © 2015 IEEE. All rights reserved. 391

IEEE
Std 1647-2015 IEEE STANDARD
26.3.9 insert(index, list)

This inserts all items of list_2 into list_1 starting at index. The index shall be a positive integer. The size of
the new list size is equal to the sum of the sizes of list_1 and list_2. If the number of items in list_1 is smaller
than index, an error shall be issued.

Syntax example:

var l_list := {10; 20; 30; 40; 50};

var m_list := {11; 12; 13};

l_list.insert(1, m_list)

26.3.10 pop()

This removes the last item [the item at index list.size() - 1] in the list and returns it. If the list is
empty, an error shall be issued.

NOTE—list.top() can be used to return the last item in list without removing it from the list (see 26.4.26).

Syntax example:

var i_list := {10; 20; 30};

var i_item : int;

i_item = i_list.pop()

Purpose Insert a list in another list starting at a specified index

Category Pseudo-method

Syntax list_1.insert(index: int, list_2: list)

Parameters

list_1 A list.

index The index of the position in list_1 where list_2 is to be inserted.

list_2 The list to insert into list_1.

Return value None

Purpose Remove and return the last list item

Category Pseudo-method

Syntax list.pop(): list-type

Parameters list A list.

Return value The last item
392 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26.3.11 pop0()

If the list is empty, this method shall issue an error. Otherwise, it removes the first item (the item at index 0)
from the list and returns that item. It then subtracts 1 from the index of each item remaining in the list.

NOTE—list.top0() can be used to return the first item in list without removing it from the list (see 26.4.27).

Syntax example:

var i_list := {10; 20; 30};
var i_item : int;
i_item = i_list.pop0()

26.3.12 push()

This pseudo-method performs the same function as add(item) (see 26.3.1). If the item is a struct, no new
struct instance is generated; a pointer to the existing instance of the struct is simply added to the list.

Syntax example:

var i_list : list of int;
i_list.push(5)

Purpose Remove and return the first list item

Category Pseudo-method

Syntax list.pop0(): list-type

Parameters list A list.

Return value The first item

Purpose Add an item to the end of a list [same as add(item)]

Category Pseudo-method

Syntax list.push(item: list-type)

Parameters

list A list.

item An item of the same type as the list type, which is to be added to the list. The
item is added at index list.size(), e.g., if the list contains five items, the
last item is at index list.size()-1 or 4. Adding an item to this list
places it at index 5.

Return value None
Copyright © 2015 IEEE. All rights reserved. 393

IEEE
Std 1647-2015 IEEE STANDARD
26.3.13 push0()

This pseudo-method performs the same function as add0(item) (see 26.3.3). If the item is a struct, no new
struct instance is generated; a pointer to the existing instance of the struct is simply added to the list.

Syntax example:

var l_list : list of int = {4; 6; 8};
l_list.push0(2)

26.3.14 push(list)

This pseudo-method performs the same function as add(list) (see 26.3.2); it adds list_2 to the end of list_1.

Syntax example:

i_list.push(l_list)

Purpose Add an item to the head of a list [same as add0(item)]

Category Pseudo-method

Syntax list.push0(item: list-type)

Parameters

list A list.

item An item of the same type as the list items, which is to be added to the head of
the list.

Return value None

Purpose Add a list to the end of another list [same as add(item)]

Category Pseudo-method

Syntax list_1.push(list_2: list)

Parameters

list_1 A list.

list_2 An item of the same type as list_1, which is to be added to the end of list_1.
The list is added at index list.size(), e.g., if the list contains five items,
the last item is at index list.size()-1 or 4. Adding an item to this list
places it at index 5.

Return value None
394 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26.3.15 push0(list)

This pseudo-method performs the same function as add0(list) (see 26.3.4); it adds a new list to an existing
list. The list_2 list is placed at the head of the existing list_1 list, starting at the first list_1 index. All
subsequent items are then reindexed by incrementing their old index by the size of the new list being added.

Syntax example:

var i_list : list of int = {1; 3; 5};

var l_list : list of int = {2; 4; 6};

i_list.push0(l_list)

26.3.16 resize()

This clears the list and increases or decreases the list size according to the new size.

— If only the second parameter, size, is used, this method allocates a new list of the given size and all
items are initialized to the default value for the list type.

— If any of the three parameters after size are used, all three of them shall be used.

— If full is TRUE, this method sets all new items to have filler as their value.

Purpose Add a list to the head of another list [same as add0(list)]

Category Pseudo-method

Syntax list_1.push0(list_2: list)

Parameters

list_1 A list.

list_2 An item of the same type as list_1, which is to be added to the end of list_1 (at
list_1 index 0).

Return value None

Purpose Change the size of a list

Category Pseudo-method

Syntax list.resize(size: int [, full: bool, filler: exp, keep_old: bool])

Parameters

list A list.

size A positive integer specifying the desired size.

full A Boolean value specifying all items are to be filled with filler (defaults to
TRUE).

filler An item of the same type of the list items; used as a filler when full is TRUE.

keep_old A Boolean value specifying whether to keep existing items already in the list
(defaults to FALSE).

Return value None
Copyright © 2015 IEEE. All rights reserved. 395

IEEE
Std 1647-2015 IEEE STANDARD
To resize a list and keep its old values, set both full and keep_old to TRUE. If the list is made longer,
additional items with the value of filler are appended to the list. The following details the behavior of this
method for all combinations of full and keep_old:

a) full is FALSE, keep_old is FALSE

An empty list (that is, a list of zero size) is created and memory is allocated for a list of the given
size.

b) full is TRUE, keep_old is FALSE

The list is resized to size and filled completely with filler.

c) full is FALSE, keep_old is TRUE

1) If size is greater than the size of the existing list, the list is enlarged to the new size, and the new
positions are filled with the default value of the list type.

2) If size is less than or equal to the size of the existing list, the list is shortened to the new size,
and all of the existing values up to that size are retained.

d) full is TRUE, keep_old is TRUE

1) If size is greater than the size of the existing list, the list is enlarged to the new size and the new
positions are filled with filler.

2) If size is less than or equal to the size of the existing list, the list is shortened to the new size and
all of the existing values up to that size are retained.

Syntax example:

var r_list := {2; 3; 5; 6; 8; 9};
r_list.resize(10, TRUE, 1, TRUE)

26.4 General list pseudo-methods

This subclause describes the syntax for pseudo-methods that perform various operations on lists.

26.4.1 all_different()

Returns TRUE if, and only if, evaluation of the expression returns a unique value for each of the list
elements, except (if bool_exp is specified) those elements for which bool_exp evaluates to FALSE. In other
words, no two items (or expressions) in the list for which the bool_exp is TRUE (which is the default if no
bool_exp is specified) have the same value.

Purpose Returns TRUE if evaluation of the expression returns a unique value for each of the list elements

Category Pseudo-method

Syntax list.all_different(item: exp [, bool_exp: bool]): bool

Parameters

list A list.

item Any expression. The it variable can be used to refer to the current list item,
and the index variable can be used to refer to its index number.

bool_exp Any Boolean expression. Optional. The it variable can be used to refer to the
current list item, and the index variable can be used to refer to its index num-
ber. If not given in the method call, defaults to TRUE

Return value A Boolean value
396 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

struct packet {

x: byte;

y: byte

};

extend sys {

packets: list of packet;

keep packets.all_different(.x+.y);

L:list of uint;

keep L.all_different(it)

};

var l: list of int = {UNDEF,3,2,1,UNDEF,4,UNDEF,6};

print l.all_different(it , it != UNDEF)

Prints TRUE because all the elements that are different from UNDEF are also different from each other.

26.4.2 apply()

This applies the expr to each item in the list and returns the changed list. The expression list.apply(it.field) is
the same as list.field when field is a scalar type. The two expressions are different, however, if the field is not
a scalar.

Example

Assuming data is a list of byte, the first expression returns a list containing the first byte of data of each
packet item. The second expression is a single item, which is the first item in the concatenated list of all
data fields in all packet items.

packets.apply(it.data[0]);

packets.data[0]

Syntax example:

var p_list := {1; 3; 5};

var n_list : list of int;

n_list = p_list.apply(it * 2)

Purpose Perform a computation on each item in a list

Category Pseudo-method

Syntax list.apply(expr: exp): list

Parameters

list A list.

expr Any expression. The it variable can be used to refer to the current list item,
and the index variable can be used to refer to its index number.

Return value The changed list
Copyright © 2015 IEEE. All rights reserved. 397

IEEE
Std 1647-2015 IEEE STANDARD
26.4.3 copy()

This is a specific case of exp.copy() (see 27.4.1), where exp is the name of a list.

Syntax example:

var strlist_1 : list of string = {"A"; "B"; "C"};
var strlist_2 : list of string;
strlist_2 = strlist_1.copy()

26.4.4 count()

This returns the number of items for which the exp is TRUE.

Purpose Make a shallow copy of a list

Category Predefined method of any struct or unit

Syntax list.copy(): list

Parameters list A list.

Return value None

Purpose Return the number of items that satisfy a given condition

Category Pseudo-method

Syntax list.count(exp: bool): int

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The number of items
398 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

var ct : int;

ct = instr_list.count(it.op1 > 200)

26.4.5 exists()

This returns TRUE if an item with the index number exists in the list or returns FALSE if the index does not
exist.

Syntax example:

var i_chk : bool;

i_chk = packets.exists(5)

26.4.6 first()

This returns the first item for which exp is TRUE and stops executing.

If there is no such item, the default for the item’s type is returned (see 5.1). For a list of scalars, a value of
zero (0) is returned if there is no such item. Since zero (0) might be confused with a value found, it is safer
to use list.first_index() for lists of scalars.

Syntax example:

var i_item : instr;

i_item = instr_list.first(it.op1 > 15)

Purpose Check if an index exists in a list

Category Pseudo-method

Syntax list.exists(index: int): bool

Parameters
list A list.

index An integer expression representing an index to the list.

Return value A Boolean value

Purpose Get the first item that satisfies a given condition

Category Pseudo-method

Syntax list.first(exp: bool): list-type

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The first matching item
Copyright © 2015 IEEE. All rights reserved. 399

IEEE
Std 1647-2015 IEEE STANDARD
26.4.7 first_index()

This returns the index of the first item for which exp is TRUE and stops executing. Otherwise, it returns
UNDEF (if there is no such item).

Syntax example:

var i_item : int;
i_item = instr_list.first_index(it.op1 > 15)

26.4.8 flatten()

Returns a regular (one-dimensional) list that contains all the base elements that are contained in the list. If
the multidimensional list is a keyed list, a regular list is still returned.

Syntax example:

Generates a list containing the numbers 1 to 6, with the number 4 twice:

var matrix: list of list of int = {{1;2;3;4};{4;5;6}};
var l: list of int = matrix.flatten();

Purpose Get the index of the first item that satisfies a given condition

Category Pseudo-method

Syntax list.first_index(exp: bool): int

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The index of the first matching item

Purpose Get a list of the base elements that make up the sub-lists in a multi-dimensional list

Category Pseudo-method

Syntax list.flatten(): list

Parameters list A list.

Return value A list
400 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26.4.9 get_indices()

This copies the items in list that have the indexes specified in index-list and returns a new list containing
those items. If the index-list is empty, an empty list is returned.

Syntax example:

var i_list : list of packet;
i_list = packets.get_indices({0; 1; 2})

26.4.10 has()

This returns TRUE if the list contains at least one item for which the exp is TRUE. Otherwise, it returns
FALSE (if the exp is not TRUE for any item).

Syntax example:

var i_ck : bool;
i_ck = sys.instr_list.has(it.op1 > 31)

Purpose Return a sublist of the targeted list

Category Pseudo-method

Syntax list.get_indices(index-list: list of int): list-type

Parameters
list A list.

index-list A list of indexes within the list. Each index needs to exist in the list.

Return value A new list

Purpose Check that a list has at least one item that satisfies a given condition

Category Pseudo-method

Syntax list.has(exp: bool): bool

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value A Boolean value
Copyright © 2015 IEEE. All rights reserved. 401

IEEE
Std 1647-2015 IEEE STANDARD
26.4.11 is_a_permutation()

This returns TRUE if list_2 contains the same items as list_1; otherwise, it returns FALSE (if any items in
one list are not in the other list).

— The order of the items in the two lists does not need to be the same, but the number of items shall be
the same for both lists, i.e., items that are repeated in one list shall appear the same number of times
in the other list.

— If the lists are lists of structs, list_1.is_a_permutation(list_2) compares the addresses of the struct
items, not their contents.

— A convertible type is one that automatically converts to match the relevant type.

NOTE—This pseudo-method can be used in a keep constraint to fill list_1 with the same items contained in the list_2,
although not necessarily in the same order.

Syntax example:

var lc : bool;

lc = packets_1a.is_a_permutation(packets_1b)

26.4.12 is_empty()

This returns TRUE if list is empty; otherwise, it returns FALSE (if the list is not empty).

Syntax example:

var no_l : bool;

no_l = packets.is_empty()

Purpose Check that two lists contain exactly the same items

Category Pseudo-method

Syntax list_1.is_a_permutation(list_2: list): bool

Parameters
list_1 A list.

list_2 An list to compare to list_1. This shall be a convertible type of list_1.

Return value A Boolean value

Purpose Check if a list is empty

Category Pseudo-method

Syntax list.is_empty(): bool

Parameters list A list.

Return value A Boolean value
402 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26.4.13 last()

This returns the first item for which exp is TRUE and stops executing.

If there is no such item, the default for the item’s type is returned (see 5.1). For a list of scalars, a value of
zero (0) is returned if there is no such item. Since zero (0) might be confused with a value found, it is safer
to use list.last_index() for lists of scalars.

Syntax example:

var i_item : instr;
i_item = sys.instr_list.last(it.op1 > 15)

26.4.14 last_index()

This returns the index of the last item for which exp is TRUE and stops executing; otherwise, it returns
UNDEF (if there is no such item).

Syntax example:

var i_item : int;
i_item = instr_list.last_index(it.op1 > 15)

Purpose Get the last item that satisfies a given condition

Category Pseudo-method

Syntax list.last(exp: bool): list-type

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The last matching item

Purpose Get the index of the last item that satisfies a given condition

Category Pseudo-method

Syntax list.last_index(exp: bool): int

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The index of the last matching item
Copyright © 2015 IEEE. All rights reserved. 403

IEEE
Std 1647-2015 IEEE STANDARD
26.4.15 max()

This returns the item for which the exp evaluates to the largest value. If more than one item results in the
same maximum value, the item latest in the list is returned. If the list is empty, an error shall be issued.

Syntax example:

var high_item : item_instance;
high_item = item_list.max(it.f_1 + it.f_2)

26.4.16 max_index()

This returns the index of the item for which the exp evaluates to the largest value. If more than one item
results in the same maximum value, the index of item latest in the list is returned. If the list is empty, an error
shall be issued.

Syntax example:

var item_index : index;
item_index = sys.item_list.max_index(it.f_1 + it.f_2)

Purpose Get the item with the maximum value of a given expression

Category Pseudo-method

Syntax list.max(exp: numeric-type): list-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The matching item

Purpose Get the index of the item with the maximum value of a given expression

Category Pseudo-method

Syntax list.max_index(exp: numeric-type): int

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The index of the matching item
404 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26.4.17 max_value()

This returns the largest integer value found by evaluating the exp for every item in the list.

For lists of integer types, Table 39 shows what is returned when the list is empty.

Syntax example:

var item_val : int;

item_val = sys.item_list.max_value(it.f_1 + it.f_2)

26.4.18 min()

This returns the item for which the exp evaluates to the smallest value. If more than one item results in the
same minimum value, the item latest in the list is returned. If the list is empty, an error shall be issued.

Purpose Return the maximum value found by evaluating a given expression for all items

Category Pseudo-method

Syntax list.max_value(exp: numeric-type): exp-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The matching value

Table 39—Empty list max_value() return values

List item type Value returned

Signed integer MIN_INT (see 4.1.4.4)

Unsigned integer zero (0)

Long integer error

Purpose Get the item with the minimum value of a given expression

Category Pseudo-method

Syntax list.min(exp: numeric-type): list-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The matching item
Copyright © 2015 IEEE. All rights reserved. 405

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

var low_item : item_instance;

low_item = sys.item_list.min(it.f_1 + it.f_2)

26.4.19 min_index()

This returns the index of the item for which the specified exp gives the minimal value. If more than one item
results in the same minimum value, the index of the item latest in the list is returned. If the list is empty, an
error shall be issued.

Syntax example:

var item_index : index;

item_index = sys.item_list.min_index(it.f_1 + it.f_2)

26.4.20 min_value()

This returns the smallest integer value found by evaluating the exp for every item in the list.

For lists of integer types, Table 39 shows what is returned when the list is empty.

Syntax example:

var item_val : int;

item_val = sys.item_list.min_value(it.f_1 + it.f_2)

Purpose Get the index of the item with the minimum value of a given expression

Category Pseudo-method

Syntax list.min_index(exp: numeric-type): int

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The index of the matching item

Purpose Return the minimum value found by evaluating a given expression for all items

Category Pseudo-method

Syntax list.min_value(exp: numeric-type): exp-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The matching value
406 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26.4.21 reverse()

This returns a new list of all the items in list in reverse order.

Syntax example:

var s_list := {"A"; "B"; "C"; "D"};
var r_list := s_list.reverse()

26.4.22 size()

This returns an integer equal to the number of items in the list. See 10.2.7.1 for more information about
constraining the size of lists. See also 4.12.1 and 10.4.1.

NOTE—To control the list size, use a construct like keep list.size() == n, where n is an integer expression. Another way
to specify an exact size of a list is by using the list[n] index syntax in the list declaration, such as p_list[n]: list
of p.

Syntax example:

print packets.size()

Purpose Reverse the order of a list

Category Pseudo-method

Syntax list.reverse(): list

Parameters list A list.

Return value The changed list

Purpose Return the size of a list

Category Pseudo-method

Syntax list.size(): int

Parameters list A list.

Return value The list size
Copyright © 2015 IEEE. All rights reserved. 407

IEEE
Std 1647-2015 IEEE STANDARD
26.4.23 sort()

This returns a new list of all the items in list, sorted in increasing order of the values of the sort-exp. If the
sort-exp is a scalar (or string) value, the list is sorted by value. If the sort-exp is a nonscalar, the list is sorted
by address.

Syntax example:

var s_list : list of packet;
s_list = packets.sort(it.f_1 + it.f_2)

26.4.24 sort_by_field()

This returns a new list of all the items in struct-list, sorted in increasing order of their field values.

NOTE—The list.sort() pseudo-method returns the same value as the list.sort_by_field() pseudo-method, but
list.sort_by_field() is more efficient.

Syntax example:

var s_list : list of packet;
s_list = sys.packets.sort_by_field(length)

Purpose Sort a list

Category Pseudo-method

Syntax list.sort(sort-exp: exp): list

Parameters

list A list of integers, strings, enumerated items, or Boolean values to sort.

sort-exp A scalar or nonscalar expression. The expression can contain references to
fields or structs. The it variable can be used to refer to the current list item.

Return value The changed list

Purpose Sort a list of structs by a selected field

Category Pseudo-method

Syntax struct-list.sort_by_field(field: field-name): list

Parameters

list A list of structs.

field The name of a field of the list’s struct type. Enter the name of the field only,
without a preceding period (.) or the term it.

Return value The changed list
408 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26.4.25 split()

Since e does not support lists of lists, this pseudo-method returns a list of type struct-list-holder.

— The struct-list-holder type is a struct with a single field, value: list of any-struct.

— A struct-list-holder is a list of structs, with each struct containing a list of items of the original list
type.

— Each struct-list-holder in the returned list contains consecutive items from the list that have the same
split-exp value.

Any fields used in the expression shall be defined in the base type definition, not in when subtypes.

Syntax example:

var sl_hold := s_list.split(it.f_1 == 16)

26.4.26 top()

This returns the last item in the list without removing it from the list. If the list is empty, an error shall be
issued.

Syntax example:

var pk : packet;

pk = sys.packets.top()

Purpose Splits a list at each point where an expression is TRUE

Category Pseudo-method

Syntax list.split(split-exp: exp): list of struct-list-holder

Parameters

list A list (of any type).

split-exp An expression. The it variable can be used to refer to the current list item, and
the index variable can be used to refer to its index number.

Return value The list of struct-list-holder

Purpose Return the last item in a list

Category Pseudo-method

Syntax list.top(): list-item

Parameters list A list.

Return value The last item
Copyright © 2015 IEEE. All rights reserved. 409

IEEE
Std 1647-2015 IEEE STANDARD
26.4.27 top0()

This returns the first item in the list without removing it from the list. If the list is empty, an error shall be
issued.

NOTE—This pseudo-method can be used with pop0() to emulate queues.

Syntax example:

var pk : packet;
pk = sys.packets.top0()

26.4.28 unique()

This returns a new list of all the distinct values in list. In the new list, all consecutive occurrences of items
for which the value of exp are the same are collapsed into one item.

Syntax example:

var u_list : list of l_item;
u_list = sys.l_list.unique(it.f_1)

Purpose Return the first item in a list

Category Pseudo-method

Syntax list.top0(): list-item

Parameters list A list.

Return value The first item

Purpose Collapse consecutive items that have the same value into one item

Category Pseudo-method

Syntax list.unique(select-exp: exp): list

Parameters

list A list of type struct-list-holder.

split-exp An expression. The it variable can be used to refer to the current list item, and
the index variable can be used to refer to its index number.

Return value The changed list
410 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26.4.29 all()

This returns a list of all the items in list for which exp is TRUE. If no items satisfy the Boolean expression, an
empty list is returned. See also 4.16.1.

Syntax example:

var l_2 : list of packet;

l_2 = sys.packets.all(it.length > 64)

26.4.30 all_indices()

Returns a list of all indexes of items in list for which exp is TRUE. If no items satisfy the Boolean
expression, an empty list is returned.

NOTE—Using all_indices() on an empty list produces another empty list. Trying to use this result in a gen keeping
constraint can cause a generation contradiction error.

Syntax example:

var l_2 : list of int;

l_2 = sys.packets.all_indices(it.length > 5)

26.5 Math and logic pseudo-methods

This subclause describes the syntax for pseudo-methods that perform arithmetic or logical operations to
compute a value using all items in a list.

Purpose Get all items that satisfy a condition

Category Pseudo-method

Syntax list.all(exp: bool): list

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value A list of the matching items

Purpose Get indexes of all items that satisfy a condition

Category Pseudo-method

Syntax list.all_indices(exp: bool): list of int

Parameters
list A list.

exp A Boolean expression.

Return value A list of the indexes for all the matching items
Copyright © 2015 IEEE. All rights reserved. 411

IEEE
Std 1647-2015 IEEE STANDARD
26.5.1 and_all()

Returns TRUE if all values of the exp are true; otherwise, it returns FALSE (if the exp is false for any item in
the list). It stops computation once a FALSE is established. If the list is empty, this returns TRUE.

Syntax example:

var bool_val : bool;
bool_val = m_list.and_all(it >= 1)

26.5.2 or_all()

This returns a TRUE if any value of the exp is true; otherwise, it returns FALSE (if the exp is false for every
item in the list or the list is empty). It stops computation once a TRUE is established.

Syntax example:

var bool_val : bool;
bool_val = m_list.or_all(it >= 100)

Purpose Compute the logical AND of all items

Category Pseudo-method

Syntax list.and_all(exp: bool): bool

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value A Boolean value

Purpose Compute the logical OR of all items

Category Pseudo-method

Syntax list.or_all(exp: bool): bool

Parameters

list A list.

exp A Boolean expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value A Boolean value
412 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26.5.3 average()

This returns the integer average of the exp computed for all the items in the list. It returns UNDEF if the list
is empty.

Syntax example:

var list_ave : int;
list_ave = sys.item_list.average(it.f_1 * it.f_2)

26.5.4 product()

This returns the integer product of the exp computed over all the items in the list. It returns 1 if the list is
empty.

Syntax example:

var list_prod : int;
list_prod = sys.item_list.product(it.f_1)

Purpose Compute the average of an expression for all items

Category Pseudo-method

Syntax list.average(exp: numeric-type): numeric-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The integer average

Purpose Compute the product of an expression for all items

Category Pseudo-method

Syntax list.product(exp: numeric-type): numeric-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The integer product
Copyright © 2015 IEEE. All rights reserved. 413

IEEE
Std 1647-2015 IEEE STANDARD
26.5.5 sum()

This returns the integer sum of the exp computed over all the items in the list. It returns 0 if the list is empty.

Syntax example:

var op_sum : int;
op_sum = sys.instr_list.sum(.op1)

26.6 List CRC pseudo-methods

This subclause describes the syntax for pseudo-methods that perform cyclic redundancy check (CRC)
functions on lists. See also 19.1.1 and 19.1.2.

26.6.1 crc_8()

This reads the list byte-by-byte and returns the integer value of the CRC8 function of a list of bits or bytes.
Only the least significant byte is used in the result.

The CRC is computed starting with the from-byte, for num-bytes. If from-byte or from-byte+num-bytes is not
in the range of the list, an error shall be issued.

NOTE—The algorithm for computing CRC8 is specific for the ATM HEC (header error control) computation. The code
used for HEC is a cyclic code with the following generating polynomial:

x**8 + x**2 + x + 1

Purpose Compute the sum of all items

Category Pseudo-method

Syntax list.sum(exp: numeric-type): numeric-type

Parameters

list A list.

exp An integer expression. The it variable can be used to refer to the current list
item, and the index variable can be used to refer to its index number.

Return value The integer sum

Purpose Compute the CRC8 of a list of bits or a list of bytes

Category Pseudo-method

Syntax list.crc_8(from-byte: int, num-bytes: int): int

Parameters

list A list of bits or bytes.

from-byte The index number of the starting byte.

num-bytes The number of bytes to use.

Return value The integer value
414 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

print b_data.crc_8(2, 4)

26.6.2 crc_32()

This reads the list byte-by-byte and returns the integer value of the CRC32 function of a list of bits or bytes.
Only the least significant word is used in the result.

The CRC is computed starting with the from-byte, for num-bytes. If from-byte or from-byte+num-bytes is not
in the range of the list, an error shall be issued.

Purpose Compute the CRC32 of a list of bits or a list of bytes

Category Pseudo-method

Syntax list.crc_32(from-byte: int, num-bytes: int): int

Parameters

list A list of bits or bytes.

from-byte The index number of the starting byte.

num-bytes The number of bytes to use.

Return value The integer value
Copyright © 2015 IEEE. All rights reserved. 415

IEEE
Std 1647-2015 IEEE STANDARD
NOTE—The algorithm for computing CRC32 generates a 32-bit CRC that is used for messages up to 64 kB in length.
Such a CRC can detect 99.999999977% of all errors. The generator polynomial for the 32-bit CRC used for both
Ethernet and token ring is:

x**32 + x**26 + x**23 + x**22 + x**16 + x**12 + x**11 + x**10 + x**8 + x**7
+ x**5 + x**4 +x**2 + x + 1

Syntax example:

print b_data.crc_32(2, 4)

26.6.3 crc_32_flip()

This reads the list byte-by-byte and returns the integer value of the CRC32 function of a list of bits or bytes,
with the bits flipped. Only the least significant word is used in the result. The bits are flipped as follows:

a) The bits inside each byte of the input are flipped.

b) The bits in the result are flipped.

The CRC is computed starting with the from-byte, for num-bytes. If from-byte or from-byte+num-bytes is not
in the range of the list, an error shall be issued.

Syntax example:

print b_data.crc_32_flip(2, 4)

26.7 Keyed list pseudo-methods

This subclause describes the syntax for pseudo-methods that can be used only on keyed lists. Using one of
these methods on a regular list shall result in an error.

Keyed lists are list in which each item has a key associated with it. For a list of structs, the key typically is
the name of a particular field in each struct. Each unique value for that field can be used as a key.

— For a list of scalars, the key can be the it variable, referring to each item.

— When creating a keyed list, the key shall have a unique value for each item.

— Keyed lists can be searched quickly, by searching on a key value.

Purpose Compute the CRC32 of a list of bits or a list of bytes, flipping the bits

Category Pseudo-method

Syntax list.crc_32_flip(from-byte: int, num-bytes: int): int

Parameters

list A list of bits or bytes.

from-byte The index number of the starting byte.

num-bytes The number of bytes to use.

Return value The integer value
416 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
26.7.1 key()

This returns the list item that has the specified key. If there is no such item, the default for the item’s type is
returned (see 5.1). For a list of scalars, a value of zero (0) is returned if there is no such item. Since zero (0)
might be confused with a value found, do not use zero (0) as a key for scalar lists.

Syntax example:

var loc_list_item : location;
var i_key : uint;
i_key = 5;
loc_list_item = locations.key(i_key)

26.7.2 key_index()

This returns the integer index of the item that has the specified key; otherwise, it returns UNDEF (if no item
with that key exists in the list).

Syntax example:

var loc_list_ix : int;
loc_list_ix = locations.key_index(i)

Purpose Get the item that has a particular key

Category Pseudo-method

Syntax list.key(key-exp: exp): list-item

Parameters
list A keyed list.

key-exp The key of the item to return.

Return value The matching list item

Purpose Get the index of an item that has a particular key

Category Pseudo-method

Syntax list.key_index(key-exp: exp): int

Parameters
list A keyed list.

key-exp The key of the item for which the index is to be returned.

Return value The index of the matching list item
Copyright © 2015 IEEE. All rights reserved. 417

IEEE
Std 1647-2015 IEEE STANDARD
26.7.3 key_exists()

This returns TRUE if the key exists in the list; otherwise, it returns FALSE.

Syntax example:

var loc_list_k : bool;
var i := 5;
loc_list_k = locations.key_exists(i)

26.7.4 Restrictions on keyed lists

a) list.resize() cannot be used on keyed lists.

b) Keyed lists and regular (unkeyed) lists are different types. Assignment is not allowed between a
keyed list and a regular list.

c) Keyed lists cannot be generated. Trying to generate a keyed list shall result in an error. Therefore,
keyed lists need to be defined with the do-not-generate sign (!).

Purpose Check that a particular key is in a list

Category Pseudo-method

Syntax list.key_exists(key-exp: exp): bool

Parameters
list A keyed list.

key-exp The key for which to search.

Return value A Boolean value
418 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
27. Predefined methods library

A significant part of e functionality is implemented as a set of predefined methods defined directly under the
global and sys structs. Furthermore, every struct inherits a set of predefined methods. Some of these
methods can be extended to add functionality and some of them are empty, allowing for user definition.

Three other predefined structs, semaphore, rdv_semaphore, and locker, provide predefined methods that
are useful in controlling TCMs and in controlling resource sharing between TCMs (see Clause 31). Then,
there are pseudo-methods. Calls to pseudo-methods look like method calls. However, they are associated not
with struct expressions, but with other kinds of expressions.

NOTE—Use the pre_generate() or post_generate() methods (see 27.2.2.2 and 27.2.2.3) to extend a struct or unit.

27.1 Predefined methods of sys

Table 1 (see also 1.4.4) shows the predefined methods of the sys struct. These methods are initially empty
and intended to be extended by the user. These methods are called by the runtime engine at various phases.

27.2 Predefined methods of any_struct

This subclause defines the methods available for any instantiated user-defined struct or unit.

27.2.1 Setting unit relationships

These methods can be used to get or set unit-related information.

27.2.1.1 get_unit()

Returns a reference to the unit (see 7.5.1).

27.2.1.2 set_unit()

Changes the parent unit of a struct (see 7.5.4).

27.2.2 Methods called during execution phases

These methods are used to manipulate structs during execution.

27.2.2.1 init() method of any_struct

The init() method of a struct is called when a new instance of the struct is created. This method can be
extended to set different values for fields (other than their default values). By default, all fields of scalar type
are initialized to zero (0). The initial value of a struct or list is NULL; unless the list is a sized list of scalars,
in which case, it is initialized to the proper size with each item set to the default value.

Purpose Customize the initialization of a struct

Category Predefined method of any struct or unit

Syntax [exp.]init()

Parameters exp An expression that returns a unit or a struct.
Copyright © 2015 IEEE. All rights reserved. 419

IEEE
Std 1647-2015 IEEE STANDARD
The following considerations also apply:

— Initialize the non-generated fields of a struct, especially fields of an enumerated scalar type or
unsized lists.

— Enumerated scalar types are initialized to zero (0), even if that is not a legal value for that type.

— Initialize any fields that might be sampled before being assigned.

— Size or initialize any lists that might be filled with data from the DUT.

— Unpacking data from the DUT into an unsized, uninitialized list shall cause a runtime error.

— If a field is initialized, but not marked as non-generated, the initialization is overwritten during
generation. To mark a field as non-generated, place a ! character in front of the field name.

— See also 4.12.4, 5.1, and 19.4.2.

Syntax example:

init() is also {
 is_ok = TRUE;
 list_subs = {320; 330; 340; 350; 360};
 list_color = {black; red; green; blue; yellow; white}
}

27.2.2.2 pre_generate()

Simplifies constraint expressions before they are analyzed by the constraint solver (see 10.5.2).

27.2.2.3 post_generate()

Derives more complex expressions or values from the generated values (see 10.5.3).

27.2.2.4 run() method of any_struct

When a test is executed, the global.run_test() method calls the run() methods of all structs under sys,
starting from sys in depth-first search (DFS) order. After this initial pass, when any_struct is generated
(with the gen action) or allocated (with new), its run() method is also invoked. This ensures the following:

a) The run() method of each struct instance is called exactly once, thus avoiding multiple instances of
the same started TCM;

b) TCMs do not start and events do not occur before the e program is ready to accept them; and

c) The run() method is called after generation and uses the generated values.

If multiple tests are run in the same session, the run() method is called once for each test in the session. The
init() method is called only once before the first test.

This method can be extended to start user-defined TCMs. The method is initially empty. See also 17.2.2.

Purpose Recommended place for starting TCMs

Category Method of any struct or unit

Syntax [exp.]run()

Parameters exp An expression that returns a unit or a struct.
420 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

run() is also {

start monitor()

}

27.2.2.5 quit() method of any_struct

This method deactivates a struct instance, killing all TCMs, expects, assumes, and events associated with
the struct and enabling garbage collection. The quit() method emits a quit event for that struct instance at the
end of the current tick and kills any TCMs, expects, assumes, and events that were active within the struct
in which the quit() method is called.

The quit() method is called by the global.stop_run() method (see 23.5). It can also be called explicitly.

Syntax example:

packet.quit()

27.2.3 Methods called for customizing specific operations

These methods define how to pack, unpack, or print struct information.

27.2.3.1 do_pack()

Packs the physical fields of the struct (see 19.4.1.1.1).

27.2.3.2 do_unpack()

Unpacks a packed list of bit into a struct (see 19.4.1.1.2).

27.2.3.3 do_print() method of any_struct

This method controls the printing of information about a particular struct. It can be extended to customize
the way information is displayed. This method is called by the print action whenever a struct is printed.

Purpose Kill all TCMs, expects, assumes, and events associated with a struct or unit instance

Category Predefined method of any struct or unit

Syntax [exp.]quit()

Parameters exp An expression that returns a unit or a struct.

Purpose Print struct info

Category Predefined method of any struct or unit

Syntax [exp.]do_print()

Parameters exp An expression that returns a unit or a struct.
Copyright © 2015 IEEE. All rights reserved. 421

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

do_print() is first {

 outf("Struct %s :", me.s)

}

27.2.3.4 print_line() method of any_struct

This method prints lists of structs of a common struct type in a tabulated table format. Each struct in the list
is printed in a single line of the table.

There is a limit on the number of fields printed in each line when printing the structs—those fields that fit
into a single line are printed—the rest are not printed at all. Each field is printed in a separate column and
there is a limitation on the column width. When a field exceeds this width, it is truncated and an asterisk (*)
is placed as the last character of that field’s value.

Syntax example:

sys.pmi[0].print_line(sys.pmi[0]);

sys.pmi[0].print_line(NULL)

27.3 Methods and predefined attributes of unit any_unit

The predefined methods for any_unit include the following:

— hdl_path()

— full_hdl_path()

— e_path()

— agent()

— get_parent_unit()

For details about each of these, see 7.4.

27.4 Set Pseudo-methods

Pseudo-method calls look like method calls, but unlike methods they are not associated with structs and are
applied to other types of expressions. This section describes set (see 5.1.10) pseudo-methods.

Purpose Print a struct or a unit in a single line

Category Predefined method of any struct or unit

Syntax [exp.]print_line(NULL | struct-type)

Parameters

exp An expression that returns a unit or a struct.

NULL | struct-
type

To print a row representation of the struct or unit, the parameter is NULL.
To print the header for the list, the parameter is of the form: struct-type.
422 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
27.4.1 union()

Returns the set of all elements that are members of either set1 or set2.

27.4.2 intersect()

Returns the set of all elements that are members of both set1 or set2.

27.4.3 diff()

Returns the set of all elements that are members set1 but not members of set2.

27.4.4 size()

Returns the size of (i.e., the number of elements in) the set.

Purpose Unify two sets

Category Pseudo-method

Syntax set1.union(set2): set

Parameters set1
set2

Legal expressions of type set.

Purpose Intersect two sets

Category Pseudo-method

Syntax set1.intersect(set2): set

Parameters set1
set2

Legal expressions of type set.

Purpose Subtract sets

Category Pseudo-method

Syntax set1.diff(set2): set

Parameters set1
set2

Legal expressions of type set.

Purpose Return the size of a set

Category Pseudo-method

Syntax set.size(): int(bits:*)

Parameters set Legal expression of type set.
Copyright © 2015 IEEE. All rights reserved. 423

IEEE
Std 1647-2015 IEEE STANDARD
27.4.5 uint_size()

Returns the size of (i.e., the number of elements in) the set. If the number of elements is greater than
MAX_UINT, the behavior is undefined. This pseudo-method is intended for use instead of size() (see 27.4.4)
when the set size is known to not be greater than MAX_UINT.

27.4.6 size_is_uint()

Returns TRUE if the size of the set is less than or equal to MAX_UINT; otherwise, returns FALSE. This
pseudo-method is mainly intended for use prior to calling uint_size() (see 27.4.5) to ensure that uint_size()
usage is safe.

27.4.7 min()

Returns the smallest numeric value included in the set, that is, the bottom boundary of the set. If set is empty
(i.e., it has no elements), an exception is thrown.

Purpose Return the size of a set, limited to 32-bit unsigned values

Category Pseudo-method

Syntax set.uint_size(): uint

Parameters set Legal expression of type set.

Purpose Check whether the size of a set can be represented by a 32-bit unsigned value.

Category Pseudo-method

Syntax set.size_is_uint(): bool

Parameters set Legal expression of type set.

Purpose Return the minimal value of a set.

Category Pseudo-method

Syntax set.min(): int (bits:*)

Parameters set Legal expression of type set.
424 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
27.4.8 uint_min()

Returns the smallest numeric value included in the set, that is, the bottom boundary of the set. If set is empty
(i.e., it has no elements), an exception is thrown. If the smallest value is greater than MAX_UINT or is
negative, the behavior is undefined. This pseudo-method is intended for use instead of min() (see 27.4.7)
when the minimal value is known to not be greater than MAX_UINT or negative.

27.4.9 min_is_uint()

Returns TRUE if the smallest numeric value included in the set is not negative and is less than or equal to
MAX_UINT; otherwise, returns FALSE. This pseudo-method is mainly intended for use prior to calling
uint_min() (see 27.4.8) to ensure that uint_min() usage is safe.

27.4.10 int_min()

Returns the smallest numeric value included in the set, that is, the bottom boundary of the set. If set is empty
(i.e., it has no elements), an exception is thrown. If the smallest value is greater than MAX_UINT or is less
than MIN_INT, the behavior is undefined. This pseudo-method is intended for use instead of min() (see
27.4.7) when the minimal value is known to not be greater than MAX_UINT nor less than MIN_INT.

Purpose Return the minimal value of a set, limited to 32-bit unsigned values.

Category Pseudo-method

Syntax set.uint_min(): uint

Parameters set Legal expression of type set.

Purpose Check whether the minimal value of a set can be represented by a 32-bit unsigned value.

Category Pseudo-method

Syntax set.min_is_uint(): bool

Parameters set Legal expression of type set.

Purpose Return the minimal value of a set, limited to 32-bit signed values.

Category Pseudo-method

Syntax set.int_min(): int

Parameters set Legal expression of type set.
Copyright © 2015 IEEE. All rights reserved. 425

IEEE
Std 1647-2015 IEEE STANDARD
27.4.11 min_is_int()

Returns TRUE if the smallest numeric value included in the set is greater than or equal to MIN_INT and less
than or equal to MAX_INT; otherwise, returns FALSE. This pseudo-method is mainly intended for use prior
to calling int_min() (see 27.4.10) to ensure that int_min() usage is safe.

27.4.12 max()

Returns the largest numeric value included in the set, that is, the top boundary of the set. If set is empty (i.e.,
it has no elements), an exception is thrown.

27.4.13 uint_max()

Returns the largest numeric value included in the set, that is, the top boundary of the set. If set is empty (i.e.,
it has no elements), an exception is thrown. If the largest value is greater than MAX_UINT or is negative,
the behavior is undefined. This pseudo-method is intended for use instead of max() (see 27.4.12) when the
maximal value is known to not be greater than MAX_UINT or negative.

Purpose Check whether the minimal value of a set can be represented by a 32-bit signed value.

Category Pseudo-method

Syntax set.min_is_int(): bool

Parameters set Legal expression of type set.

Purpose Return the maximal value of a set.

Category Pseudo-method

Syntax set.max(): int (bits:*)

Parameters set Legal expression of type set.

Purpose Return the maximal value of a set, limited to 32-bit unsigned values.

Category Pseudo-method

Syntax set.uint_max(): uint

Parameters set Legal expression of type set.
426 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
27.4.14 max_is_uint()

Returns TRUE if the largest numeric value included in the set is not negative and is less than or equal to
MAX_UINT; otherwise, returns FALSE. This pseudo-method is mainly intended for use prior to calling
uint_max() (see 27.4.13) to ensure that uint_max() usage is safe.

27.4.15 int_max()

Returns the largest numeric value included in the set, that is, the top boundary of the set. If set is empty (i.e.,
it has no elements), an exception is thrown. If the largest value is greater than MAX_UINT or is less than
MIN_INT, the behavior is undefined. This pseudo-method is intended for use instead of max() (see 27.4.12)
when the maximal value is known to not be greater than MAX_UINT nor less than MIN_INT.

27.4.16 max_is_int()

Returns TRUE if the largest numeric value included in the set is greater than or equal to MIN_INT and less
than or equal to MAX_INT; otherwise, returns FALSE. This pseudo-method is mainly intended for use prior
to calling int_max() (see 27.4.15) to ensure that int_max() usage is safe.

27.5 Other Pseudo-methods

Pseudo-methods calls look like method calls, but unlike methods they are not associated with structs and are
applied to other types of expressions, such as lists. Pseudo-methods cannot be changed or extended through
use of the is only, is also, or is first constructs.

Purpose Check whether the maximal value of a set can be represented by a 32-bit unsigned value.

Category Pseudo-method

Syntax set.max_is_uint(): bool

Parameters set Legal expression of type set.

Purpose Return the maximal value of a set, limited to 32-bit signed values.

Category Pseudo-method

Syntax set.int_max(): int

Parameters set Legal expression of type set.

Purpose Check whether the maximal value of a set can be represented by a 32-bit signed value.

Category Pseudo-method

Syntax set.max_is_int(): bool

Parameters set Legal expression of type set.
Copyright © 2015 IEEE. All rights reserved. 427

IEEE
Std 1647-2015 IEEE STANDARD
27.5.1 copy() method of any_struct

This returns a shallow, non-recursive copy of the expression. If the expression is a list or a struct that
contains other lists or structs, the second-level items are not duplicated; instead, they are copied by
reference. Table 40 details how the copy is made, depending on the type of the expression.

The following considerations also apply:

— Do not use the assignment operator (=) to copy structs or lists into other data objects. The assignment
operator simply manipulates pointers to the data being assigned and does not create new struct
instances or lists.

— Use the deep_copy() method (see 28.1.1) to create a recursive copy of a struct or list that contains
compound fields or items.

Syntax example:

var pmv : packet = sys.pmi.copy()

27.5.2 as_a()

Converts an expression from one data type to another (see 5.8.1).

27.5.3 get_enclosing_unit()

Returns a reference to the nearest higher-level unit instance of the specified type (see 7.5.2).

Purpose Make a shallow copy

Category Predefined method of any struct or unit

Syntax exp.copy(): exp

Parameters exp Any legal e expression.

Table 40—Copying process

Expression Procedure

scalar The scalar value is simply assigned as in a normal assignment.

string The whole string is copied.

scalar list A new list with the same size as the original list is allocated and the contents of the original list are
duplicated.

list of structs A new list with the same size as the original list is allocated and the contents of the list is copied
by reference, i.e., each item in the new list points to the corresponding item in the original list.

struct A new struct instance with the same type as the original struct is allocated and all scalar fields are
duplicated. All compound fields (lists or structs) in the new struct instance point to the
corresponding fields in the original struct.
428 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
27.5.4 to_string()

This method can be used to convert any type to a string; it can be extended for structs and units.

— If the expression is a struct expression, the to_string() method returns a unique identification string
for each struct instance, which can be used to reference the struct. By default, the identification string
is of the form type-@ num, where num is a unique struct number over all instances of all structs in
the current run.

— If the expression is a list of strings, the to_string() method is called for each element in the list. The
string returned contains all the elements, with a newline between each element.

— If the expression is a list of any type except string, the to_string() method returns a string containing
all the elements, with a space between each element.

— If the expression is of type set, the to_string() method returns its canonical form (see 5.1.11).

— If the expression is a numeric type, it is converted using the current radix with the radix prefix.

— If the expression is a string, the to_string() method returns the string.

— If the expression is an enumerated or a Boolean type, the to_string() method returns the value.

Syntax example:

print pkts[0].to_string()

27.5.5 try_enclosing_unit()

Returns a reference to the nearest higher-level unit instance of the specified type, without issuing a runtime
error if no unit instance of the specified type is found (see 7.5.3).

27.6 Coverage methods

The covers struct is a predefined struct containing methods used for coverage and coverage grading. With
the exception of the write_cover_file() method, all of these methods are methods of the covers struct:

— include_tests()

— set_weight()

— set_at_least()

— set_cover()

— get_contributing_runs()

— get_unique_buckets()

— write_cover_file()

— get_overall_grade()

— get_ecov_name()

— get_test_name()

— get_seed()

Purpose Convert any expression to a string

Category Pseudo-method

Syntax exp.to_string(): string

Parameters exp A legal e expression.
Copyright © 2015 IEEE. All rights reserved. 429

IEEE
Std 1647-2015 IEEE STANDARD
For details about each of these, see 14.8.
430 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
28. Predefined routines library

Predefined routines are e macros that look like methods. The distinguishing characteristics of predefined
routines are as follows:

— They are not associated with any particular struct.

— They share the same name space for user-defined routines and global methods.

— They cannot be modified or extended with the is only, is also, or is first constructs.

See also 17.2.

28.1 Deep copy and compare routines

The following routines perform recursive copies and comparisons of nested structs and lists. See also 6.11.

28.1.1 deep_copy()

This returns a deep, recursive copy of the struct instance. This routine descends recursively through the
fields of a struct and its descendants, copying each field by value, copying it by reference, or ignoring it,
depending on the deep_copy attribute set for that field.

The return type of deep_copy() is the same as the declared type of the struct instance.

Table 41 details how the copy is made, depending on the type of the field and the deep_copy attribute
(normal, reference, ignore) set for that field. See also 6.11.

The following considerations also apply:

— A deep copy of a scalar field (numeric, Boolean, or enumerated) or a string field is the same as a
shallow copy performed by a call to copy().

— A struct or list is duplicated no more than once during a single call to deep_copy().

— If there is more than one reference to a struct or list instance and that instance is duplicated by the
call to deep_copy(), every field that referred to the original instance is updated to point to the new
instance.

— The copy() method of the struct is called by deep_copy().

— The struct’s copy() method is called before its descendants are deep copied. If the default copy()
method is overwritten or extended, this new version of the method is used.

— Add the reference attribute to fields that store shared data and to fields that are back-pointers
(pointers to the parent struct). Shared data in this context means data shared between objects inside
the deep copy graph and objects outside the deep copy graph. A deep copy graph is the imaginary
directed graph created by traversing the structs and lists duplicated, where its nodes are the structs or
lists and its edges are deep references to other structs or lists.

Purpose Make a recursive copy of a struct and its descendants

Category Predefined routine

Syntax deep_copy(struct-inst: exp): struct instance

Parameters struct-inst An expression that returns a struct instance.
Copyright © 2015 IEEE. All rights reserved. 431

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

var pmv : packet = deep_copy(sys.pmi)

28.1.2 deep_compare()

This returns a list of strings, where each string describes a single difference between the two struct instances.
This routine descends recursively through the fields of a struct and its descendants, comparing each field or
ignoring it, depending on the deep_compare attribute set for that field.

The two struct instances are “deep equal” if the returned list is empty.

Deep equal is defined as follows:

— Two struct instances are deep equal if they are of the same type and all their fields are deep equal.

— Two scalar fields are deep equal if an equality operation applied to them is TRUE.

— Two list instances are deep equal if they are of the same size and all their items are deep equal.

Table 41—Copying procedure

Field type/
attribute normal reference ignore

scalar The new field holds a copy of the orig-
inal value.

The new field holds a copy
of the original value.

The new field holds a copy
of the original value.

scalar list A new list is allocated with the same
size and same elements as the original
list.

The new list field holds a
copy of the original list
pointer. a

A new list is allocated with
zero size.

struct A new struct instance with the same
type as the original struct is allocated.
Each field is copied or ignored,
depending on its deep_copy attribute.

The new struct field holds
a pointer to the original
struct.

No allocation occurs; the
field is set to NULL.

list of structs A new list is allocated with the same
number of elements as the original list.
New struct instances are also allocated
and each field in each struct is copied
or ignored, depending on its
deep_copy attribute.

The new list field holds a
copy of the original list
pointer. a

A new list is allocated with
zero size.

aIf the list or struct that is pointed to is duplicated (possibly because another field with a normal attribute is also pointing
to it), the pointer in this field is updated to point to the new instance. This duplication applies only to instances
duplicated by the deep_copy() itself and not to duplications made by the extended/overridden copy() method.

Purpose Perform a recursive comparison of two struct instances

Category Predefined routine

Syntax deep_compare(struct-inst1: exp, struct-inst2: exp, max-diffs: int): list of string

Parameters

struct-inst1,
struct-inst2

An expression returning a struct instance.

max-diffs An integer representing the maximum number of differences to report.
432 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Topology is taken into account. If two non-scalar instances are not in the same location/order in the deep
compare graphs, they are not equal. A deep compare graph is the imaginary directed graph created by
traversing the structs and lists compared, where its nodes are the structs or lists and its edges are deep
references to other structs or lists.

Table 42 details the differences that are reported, depending on the type of the field and the deep_compare
attribute (normal, reference, or ignore) set for that field. See also 6.11.

The difference string reported has the following format:

Differences between inst1-id and inst2-id

path: inst1-value != inst2-value

Table 42—Reporting procedure

Field type/
attribute normal reference ignore

scalar Their values, if different, are reported. Their values, if different,
are reported.

The fields are not compared.

scalar list Their sizes, if different, are reported. All
items in the smaller list are compared to
those in the longer list and their
differences are reported.

The fields are equal if their
addresses are the same.
The items are not
compared.

The fields are not compared.

struct If two structs are not of the same type,
their type difference is reported. Also,
any differences in common fields are
reported. a, b

If two structs are of the same type,
every field difference is reported.

aTwo fields are considered common only if the two structs are the same type, if they are both subtypes of the same base
type, or if one is a base type of the other.

bIf the reference points inside the deep compare graph, a limited topological equivalence check is performed, not just
an address comparison.

The fields are equal if their
addresses are the same.
The items are not
compared.

The fields are not compared
and no differences for them
or their descendants are
reported.

list of structs Their sizes, if different, are reported. All
structs in the smaller list are deep
compared to those in the longer list and
their differences are reported.

The fields are equal if their
addresses are the same and
they point to the same
struct instance. b

The fields are not compared
and no differences for them
or their descendants are
reported.
Copyright © 2015 IEEE. All rights reserved. 433

IEEE
Std 1647-2015 IEEE STANDARD
where

NOTE—The same two struct instances or the same two list instances are not compared more than once during a single
call to deep_compare().

Syntax example:

var diff : list of string = deep_compare(pmi[0], pmi[1], 100)

28.1.3 deep_compare_physical()

Syntax example:

var diff : list of string = deep_compare_physical(pmi[0], pmi[1], 100)

This returns a list of strings, where each string describes a single difference between the two struct instances.
This routine descends recursively through the fields of a struct and its descendants, ignoring all non-physical
fields and comparing each physical field or ignoring it, depending on the deep_compare_physical attribute
set for that field.

This routine is the same as the deep_compare() routine (see 28.1.2), except only physical fields (indicated
by the % operator prefixed to the field name) are compared.

NOTE—Adding a field under a when construct only causes the parent type and the when subtype to be different if the
added field is a physical field.

28.2 Integer arithmetic routines

The following subclauses describe the predefined arithmetic routines in e.

path is a list of field names separated by periods (.), from (and not including) the struct instances
being compared to the field with the difference.

value a) for scalar field differences, value is the result of out(field).

b) for struct field type differences, the type of the field is appended to the path and value
is the type of the field.

c) for list field size differences, size() is appended to the path and value is the result of
out(field.size()).

d) for a shallow comparison of struct fields that point outside the deep compare graph,
value is the struct address.

e) for a comparison of struct fields that point to different locations in the deep compare
graphs (topological difference), value is struct# appended to an index representing its
location in the deep compare graph.

Purpose Perform a recursive comparison of the physical fields of two struct instances

Category Predefined routine

Syntax deep_compare_physical(struct-inst1: exp, struct-inst2: exp, max-diffs: int): list of string

Parameters

struct-inst1,
struct-inst2

An expression returning a struct instance.

max-diffs An integer representing the maximum number of differences to report.
434 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
28.2.1 min()

This returns the smaller of the two numeric values.

Syntax example:

print min((x + 5), y)

28.2.2 max()

This returns the larger of the two numeric values.

Syntax example:

print max((x + 5), y)

28.2.3 abs()

This returns the absolute value of the expression.

Syntax example:

print abs(x)

Purpose Get the minimum of two numeric values

Category Pseudo-routine

Syntax min(x: numeric-type, y: numeric-type): numeric-type

Parameters
x A numeric expression.

y A numeric expression.

Purpose Get the maximum of two numeric values

Category Pseudo-routine

Syntax max(x: numeric-type, y: numeric-type): numeric-type

Parameters
x A numeric expression.

y A numeric expression.

Purpose Get the absolute value

Category Pseudo-routine

Syntax abs(x: numeric-type): numeric-type

Parameters x A numeric expression.
Copyright © 2015 IEEE. All rights reserved. 435

IEEE
Std 1647-2015 IEEE STANDARD
28.2.4 odd()

This returns TRUE if the expression is odd, FALSE if the expression is even.

Syntax example:

print odd(x)

28.2.5 even()

This returns TRUE if the expression passed to it is even, FALSE if the expression is odd.

Syntax example:

print even(x)

28.2.6 ilog2()

This returns the integer part of the base-2 logarithm of x.

Syntax example:

print ilog2(x)

Purpose Check if an integer is odd

Category Pseudo-routine

Syntax odd(x: numeric-type): bool

Parameters x A numeric expression.

Purpose Check if an integer is even

Category Pseudo-routine

Syntax even(x: numeric-type): bool

Parameters x A numeric expression.

Purpose Get the base-2 logarithm

Category Pseudo-routine

Syntax ilog2(x: numeric-type): bool

Parameters x A numeric expression.
436 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
28.2.7 ilog10()

This returns the integer part of the base-10 logarithm of x.

Syntax example:

print ilog10(x)

28.2.8 ipow()

This raises x to the power of y and returns the result.

Syntax example:

print ipow(x, y)

28.2.9 isqrt()

This returns the integer part of the square root of x.

Syntax example:

print isqrt(x)

Purpose Get the base-10 logarithm

Category Pseudo-routine

Syntax ilog10(x: numeric-type): bool

Parameters x A numeric expression.

Purpose Raise to a power

Category Pseudo-routine

Syntax ipow(x: numeric-type, y: numeric-type): numeric-type

Parameters
x A numeric expression.

y A numeric expression.

Purpose Get the square root

Category Pseudo-routine

Syntax isqrt(x: numeric-type): int

Parameters x A numeric expression.
Copyright © 2015 IEEE. All rights reserved. 437

IEEE
Std 1647-2015 IEEE STANDARD
28.2.10 div_round_up()

This returns the result of x / y rounded up to the next integer. See also 4.9.2.

Syntax example:

print div_round_up(x, y)

28.3 Real arithmetic routines

Table 43 shows the arithmetic routines support of real type objects:

Purpose Division rounded up

Category Routine

Syntax div_round_up(x: int, y: int): int

Parameters
x A numeric expression.

y A numeric expression.

Table 43—Arithmetic routines supporting real types

Routine Description

floor(real): real Returns the largest integer that is less than or equal to the parameter.

ceil(real): real Returns the smallest integer that is greater than or equal to the parameter.

round(real): real Returns the closest integer to the parameter. In the case of a tie then it returns the integer
with the higher absolute value.

log(real): real Returns the natural logarithm of the parameter.

log10(real): real Returns the base-10 logarithm of parameter.

pow(real, real): real Returns the value of the first parameter raised to the power of second one.

sqrt(real): real Returns the square root of the parameter.

exp(real): real Returns the value of e raised to the power of the parameter.

sin(real): real Returns the sine of the parameter given in radians.

cos(real): real Returns the cosine of the parameter given in radians.

tan(real): real Returns the tangent of the parameter given in radians.

asin(real): real Returns the arc sine of the parameter.

acos(real): real Returns the arc cosine of the parameter.

atan(real): real Returns the arc tangent of the parameter.

sinh(real): real Returns the hyperbolic sine of the parameter.

cosh(real): real Returns the hyperbolic cosine of the parameter.

tanh(real): real Returns the hyperbolic tangent of the parameter.
438 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
28.4 bitwise_op()

This performs a Verilog-style unary reduction operation on a single operand to produce a single bit result.
There is no reduction operator in e, but the bitwise_op() routines perform the same functions as reduction
operators in Verilog, e.g., bitwise_xor() can be used to calculate parity.

For bitwise_nand(), bitwise_nor(), and bitwise_xnor(), the result is computed by inverting the result of the
bitwise_and(), bitwise_or(), and bitwise_xor() operations, respectively. Table 44 shows the predefined
pseudo-methods for bitwise operations.

asinh(real): real Returns the inverse hyperbolic sine of the parameter.

acosh(real): real Returns the inverse hyperbolic cosine of the parameter.

atanh(real): real Returns the inverse hyperbolic tangent of the parameter.

atan2(real, real): real Returns the arc tangent of the two parameters.

hypot(real, real): real Returns the distance of the point defined by the two parameters from the origin.

is_nan(real): bool Returns TRUE if the parameter’s value is Not-a-Number (NaN).

is_finite(real): bool Returns TRUE if the parameter’s value is a finite real value (that is, it is not infinity,
negative infinity, or NaN).

NOTE—For integer routines like ilog(), ilog10(), ilog2(), ipow(), and isqrt(), whose return type is based on the
expected type, if the expected type is real, then the return type is int (bits:*).

Purpose Perform a Verilog-style unary reduction operation

Category Pseudo-routine

Syntax bitwise_op(exp: numeric-type): bit

Parameters
op One of and, or, xor, nand, nor, or xnor.

exp A numeric expression.

Table 44—Bitwise operation pseudo-methods

Pseudo-method Operation

bitwise_and() Boolean AND of all bits

bitwise_or() Boolean OR of all bits

bitwise_xor() Boolean XOR of all bits

bitwise_nand() !bitwise_and()

bitwise_nor() !bitwise_or()

bitwise_xnor() !bitwise_xor()

Table 43—Arithmetic routines supporting real types (continued)

Routine Description
Copyright © 2015 IEEE. All rights reserved. 439

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

print bitwise_and(b)

28.5 get_all_units()

This routine receives a unit type as a parameter and returns a list of instances of this unit type, as well as any
unit instances whose type is contained in the specified unit type.

Syntax example:

print get_all_units(XYZ_channel)

28.6 String routines

None of the string routines in e modify the input parameters. When a parameter is passed to one of these
routines, the routine makes a copy of the parameter, manipulates the copy, and returns the copy. See also
4.11, 5.1.10, and Table 23.

28.6.1 append()

This calls to_string() (see 27.4.4) to convert each expression to a string using the current radix setting for
any numeric expressions, then it concatenates them and returns the result as a single string.

Syntax example:

message = append(list1, " ", list2)

Purpose Return a list of instances of a specified unit type

Category Pseudo-routine

Syntax get_all_units(unit-type: exp): list of unit type

Parameters unit-type The name of a unit type, unquoted. The type needs to be defined or an error
shall occur.

Purpose Concatenate expressions into a string

Category Pseudo-routine

Syntax append(): string
append(item: exp, ...): string

Parameters
item A legal e expression. String expressions shall be enclosed in double quotes

(" "). If the expression is a struct instance, the struct ID is printed. If no
items are passed to append(), it returns an empty string.
440 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
28.6.2 appendf()

This converts each expression to a string. An expression can match either a string format (%s) or a numeric
format. If it matches a string format, the current radix is used. If it matches a numeric format, that numeric
format defines the conversion to a string (see 28.7.3). Once all the expressions are converted, they are
concatenated and returned as a single string.

If the number and type of masks in the format string does not match the number and type of expressions, an
error shall be issued.

Syntax example:

message = appendf("%4d\n %4d\n %4d\n", 255, 54, 1570)

28.6.3 bin()

This concatenates zero or more expressions into a string, using binary representation for any expressions of
numeric types, regardless of the current radix setting. Non-numeric types are converted to a string using
to_string() (see 27.4.4).

Syntax example:

var my_string : string = bin(pi.i, " ", list1, " ", 8)

Purpose Concatenate expressions into a string according to a given format

Category Pseudo-routine

Syntax appendf(format: string, item: exp, ...): string

Parameters

format A string expression containing a standard C formatting mask for each item
(see 28.7.3).

item A legal e expression. String expressions shall be enclosed in double quotes
(" "). If the expression is a struct instance, the struct ID is printed.

Purpose Concatenate expressions into string, using binary representation for numeric types

Category Pseudo-routine

Syntax bin(item: exp, ...): string

Parameters item A legal e expression.
Copyright © 2015 IEEE. All rights reserved. 441

IEEE
Std 1647-2015 IEEE STANDARD
28.6.4 dec()

This concatenates zero or more expressions into a string, using decimal representation for any expressions of
numeric types, regardless of the current radix setting. Non-numeric types are converted to a string using
to_string() (see 27.4.4).

Syntax example:

var my_string : string = dec(pi.i, " ", list1, " ", 8)

28.6.5 hex()

This concatenates zero or more expressions into a string, using hexadecimal representation for any
expressions of numeric types, regardless of the current radix setting. Non-numeric types are converted to a
string using to_string() (see 27.4.4).

Syntax example:

var my_string : string = hex(pi.i, " ", list1, " ", 8)

28.6.6 quote()

This returns a copy of the text, enclosed in double quotes (" "), with any internal quote or backslash
preceded by a backslash (\).

Syntax example:

Purpose Concatenate expressions into string, using decimal representation for numeric types

Category Pseudo-routine

Syntax dec(item: exp, ...): string

Parameters item A legal e expression.

Purpose Concatenate expressions into string, using hexadecimal representation for numeric types

Category Pseudo-routine

Syntax hex(item: exp, ...): string

Parameters item A legal e expression.

Purpose Enclose a string in double quotes

Category Routine

Syntax quote(text: string): string

Parameters text An expression of type string.
442 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
out(quote(message))

28.6.7 str_chop()

This removes characters from the end of a string, returning a string of the desired length. If the original
string is already less than or equal to the desired length, this routine returns the original string.

Syntax example:

var test_dir : string = str_chop(tmp_dir, 13)

28.6.8 str_empty()

This returns TRUE if the string is empty.

Syntax example:

print str_empty(s1)

28.6.9 str_exactly()

This returns a copy of the original string, whose length is the desired length, by adding blanks to the right or
by truncating the expression from the right as necessary. If non-blank characters are truncated, the *
character appears as the last character in the string returned.

Purpose Chop the tail of a string

Category Routine

Syntax str_chop(str: string, length: int): string

Parameters
str An expression of type string.

length An integer representing the desired length.

Purpose Check if a string is empty

Category Routine

Syntax str_empty(str: string): bool

Parameters str An expression of type string.

Purpose Get a string with exact length

Category Routine

Syntax str_exactly(str: string, length: int): string

Parameters
str An expression of type string.

length An integer representing the desired length.
Copyright © 2015 IEEE. All rights reserved. 443

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

var long : string = str_exactly("123", 6)

28.6.10 str_insensitive()

This returns an AWK-style regular expression string that is the case-insensitive version of the original
regular expression. See also 4.11.2.

Syntax example:

var insensitive : string = str_insensitive("/hello.*/")

28.6.11 str_join()

This returns a single string that is the concatenation of the strings in the list of strings, separated by the
separator. The strings in the list are not changed.

Syntax example:

var s := str_join(slist," - ")

28.6.12 str_len()

This returns the number of characters in the original string, not counting the terminating NULL character \0.

Purpose Get a case-insensitive AWK-style regular expression

Category Routine

Syntax str_insensitive(regular_exp: string): string

Parameters regular_exp An AWK-style regular expression.

Purpose Concatenate a list of strings

Category Routine

Syntax str_join(list: list of string, separator: string): string

Parameters
list An list of type string.

separator The string used to separate the list elements.

Purpose Get string length

Category Routine

Syntax str_len(str: string): int

Parameters str An expression of type string.
444 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

var length : int = str_len("hello")

28.6.13 str_lower()

This returns a copy of the string with all uppercase characters converted to lowercase.

Syntax example:

var lower : string = str_lower("UPPER")

28.6.14 str_match()

This returns TRUE if the strings match or FALSE if the strings do not match. The routine str_match() is
fully equivalent to the operator ~. After doing a match, the local pseudo-variables $1, $2, ..., $27 can be
used, which correspond to the parenthesized pieces of the match. $0 stores the entire matched piece of the
string. See also 4.10.4.

Syntax example:

print str_match("ace", "/c(e)?$/")

Purpose Convert string to lowercase

Category Routine

Syntax str_lower(str: string): string

Parameters str An expression of type string.

Purpose Match strings

Category Routine

Syntax str_match(str: string, regular-exp: string): bool

Parameters

str An expression of type string.

regular-exp An AWK-style or native e regular expression. If not surrounded by slashes
(/), the expression is treated as a native style expression (see 4.11).
Copyright © 2015 IEEE. All rights reserved. 445

IEEE
Std 1647-2015 IEEE STANDARD
28.6.15 str_pad()

This returns a copy of the original string padded with blanks on the right, up to the desired length. If the
length of the original string is greater than or equal to the desired length, then the original string (not a copy)
is returned with no padding.

Syntax example:

var s : string = str_pad("hello world", 14)

28.6.16 str_replace()

A new copy of the original string is created, and then all the matches of the regular expression are replaced
by the replacement string. If no match is found, a copy of the source string is returned.

— To incorporate the matched substrings in the replacement string, use the backslash escaped numbers:
\1, \2,

— In native e regular expressions, the portion of the original string that matches the * or the ...
characters is replaced by the replacement string.

— In AWK-style regular expressions, to replace portions of the regular expressions, mark them with
parentheses [()].

Syntax example:

var s : string = str_replace("crc32", "/(.*32)/", "32_flip")

Purpose Pad string with blanks

Category Routine

Syntax str_pad(str: string, length: int): string

Parameters
str An expression of type string.

length An integer representing the desired length.

Purpose Replace a substring in a string with another string

Category Routine

Syntax str_replace(str: string, regular-exp: string, replacement: string): string

Parameters

str An expression of type string.

regular-exp An AWK-style or native e regular expression. If not surrounded by slashes
(/), the expression is treated as a native style expression (see 4.11).

replacement The string used to replace all occurrences of the regular expression.
446 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
28.6.17 str_split()

This splits the original string on each occurrence of the regular expression and returns a list of strings. If the
regular expression occurs at the beginning or the end of the original string, an empty string is returned as the
first or last item, respectively. If the regular expression is an empty string, it has the effect of removing all
blanks in the original string and the splitting is done on blanks.

The original string is not changed by this operation.

Syntax example:

var s : list of string = str_split("first-second-third", "-")

28.6.18 str_split_all()

This splits the original string on each occurrence of the regular expression and returns a list of strings. If the
regular expression occurs at the beginning or the end of the original string, an empty string is returned as the
first or last item, respectively. The original string is not changed by this operation.

This routine is similar to str_split(), except it includes the separators in the resulting list of strings.

Syntax example:

var s : list of string = str_split_all(" A B C", "/ +/")

Purpose Split a string to substrings

Category Routine

Syntax str_split(str: string, regular-exp: string): list of string

Parameters

str An expression of type string.

regular-exp An AWK-style or native e regular expression that specifies where to split the
string (see 4.11).

Purpose Split a string to substrings, including separators

Category Routine

Syntax str_split_all(str: string, regular-exp: string): list of string

Parameters

str An expression of type string.

regular-exp An AWK-style or native e regular expression that specifies where to split the
string (see 4.11).
Copyright © 2015 IEEE. All rights reserved. 447

IEEE
Std 1647-2015 IEEE STANDARD
28.6.19 str_sub()

This returns a copy of a substring of the specified length from the original string, starting from the specified
index position. from shall be between 0 and length + 1 of str. If str is shorter than from + length, only the
available part is returned.

Syntax example:

var dir : string = str_sub("/rtests/test32/tmp", 8, 6)

28.6.20 str_upper()

This returns a copy of the original string, converting all lowercase characters to uppercase characters.

Syntax example:

var upper : string = str_upper("lower")

28.7 Output routines

The predefined output routines print formatted and unformatted information to the screen and to open log
files.

Purpose Extract a substring from a string

Category Routine

Syntax str_sub(str: string, from: int, length: int): string

Parameters

str An expression of type string.

from The index position from which to start extracting. The first character in the
string is at index 0.

length An integer representing the number of characters to extract.

Purpose Convert a string to uppercase

Category Routine

Syntax str_upper(str: string): string

Parameters str An expression of type string.
448 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
28.7.1 out()

This calls to_string() (see 27.4.4) to convert each expression to a string and prints them to the screen (and to
the log file if it is open), followed by a newline.

Syntax example:

out("pkts[1].data is ", pkts[1].data)

28.7.2 outf()

This converts each expression to a string using the corresponding format string and then prints them to the
screen (and to the log file if it is open). For the %s mask, to_string() (see 27.4.4) is used for creating the
string representation of the expression.

— To add a newline, add the \n characters to the format string.

— outf() can be used to add the newlines where needed.

— Printing of lists is not supported with outf().

— If the number and type of masks in the format string does not match the number and type of
expressions, an error shall be issued.

Syntax example:

outf("%s %#08x", "pkts[1].data[0] is ", pkts[1].data[0])

28.7.3 Format string

The format string for the outf() and for the appendf() routine uses the following syntax:

"%[0|-][#][min_width][.[max_chars]](s|d|x|b|o|u)"

Purpose Print expressions to output, with a newline at the end

Category Pseudo-routine

Syntax out()
out(item: exp, ...)

Parameters
item A legal e expression. String expressions shall be enclosed in double quotes

(" "). If the expression is a struct instance, the struct ID is printed. If no
items are passed to out(), an empty string is printed, followed by a newline.

Purpose Print formatted expressions to output, with no newline at the end

Category Pseudo-routine

Syntax outf(format: string, item: exp, ...)

Parameters

format A string expression containing a standard C formatting mask for each item
(see 28.7.3).

item A legal e expression. String expressions shall be enclosed in double quotes
(" "). If the expression is a struct instance, the struct ID is printed. If the
expression is a list, an error shall be issued.
Copyright © 2015 IEEE. All rights reserved. 449

IEEE
Std 1647-2015 IEEE STANDARD
where

Printing real values with integer formatting will cause an automatic conversion to int(bits:*).

28.8 Operating system interface routines

The routines in this subclause enable use of OS commands from within the e programming language. These
routines work on all supported OSs.

0 pads with 0 instead of blanks. Padding is only done when right alignment is used, on the left
end of the expression.

- aligns left. The default is to align right.

adds 0x before the number. Can be used only with the x (hexadecimal) format specifier, e.g.,
%#x or %#010x.

min_width is a number that specifies the minimum number of characters. This number determines the
minimum width of the field. If there are not enough characters in the expression to fill the field,
the expression is padded to make it this many characters wide. If there are more characters in
the expression than this number (and if max_chars is set large enough), this number is
ignored and enough space is used to accommodate the entire expression.

max_chars is a number that specifies the maximum number of characters to use from the expression.
Characters in excess of this number are truncated. If this number is larger than min_width,
then the min_width number is ignored. For real number formats e, f, and g, max_chars
defines the precision—the number of digits after the decimal point.

s converts the expression to a string. The routine to_string() (see 27.4.4) is used to convert a
non-string expression to a string.

d prints a numeric expression in decimal format.

x prints a numeric expression in hex format. With the optional # character, adds 0x before the
number.

b prints a numeric expression in binary format.

o prints a numeric expression in octal format.

u prints integers (int and uint) in uint format.

e prints a numeric value in the style [-]d.ddde?dd where there is one digit before the
decimal-point character and the number of digits after it is equal to the precision. If the
precision is missing, it is taken as 6; if the precision is zero, no decimal-point character
appears.

f prints a numeric value in the style [-]d.ddde?dd, where the number of digits after the
decimal-point character is equal to the precision specification. If the precision is missing, it is
taken as 6; if the precision is explicitly zero, no decimal-point character appears.

g prints a numeric value in the style of either f or e. The precision specifies the number of
significant digits. If the precision is missing, 6 digits are given; if the precision is zero, it is
treated as 1. Style e is used if the exponent from its conversion is less than –4 or greater than or
equal to the precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.
450 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
28.8.1 spawn()

This takes a variable number of parameters, concatenates them together, and executes the string result as an
OS command via system() (see 28.8.3).

Syntax example:

spawn("touch error.log && ", "grep Error my.elog >error.log")

28.8.2 spawn_check()

This executes a single string as an OS command via system() (see 28.8.3), then calls error() (see 16.3.2) if
the execution of the command returned an error status.

Syntax example:

spawn_check("grep Error my.elog >& error.log")

28.8.3 system()

This executes the string as an OS command and returns the result. On UNIX systems, the command string is
passed to the C system() call.

Syntax example:

stub = system("cat my.v")

Purpose Send commands to the OS

Category Pseudo-routine

Syntax spawn()
spawn(command: string, ...)

Parameters command An expression of type string.

Purpose Send a command to the OS and report error

Category Routine

Syntax spawn_check(command: string)

Parameters command An expression of type string.

Purpose Send a command to the OS

Category Routine

Syntax system(command: string): int

Parameters command An expression of type string.
Copyright © 2015 IEEE. All rights reserved. 451

IEEE
Std 1647-2015 IEEE STANDARD
28.8.4 output_from()

This executes the string as an OS command and returns the output as a list of string. Under UNIX, stdout
and stderr go to the string list.

Syntax example:

log_list = output_from("ls *log")

28.8.5 output_from_check()

This executes the string as an OS command, returns the output as a list of string, and then calls error() (see
16.3.2) if the execution of the command returns an error status. Under UNIX, stdout and stderr go to the
string list.

Syntax example:

log_list = output_from_check("ls *.log")

28.8.6 get_symbol()

This returns the environment variable as a string or an empty string if the symbol is not found.

Syntax example:

current_display = get_symbol("DISPLAY")

Purpose Collect the results of a system call

Category Routine

Syntax output_from(command: string): list of string

Parameters command An expression of type string.

Purpose Collect the results of a system call and check for errors

Category Routine

Syntax output_from_check(command: string): list of string

Parameters command An expression of type string.

Purpose Get UNIX environment variable

Category Routine

Syntax get_symbol(env-variable: string): string

Parameters env-variable An expression of type string.
452 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
28.8.7 date_time()

This returns the current date and time as a string. The date/time is represented in the standard format
supplied by the C library routine ctime.

Syntax example:

print date_time()

28.8.8 getpid()

This returns the current process ID as an integer.

Syntax example:

print getpid()

Purpose Retrieve current date and time

Category Routine

Syntax date_time(): string

Purpose Retrieve process ID

Category Routine

Syntax getpid(): int
Copyright © 2015 IEEE. All rights reserved. 453

IEEE
Std 1647-2015 IEEE STANDARD
28.9 set_config()

This routine sets the configuration options to the specified values.

Syntax example:

set_config(memory, gc_threshold, 100M)

28.10 Random routines

The e language supports the routines shown in Table 45 to generate random real numbers:

Purpose Set values of global configuration parameters

Category Predefined routine

Syntax set_config(category: keyword, option: keyword, value: exp [, option: keyword, value: exp...])

Parameters

category Is one of the following: cover, gen, memory, print, or run, or any additional
implementation-dependent category.

option The valid cover options are:
— mode (either normal or count_only)
— absolute_max_buckets

The valid generate options are:
— absolute_max_list_size
— max_depth
— max_structs

The valid memory options are:
— gc_threshold
— gc_increment
— max_size
— absolute_max_size

The valid print option is: radix.
The valid run option is: tick_max.
The implementation can also introduce additional options.

value The valid values for each option are implementation specific.

Table 45—Random routines

Routine Description

rdist_uniform(from: real,
to:real): real

Returns a random real number using uniform distribution in the range from to to.

NOTE—The behavior of rdist_uniform() in e is equivalent to Verilog’s $rdist_uniform() defined in IEEE Std 1364
(17.9.2).
454 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
29. Predefined file routines library

The global struct named files contains predefined routines for working with files. This clause contains
information about using files and the predefined file routines. Like most global objects, the predefined
routines in the files struct cannot be extended with is first, is also, or is only.

29.1 File names and search paths

Many of the file routines require a file-name parameter. The following are restrictions on file-name
parameters for most routines:

— The file name is taken as a path to the file in the file system. The path can be an absolute pathname or
a pathname relative to the current working directory.

— The file name shall not contain any tildes (~), wild card patterns, or environment variables (including
the path env variable), except for the files.add_file_type() routine, which accepts tilde (~), wild
cards (*), or the path env variable as a file-name parameter (see 29.3.1).

— The extension is left off the file name for files with default extensions, such as .e or .ecom.

NOTE—files.add_file_type() can be used to verify a valid path to a file exists before using any of the file routines.

29.2 File handles

For every open file, a file handle struct exists that contains information about the file. The routine open()
(see 29.3.4) returns the file handle as a variable of type file. The name of the file variable is used in low-level
file operations such as the files.read(), files.write(), and files.flush() routines (see 29.3).

29.3 Low-level file methods

This subclause contains descriptions of the file methods that use file handle structs.

29.3.1 add_file_type()

This assigns a string consisting of file-name and file-ext to a string variable. The file-name can contain ~,
the path env variable, and * wild cards. The * wild card represents any combination of ASCII characters.

If file-name already contains an extension, then file-ext is ignored. If file-ext is empty, the file-name is used
with no extension. If exists is FALSE, the method returns the file-name string without checking for the
existence of the file. Wild cards, ~, and the path env variable are not evaluated in this case.

Purpose Get a file name

Category Method

Syntax files.add_file_type(file-name: string, file-ext: string, exists: bool): string

Parameters

file-name The name of the file to access. A wild card pattern can be used.

file-ext The file extension, including the dot (.). This can be empty.

exists Whether to check for existence of the file.
Copyright © 2015 IEEE. All rights reserved. 455

IEEE
Std 1647-2015 IEEE STANDARD
If exists is TRUE, the e program checks to see if there is a file that matches the file-name in the current
directory, based on the following rules:

a) If there is one and only one file that matches the file-name pattern, the file’s name is returned.

b) If there is no match in the current directory, then the path env directories are searched for the file.

If there are multiple matching files in different directories within the path env variable, the first one
found is returned.

c) If no matching file can be found or if more than one file is found in a directory that matches a wild
card, an error shall be issued.

Syntax example:

var fv : string;
fv = files.add_file_type("fname", ".e", FALSE)

29.3.2 close()

This flushes the file buffer and closes the file. The file needs to have been previously opened using open().

NOTE—Close a file when no further activity is planned for it to prevent unintentional operations on its contents.

Syntax example:

files.close(f_desc)

29.3.3 flush()

File data is buffered in memory and only written to disk at certain times, such as when the file is closed. This
method causes data to be written to the disk immediately, which can be useful if two processes are using the
same disk file, e.g., to ensure the current data from one process is written to the file before the other process
reads from the file.

Syntax example:

files.flush(a_file)

Purpose Close a file

Category Method

Syntax files.close(file: file-handle)

Parameters file The file handle of the file to be closed.

Purpose Flush file buffers

Category Method

Syntax files.flush(file: file-handle)

Parameters file The file handle of the file to flush.
456 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
29.3.4 open()

This opens the file for reading, writing, both reading and writing, or appending, according to the mode (r, w,
rw, or a, respectively) and returns the file handle of the file. The file-role is a description of the file, e.g.,
“source file.”

An error shall be issued only when a file is required for reading, but cannot be found (mode r). No error is
reported when the file is opened, but not found (all other modes: rw, w, and a).

Syntax example:

var m_file : file;

m_file = files.open("a_file.txt", "r", "Text File")

29.3.5 read()

This reads a line of text from a file into a string variable. The file shall have been opened with open(). The
line from the file (without the final \n newline character) is read into the variable. This method returns
TRUE on success. If the method cannot read a line (e.g., if the end of the file is reached), it returns FALSE.
See also 5.8 for information about type conversion between scalar types.

Syntax example:

r_b = files.read(f_desc, m_string)

Purpose Open a file for reading or writing or both

Category Method

Syntax files.open(file-name: string, mode: string, file-role: string): file

Parameters

file-name The name of the file to open. Wild cards, ~, and the path env variable are not
allowed in the file name; to use them to select files, see 29.3.1.

mode The read/write mode for the file. The mode can be one of the following:

r—Open the file for reading.

w—Open the file for writing (overwrite the existing contents).

rw—Open the file for reading and writing (add to the end of the existing
contents).

a—Open the file for appending (add to the end of the existing contents).

file-role A text description used in error messages about the file.

Purpose Read an ASCII line from a file

Category Method

Syntax files.read(file: file-handle, string-var: *string): bool

Parameters
file The file handle of the file that contains the text to read.

string-var The variable used to hold the read ASCII text.
Copyright © 2015 IEEE. All rights reserved. 457

IEEE
Std 1647-2015 IEEE STANDARD
29.3.6 read_lob()

This reads data from a binary file into a list of bits and returns the list of bits. The file shall already have been
opened with open(). To read an entire file, use UNDEF as the size-in-bits. See also 5.8 for information about
type conversion between scalar types.

Syntax example:

var m_file : file = files.open("a_file.dat", "r", "Data");
var b_l : list of bit;
b_l = files.read_lob(m_file, 32)

29.3.7 write()

This adds a string to the end of an existing, open file. A newline \n is added automatically at the end of the
string.

The file shall already have been opened with open(), otherwise an error shall be issued. If the number of
items in the formatting mask is different from the number of item expressions, an error shall be issued.

How the data is written to the file is affected by the open() mode (w or a) and whether or not the file already
exists, as follows:

— If the file did not previously exist and the w (write) option is used with open(), then write() writes
the data into a new file.

— If the file did not previously exist and the a (append) option is used with open(), then no data is
written.

— If the file did previously exist and the w (write) option is used with open(), then write() overwrites
the contents of the file.

— If the file did previously exist and the a (append) option is used with open(), then write() appends
the data to the existing contents of the file.

NOTE—The Perl-style >> append operator can be prefixed to the name of the file to open the file for an append-write.

Purpose Read from a binary file into a list of bits

Category Method

Syntax files.read_lob(file: file-handle, size-in-bits: int): list of bit

Parameters
file The file handle of the file from which to read.

size-in-bits The number of bits to read (in multiples of 8).

Purpose Write a string to file

Category Method

Syntax files.write(file: file-handle, text: string)

Parameters
file The file handle of the file in which to write (w or a).

text The text to write to the file.
458 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Syntax example:

files.write(m_file, "Test Procedure")

29.3.8 write_lob()

This writes all the bits in the bit list (whose size shall be a multiple of 8) to the end of the file specified by
file. The file shall already have been opened with open().

Lists of bits are always written in binary format.

For more details on how files are written, see 29.3.7.

Syntax example:

var m_file : file = files.open("a_f.dat", "w", "My data");

var b_l : list of bit;

files.write_lob(m_file, b_l)

29.3.9 writef()

This adds a formatted string to the end of the specified file. No newline is automatically added. (Use \n in
the formatting mask to add a newline.)

For more details on how files are written, see 29.3.7.

See also 28.7.3.

Purpose Write a list of bits to a binary file

Category Method

Syntax files.write_lob(file: file-handle, bit-list: list of bit)

Parameters
file The file handle of the file in which to write.

bit-list A list of bits to write to the file. The size of the list shall be a multiple of 8.

Purpose Write to a file in a specified format

Category Pseudo-method

Syntax files.writef(file: file-handle, format: string, item: exp, ...)

Parameters

file The file handle of the file in which to write.

format A string containing a standard C formatting mask (see 28.7.3) for each item.

item An e expression to write to the file.
Copyright © 2015 IEEE. All rights reserved. 459

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

var m_file : file = files.open("a_f.dat", "w", "My data");
var b_l : list of bit;
files.write_lob(m_file, b_l)

29.4 General file routines

This subclause contains descriptions of the general filing routines. See also 5.8 for information about type
conversion between scalar types.

29.4.1 file_age()

This returns the modification date of the file as an integer. This routine can be used to compare the
modification dates of files. The integer returned by the routine is not recognizable as a date, but is a unique
number derived from the file’s modification date. If the modification date includes the time of day, the time
is factored into the number the routine returns. Newer files produce larger numbers than older files.

If the file does not exist, an error shall be issued.

Syntax example:

var f_data : int;
f_data = files.file_age("f.txt")

29.4.2 file_append()

This adds the contents of the file named from-file-name to the end of the file named to-file-name. If either of
the files does not exist, an error shall be issued.

Syntax example:

files.file_append(f_1, f_2)

Purpose Get a file’s modification date

Category Method

Syntax files.file_age(file-name: string): int

Parameters file-name The file whose age is to be found.

Purpose Append files

Category Method

Syntax files.file_append(from-file-name: string, to-file-name: string)

Parameters
from-file-name The name of the file to append.

to-file-name The name of the file where from-file-name is appended.
460 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
29.4.3 file_copy()

This makes a copy of from-file-name, using the name to-file-name. If a file already exists with the to-file-
name, the contents of that file are replaced by the contents of the file named from-file-name. If the file
named from-file-name does not exist, an error shall be issued.

Both parameters shall be file names (using an absolute pathname or a pathame relative to the current
working directory). If a directory name is given as a parameter, an error shall be issued.

Syntax example:

files.file_copy("file_1.txt", "tmp_file.txt")

29.4.4 file_delete()

This deletes the specified file. If the file cannot be found, an error shall be issued.

Syntax example:

files.file_delete("run_1.log")

29.4.5 file_exists()

Purpose Create a copy of a file

Category Method

Syntax files.file_copy(from-file-name: string, to-file-name: string)

Parameters
from-file-name The name of the file to copy.

to-file-name The name of the (new) copy file.

Purpose Delete a file

Category Method

Syntax files.file_delete(file-name: string)

Parameters file-name The file to delete.

Purpose Check if a file exists

Category Method

Syntax files.file_exists(file-name: string): bool

Parameters file-name The file to check.
Copyright © 2015 IEEE. All rights reserved. 461

IEEE
Std 1647-2015 IEEE STANDARD
This checks if the file-name exists in the file system. It returns TRUE if the file exists or issues an error if it
does not exist. It also returns TRUE if the file is a directory. The routine does not check whether the file is
readable or not.

NOTE—This routine only checks for the existence of the specified file; for a routine that can check for multiple
similarly named files, see 29.3.1.

Syntax example:

var f_e : bool;

f_e = files.file_exists("file_1.e")

29.4.6 file_extension()

This returns a string containing the file extension, which is the sequence of characters after the last period
(.) in the file name.

Syntax example:

var f_ext : string;

f_ext = files.file_extension("f_1.exa")

29.4.7 file_is_dir()

This returns TRUE if the file exists and is a directory. Otherwise, it returns FALSE (if the file does not exist
or is not a directory).

Syntax example:

var is_d : bool;

is_d = files.file_is_dir("a_fil")

Purpose Get the extension of a file

Category Method

Syntax files.file_extension(file-name: string): string

Parameters file-name The file name.

Purpose Check if a file is a directory

Category Method

Syntax files.file_is_dir(file-name: string): bool

Parameters file-name The file to check.
462 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
29.4.8 file_is_link()

This returns TRUE if the file exists and is a symbolic link. Otherwise, it returns FALSE (if the file does not
exist or is not a symbolic link).

Syntax example:

var is_l : bool;

is_l = files.file_is_link("a_fil")

29.4.9 file_is_readable()

This returns TRUE if the file exists and is readable. Otherwise, it returns FALSE (if the file does not exist or
is not readable).

Syntax example:

var is_rd : bool;

is_rd = files.file_is_readable("a_fil")

29.4.10 file_is_regular()

This returns TRUE if the file exists and is a regular file. Otherwise, it returns FALSE (if the file does not
exist, or it is a directory or symbolic link).

Purpose Check if a file is a symbolic link

Category Method

Syntax files.file_is_link(file-name: string): bool

Parameters file-name The file to check.

Purpose Check if a file is readable

Category Method

Syntax files.file_is_readable(file-name: string): bool

Parameters file-name The file to check.

Purpose Check if a file is a regular file (not a directory or link)

Category Method

Syntax files.file_is_regular(file-name: string): bool

Parameters file-name The file to check.
Copyright © 2015 IEEE. All rights reserved. 463

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

var is_rg : bool;
is_rg = files.file_is_regular("a_fil")

29.4.11 file_is_temp()

This returns TRUE if the file is a temporary file per the convention of the host OS. Otherwise, it returns
FALSE.

Syntax example:

var is_tmp : bool;
is_tmp = files.file_is_temp("a_fil")

29.4.12 file_is_text()

This returns TRUE if the file is a text file (i.e., it contains more than 20% printable characters). Otherwise, it
returns FALSE (if the file does not exist, or it is not a text file). The following considerations also apply:

— Characters are deemed printable based on the ANSI C function isprint().

— At least the first 80 bytes of a file shall be checked in determining “printability.”

Syntax example:

var is_txt : bool;
is_txt = files.file_is_text("a_fil")

Purpose Check if a file is a temporary file

Category Method

Syntax files.file_is_temp(file-name: string): bool

Parameters file-name The file to check.

Purpose Check if a file is a text file

Category Method

Syntax files.file_is_text(file-name: string): bool

Parameters file-name The file to check.
464 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
29.4.13 file_rename()

This renames the file named from-file-name to to-file-name. If any files already exists with to-file-name, that
file is overwritten by the contents of the file named from-file-name.

If the file or directory is not writable, an error shall be issued.

Syntax example:

files.file_rename("f_1.exa", "b_1.exa")

29.4.14 file_size()

This returns the integer number of bytes in the file. If the file does not exist, an error shall be issued.

Syntax example:

var f_s : int;
f_s = files.file_size("a_file.txt")

29.4.15 new_temp_file()

This computes a file name [a string with a period (.) at the end]. Each file name this routine produces
contains the name of the process, so names are unique across processes. The files are saved in the temporary
files directory (set per the convention of the host OS).

NOTE—This routine only creates the file name; to create a file (with this name), see 29.3.4.

Purpose Rename a file

Category Method

Syntax files.file_rename(from-file-name: string, to-file-name: string)

Parameters
from-file-name The file to rename.

to-file-name The new file name.

Purpose Get the size of a file

Category Method

Syntax files.file_size(file-name: string): int

Parameters file-name The file name.

Purpose Create a unique temporary file name

Category Method

Syntax files.new_temp_file(): string
Copyright © 2015 IEEE. All rights reserved. 465

IEEE
Std 1647-2015 IEEE STANDARD
Syntax example:

var t_name : string;
t_name = files.new_temp_file()

29.4.16 write_string_list()

This writes a list of strings into a file. Every string is written on a separate line in the file, with \n appended
to the end of the string. If the file already exists, it is overwritten.

If the list of strings contains a NULL, an error shall be issued.

NOTE—The Perl-style >> append operator can be prefixed to the name of the file to open the file for an append-write.

Syntax example:

var s_list := {"a string"; "another string"};
files.write_string_list("a_file.txt", s_list)

29.5 Reading and writing structs

This subclause contains descriptions of the file routines that use read structs from files and write structs to
files. Structs in e can be read from files and written to files in either binary or ASCII format.

29.5.1 read_ascii_struct()

This reads the ASCII contents of file-name into a struct of type struct and returns a struct. The struct
being read needs to be cast to the correct data type (see 5.8.1). If the file does not exist, an error shall be
issued.

Syntax example:

var a_str : s_struct;
a_str = files.read_ascii_struct("a_s.out", "s_struct").as_a(s_struct)

Purpose Write a list of strings to a file

Category Method

Syntax files.write_string_list(file-name: string, strings: list of string)

Parameters
file-name The file name in which to write.

strings A list of strings to write to the file.

Purpose Read ASCII file data into a struct

Category Method

Syntax files.read_ascii_struct(file-name: string, struct: string): struct

Parameters
file-name The name of the (ASCII) file to read.

struct The string in which to read the data.
466 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
29.5.2 read_binary_struct()

This reads the binary contents of file-name into a struct of the specified type and returns a struct. The struct
being read needs to be cast to the correct data type (see 5.8.1).

If check-version is FALSE, the routine can run even if the order of fields in the file struct is different from
the order of fields in the currently running e module. If check-version is TRUE, an error shall be issued if the
struct definition has been changed in any way since the struct was written to the file.

Syntax example:

var b_str : s_struct;
b_str = files.read_binary_struct("b.out", "s_struct", TRUE).as_a(s_struct)

29.5.3 write_ascii_struct()

This recursively writes the contents of the struct to the file-name in ASCII format. If the struct contains other
structs, those structs are also written to the file. If the number of hierarchical levels contained in the struct is
greater than the specified depth, levels below the depth level are represented by ellipses (...) in the ASCII
file.

Purpose Read the contents of a binary file into a struct

Category Pseudo-method

Syntax files.read_binary_struct(file-name: string, struct: string,
check-version: bool): struct

Parameters

file The name of the file to read. The file shall have been created by using
write_binary_struct().

struct The string in which to read the data.

check-version Set to TRUE to compare the contents of the file being read with the definition
of the struct in the currently running module. Set to FALSE to allow minor
changes.

Purpose Write the contents of a struct to a file in ASCII format

Category Struct member

Syntax
files.write_ascii_struct(file-name: string, struct: struct, comment: string,

indent: bool, depth: int, max-list-items: int)

Parameters

file-name The name of the file in which to write. The default extension is .erd, which
stands for e-readable data.

struct The name of the struct instance to write to the file.

comment A string for a comment at the beginning of the file.

indent A Boolean selector for indentation to the struct’s field depth.

depth The number of levels of nested structs to write.

max-list-items For lists, how many items from each list to write.
Copyright © 2015 IEEE. All rights reserved. 467

IEEE
Std 1647-2015 IEEE STANDARD
— The .erd default file name extension is automatically added to the file name only if the specified
file name has no extension and does not end with a period (.), e.g., myfile becomes
myfile.erd.

— This routine does not write any of the e program internal structs. It can write the sys struct, but not
any predefined structs within sys.

— If the file already exists, it is overwritten.

Syntax example:

files.write_ascii_struct("a_file.dat", a_str, "my_struct", TRUE, 2, 10)

29.5.4 write_binary_struct()

This recursively writes the contents of the struct to the file-name in binary format. If the struct contains other
structs, those structs are also written to the file. If the file already exists, it is overwritten.

Syntax example:

files.write_binary_struct("b_file.dat", b_str)

Purpose Write the contents of a struct to a file in binary format

Category Method

Syntax files.write_binary_struct(file-name: string, struct: struct)

Parameters
file-name The name of the file in which to write the struct.

struct The name of the struct instance to write to the file.
468 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
30. Reflection API

This clause explains how to access structural information about the type system through the application
programming interface (API), also known as the reflection API, and defines the reflection API itself. See
also Annex E (for examples).

30.1 Introduction

Reflection (sometimes called introspection) is a programmatic interface into the meta-data of a program.
Most object-oriented (OO) languages and systems supply some way of referring to meta-level
entities—mainly type-related, such as classes, methods, and fields. The richness of modeling concepts
supported by the e language calls for a much more comprehensive reflection facility than that of other
languages. Reflection interfaces are typically used for constructing external developer aid tools such as class
browsers, data browsers, debugging aids, source browsers, etc. They can also be used to implement generic
utilities, where the modeling powers of the language such as inheritance and polymorphism are not strong
enough, e.g., object serialization utilities like packing or register filling. The reflection interface in e is
designed to facilitate such third-party applications and tools, where these problems typically arise.

30.1.1 Representation

The e reflection facility is a class API. Each structural element in the program is represented by an object (an
e struct instance). One object represents, for example, the type int, another represents the struct type
any_struct, another represents the method to_string(), and so on. These representations are called meta-
objects. Meta-objects are classified into different groups that are called meta-types. These e struct types form
a hierarchy of abstractions and show the different relations between such entities. All of these meta-types
have a common prefix to their name, rf_.

30.1.2 Structure

The interface is divided into three main parts: type information, aspect information, and value query and
manipulation, which correspond to 30.2, 30.3, and 30.4 respectively. This grouping of the API’s
functionality cuts across meta-types so that the interface of one struct may consist of methods that are
defined in different parts (e.g., some methods of the struct rf_event are described in 30.2, others in 30.3, and
the rest in 30.4).

Each meta-type is introduced separately. Its location in the type hierarchy is denoted by showing its like
inheritance (if any), which has the usual inheritance implications (e.g., the method is_private(), which is
defined for the struct rf_struct_member, also exists for rf_field, which is like rf_struct_member). The
concept behind each meta-type is explained, its methods are detailed, and each method’s return type is set
off by a colon (:). For example, in rf_named_entity.get_name(): string, the type returned is a string.

30.1.3 Terminology and conventions

There is a possibility of confusion when dealing with meta-data and meta-types, as objects are used to
represent types, methods, and so on, while they themselves, like any other object, are instances of types and
have methods. However, for the sake of readability, and where there is no ambiguity, the phrase “the type/
method/field” is shorthand for “an object representing the type/method/field.” For example, the method
rf_struct.get_methods() returns a list of methods of this struct, which means it returns a list of objects
representing this struct’s methods.

Clarifying the concept of like and when inheritance (see 6.1) is a major concern. Therefore, two trivial
examples are used in many places to illustrate these definitions. One is the hierarchy of dog, with bulldog
and poodle as its like heirs. The other is the struct packet, having an enumerated field size, and a
Copyright © 2015 IEEE. All rights reserved. 469

IEEE
Std 1647-2015 IEEE STANDARD
Boolean field corrupt, which allow for when subtypes such as small packet or big corrupt
packet.

30.2 Type information

The core of the reflection API is the representation of types in e. This part of the interface enables all type-
related queries concerning scalar types, list types, struct types, methods, fields, events, and so on. From the
viewpoint of the reflection API, units are simply structs (see 30.2.2 for how to query if a struct is a unit).

30.2.1 Named entities

This subclause defines the types of named entities.

30.2.1.1 rf_named_entity

Named entities are types, struct members, and other entities that, once declared, become part of the lexicon
of the language. Most named entities have a name (string), though for some kinds of named entities the
name is optional and they can be unnamed. Named entities are either visible or hidden. The importance of
this abstraction is related to 30.3.

a) rf_named_entity.get_name(): string

Returns the name of this entity. If the entity is unnamed, returns an empty string.

b) rf_named_entity.is_visible(): bool

Returns TRUE if this entity is visible. Otherwise, returns FALSE. Invisible (hidden) named entities
include members of any user-defined structs, which are not shown in printing and visualization
tools.

The following methods of rf_named_entity are described in 30.3.1.3:

rf_named_entity.get_declaration()

rf_named_entity.get_declaration_module()

rf_named_entity.get_declaration_source_line_num()

30.2.1.2 rf_type

This struct like-inherits from rf_named_entity (see 30.2.1.1).

a) rf_type.is_public(): bool

Returns TRUE if this type has unrestricted access. Otherwise, returns FALSE (when this type was
declared with a package modifier).

b) rf_type.get_package(): rf_package

Returns the package to which this type belongs.

c) rf_type.get_qualified_name(): string

Returns the fully qualified name of the type (i.e., with the declaring package name followed by the
:: operator).

d) rf_type.get_base_list_elem_type(): rf_type

Returns the type contained in this type as a base list element. If this type is not a list type, the type
itself is returned. If this type is a one-dimension list, the list element type is returned. If this type is a
multi-dimension list, the base list element type is returned. For example, if this type is list of list of
list of int, then the returned type is int.
470 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
e) rf_type.is_method_type(): bool

Returns TRUE if this type is a method_type, that is, declared with a method_type statement.

The following methods of rf_type are described in 30.4.2:

rf_type.create_holder()

rf_type.value_is_equal()

rf_type.value_to_string()

30.2.2 Struct types: rf_struct

This struct like-inherits from rf_type (see 30.2.1.2). See also Clause 6.

a) rf_struct.get_fields(): list of rf_field

Returns a list containing all fields of this struct (declared by it or inherited from its parent type).

b) rf_struct.get_declared_fields(): list of rf_field

Returns a list containing all fields declared in the context of this struct [a subset of
rf_struct.get_fields()].

c) rf_struct.get_field(name: string): rf_field

Returns the field of this struct with the name or NULL if no such field exists. Field names are unique
in the context of a struct.

d) rf_struct.get_methods(): list of rf_method

Returns a list containing all methods of this struct (declared by it or inherited from its parent type).

e) rf_struct.get_declared_methods(): list of rf_method

Returns a list containing all methods declared in the context of this struct [a subset of
rf_struct.get_methods()]. Methods that are declared by a parent type and extended or overridden in
the context of this struct are not returned (see also 6.3).

f) rf_struct.get_method(name: string): rf_method

Returns the method of this struct with the name or NULL if no such method exists. Method names
are unique in the context of a struct.

g) rf_struct.get_events(): list of rf_event

Returns a list of all events of this struct (declared by it or inherited from its parent type).

h) rf_struct.get_declared_events(): list of rf_event

Returns a list of all events declared in the context of this struct [a subset of rf_struct.get_events()].
Events that are declared by a parent type and overridden in the context of this struct are not returned
(see also 6.3).

i) rf_struct.get_event(name: string): rf_event

Returns the event of this struct with the name or NULL if no such event exists. Event names are
unique in the context of a struct.

j) rf_struct.get_expects(): list of rf_expect

Returns a list of all expects of this struct (declared by it or inherited from its parent type). This
includes both named and unnamed expects.

k) rf_struct.get_declared_expects(): list of rf_expect

Returns a list of all expects declared in the context of this struct [a subset of
rf_struct.get_expects()]. Expects that are declared by a parent type and overridden in the context of
this struct are not returned (see also 6.3).
Copyright © 2015 IEEE. All rights reserved. 471

IEEE
Std 1647-2015 IEEE STANDARD
l) rf_struct.get_expect(name: string): rf_expect

Returns the expect of this struct with the name or NULL if no such expect exists. Expect names are
unique in the context of a struct. Unnamed expects are not considered, and if an empty string is
given as parameter, NULL is returned.

m) rf_struct.get_checks(): list of rf_check

Returns a list of all checks of this struct (declared by it or inherited from its parent type). This
includes both named and unnamed checks.

n) rf_struct.get_declared_checks(): list of rf_check

Returns a list of all checks declared in the context of this struct [a subset of rf_struct.get_checks()].
Checks that are declared by a parent type and overridden in the context of this struct are not returned
(see also 6.3).

o) rf_struct.get_check(name: string): rf_check

Returns the constraint of this struct with the name or NULL if no such constraint exists. Constraint
names are unique in the context of a struct. Unnamed constraints are not considered, and if an empty
string is given as parameter, NULL is returned.

p) rf_struct.get_constraints(): list of rf_constraint

Returns a list of all constraints of this struct (declared by it or inherited from its parent type). This
includes both named and unnamed constraints.

q) rf_struct.get_declared_constraints(): list of rf_constraint

Returns a list of all constraints declared in the context of this struct [a subset of
rf_struct.get_constraints()]. Constraints that are declared by a parent type and overridden in the
context of this struct are not returned (see also 6.3).

r) rf_struct.get_constraint(name: string): rf_constraint

Returns the check of this struct with the name or NULL if no such check exists. Check names are
unique in the context of a struct. Unnamed checks are not considered, and if an empty string is given
as parameter, NULL is returned.

s) rf_struct.is_unit(): bool

Returns TRUE if this struct is a unit. Otherwise, returns FALSE. Returning TRUE is the only indica-
tion this meta-object represents a unit rather than a regular struct type.

The following methods of rf_struct are described in 30.2.4.3:

rf_struct.is_contained_in()

rf_struct.is_disjoint()

rf_struct.is_independent()

rf_struct.get_when_base()

The following method of rf_struct is described in 30.4.1:

rf_struct.is_instance_of_me()

30.2.3 Struct members

Struct members are represented by instances of the meta-types rf_field (see 30.2.3.2), rf_method (see
30.2.3.4), rf_event (see 30.2.3.6) rf_expect (see 30.2.3.7), rf_check (see 30.2.3.8), and rf_constraint (see
30.2.3.9). Each member is introduced for the first time in the context of some struct—its declaring struct. Its
access rights—(for methods, fields and events only) one of package, protected, private, or public (the
default)— are assigned to it upon its declaration.
472 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
30.2.3.1 rf_struct_member

This struct like-inherits from rf_named_entity (see 30.2.1.1).

a) rf_struct_member.get_declaring_struct(): rf_struct

Returns the struct where this member was introduced. This applies also to the empty definition of
methods or declarations of undefined methods.

b) rf_struct_member.applies_to(rf_struct): bool

Returns TRUE if this struct member applies to instances of rf_struct; i.e., this was declared by
rf_struct or by a different struct that contains rf_struct (see also 6.2). Otherwise, returns FALSE.

c) rf_struct_member.is_private(): bool

— Returns TRUE if this struct member was declared with the private access modifier; i.e., it is
accessible only within the context of both its package and its declaring struct or its subtypes.
Otherwise, returns FALSE.

— rf_struct_member.is_protected(): bool

— Returns TRUE if this struct member was declared with protected access modifier; i.e., it is
accessible only within the context of the declaring struct or its subtypes. Otherwise, returns
FALSE.

d) rf_struct_member.is_package_private(): bool

Returns TRUE if this struct member was declared with package access modifier; i.e., it is accessible
only within the context of the package where it was declared. Otherwise, returns FALSE.

e) rf_struct_member.is_public(): bool

Returns TRUE if this struct member was declared without an access modifier; i.e., its access is not
restricted. Otherwise, returns FALSE.

30.2.3.2 rf_field

This struct like-inherits from rf_struct_member (see 30.2.3.1).

a) rf_field.get_type(): rf_type

Returns the declared type of the field.

b) rf_field.get_declared_list_size(): int

Returns the explicitly declared constant list size for fields whose type is a list. For example, if the
field declaration is:

my_list[2]: list of int;

get_declared_list_size() will return 2. If the field type is not a list, if no sizes are explicitly declared,
or if the explicitly declared size is a non-constant expression, the result is UNDEF. If the field type
is a multi-dimension list, and multiple list sizes are explicitly declared, the result is the size of the
first dimension. For example, if the field declaration is:

my_list[2][5]: list of list of int;

get_declared_list_size() will return 2.

c) rf_field.get_declared_list_sizes(): list of int

Returns the explicitly declared constant list sizes for fields whose type is a (possibly multi-dimen-
sion) list. For example, if the field declaration is:

my_list[2][x]: list of list of int;

get_declared_list_sizes() will return {2;5}. If the field type is not a list, or if no sizes are explicitly
declared, the result is an empty list. Where an explicitly declared size is a non-constant expression,
the corresponding element in the result is UNDEF. For example, if the field declaration is:
Copyright © 2015 IEEE. All rights reserved. 473

IEEE
Std 1647-2015 IEEE STANDARD
my_list[2][x]: list of list of int;
(where x is another field of the same struct)

get_declared_list_sizes() will return {2;UNDEF}.

d) rf_field.is_physical(): bool

Returns TRUE if the field is declared physical [i.e., with the % modifier (see 6.8)]. Otherwise, returns
FALSE. Physical fields are those that are packed when the struct is packed.

e) rf_field.is_ungenerated(): bool

Returns TRUE if the field is declared as ungenerated [i.e., with the ! modifier (see 6.8)]. Otherwise,
returns FALSE. Ungenerated fields are not generated automatically when the struct is generated.

f) rf_field.is_const(): bool

Returns TRUE if the field is declared as a constant [i.e., with the const modifier (see 6.8)]. Other-
wise, returns FALSE.

g) rf_field.get_deep_copy_attr(): rf_deep_attr

Returns the deep_copy attribute of this field in the context of the given struct (see 6.11). If the field
does not belong to this struct, the result is undefined.

h) rf_field.get_deep_compare_attr(): rf_deep_attr

Returns the deep_compare attribute of this field in the context of the given struct (see 6.11). If the
field does not belong to this struct, the result is undefined.

i) rf_field.get_deep_compare_physical_attr(): rf_deep_attr

Returns the deep_compare_physical attribute of this field in the context of the given struct (see
6.11). If the field does not belong to this struct, the result is undefined.

j) rf_field.is_unit_instance(): bool

Returns TRUE if the field is an instance of a unit [i.e., declared as is instance (see 7.2.2)].
Otherwise, returns FALSE.

k) rf_field.is_port_instance(): bool

Returns TRUE if the field is an instance of a port [i.e., declared as is instance of a port type (see
9.6)]. Otherwise, returns FALSE.

The following methods of rf_field are described in 30.4.3:

rf_field.get_value()

rf_field.get_value_unsafe()

rf_field.set_value()

rf_field.set_value_unsafe()

rf_field.is_consistent()

30.2.3.3 rf_deep_attr

This is a predefined enumerated type that represents the possible values of field deep_copy, deep_compare,
or deep_compare_physical attributes:

type rf_deep_attr: [normal, reference, ignore]

30.2.3.4 rf_method

This struct like-inherits from rf_struct_member (see 30.2.3.1).

a) rf_method.get_result_type(): rf_type
474 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Returns the object that represents the result type of this method or NULL if the method does not
return any value.

b) rf_method.get_parameters(): list of rf_parameter

Returns a list of formal parameters of this method. If the method has no parameters, the list is empty.

c) rf_method.is_tcm(): bool

Returns TRUE if this method may consume time; i.e., it is declared as a TCM. Otherwise, returns
FALSE.

d) rf_method.is_final(): bool

Returns TRUE if the method is declared as final (see 17.1.1). Otherwise, returns FALSE.

The following methods of rf_method are described in 30.3.1.1:

rf_method.get_layers()

rf_method.get_relevant_layers()

The following methods of rf_method are described in 30.4.3:

rf_method.invoke()

rf_method.invoke_unsafe()

rf_method.start_tcm()

rf_method.start_tcm_unsafe()

30.2.3.5 rf_parameter

a) rf_parameter.get_name(): string

Returns the name given to this parameter in the declaration method.

b) rf_parameter.get_type(): rf_type

Returns the type of this parameter.

c) rf_parameter.is_by_reference(): bool

Returns TRUE if this parameter is passed by reference; i.e., it was declared using * (see 17.3.1).
Otherwise, returns FALSE.

d) rf_parameter.get_default_value_string(): bool

Returns a string representing the expression used as the default value for this parameter. For
example, if the method declaration is foo(i: int = 5), the returned string for the parameter
will be 5. If this parameter does not have a default value, it returns an empty string.

30.2.3.6 rf_event

This struct like-inherits from rf_struct_member (see 30.2.3.1).

The following method of rf_event is described in 30.3.3.4:

rf_event.get_layers()

rf_event.get_relevant_layer()

The following methods of rf_event are described in 30.4.3:

rf_event.is_emitted()

rf_event.is_emitted_unsafe()

rf_event.emit()
Copyright © 2015 IEEE. All rights reserved. 475

IEEE
Std 1647-2015 IEEE STANDARD
rf_event.emit_unsafe()

30.2.3.7 rf_expect

This struct like-inherits from rf_struct_member (see 30.2.3.1).

The following methods of rf_expect are described in 30.3.3.4:

rf_expect.get_layers()

rf_expect.get_relevant_layer()

The following methods of rf_expect are described in 30.4.3:

rf_expect_stop()

rf_expect_rerun()

30.2.3.8 rf_check

This struct like-inherits from rf_struct_member (see 30.2.3.1).

a) rf_check.has_condition(): bool

Returns TRUE if this check has a condition being checked. Returns FALSE otherwise, if it is a
plain dut_error() action.

The following methods of rf_check are described in 30.3.3.4:

rf_check.actions()

rf_check.get_relevant_actions()

30.2.3.9 rf_constraint

This struct like-inherits from rf_struct_member (see 30.2.3.1).

The following methods of rf_constraint are described in 30.3.3.4:

rf_constraint.get_layers()

rf_constraint.get_relevant_layer()

rf_constraint.get_declaration_string()

The following method of rf_constraint is described in 30.4.3:

rf_constraint.is_satisfied()

rf_expect_rerun()

30.2.4 Inheritance and when subtypes

There are two mechanisms for subtyping in e. One is OO single inheritance (like inheritance), where a struct
is declared as derived from another. The other (when subtyping) is closer to predicate classes, where a
behavioral or structural feature of an object is determined by some state or attribute. In both cases, a new
struct type is defined in terms of an existing one. But the relations between the two kinds of struct types are
different, and they are represented by different kinds of meta-objects. Thus, there are two kinds of struct
types: like structs and when subtypes.

The two mechanisms, like and when, do not mix. Like inheritance lays the basic type hierarchy. Only the
leaves of the hierarchy tree, the structs that have no like subtypes, can serve as a base for when
476 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
proliferations. Each when variant is a different type, but unlike like structs, these types are not derived from
each other and do not form a hierarchy. To mark this difference, the set of when subtypes is called a when
family and the like struct that serves as the base for these proliferations is called a when base. Also, a when
subtype can be determined by a field that is declared in the context of another when subtype; however, such
subtypes are part of the same when family with the same when base.

See also Clause 6.

30.2.4.1 Canonical names

Each value of an enumerated or a Boolean field of an object can serve as a determinant of its structure and
behavior. A set of one or more field/values pairs (determinants) corresponds to a potential when subtype.
One such type can have a number of names by which it is identified—using fully qualified determinants or
without them (e.g., big’size packet versus big packet)—and in a different determinant order
(e.g., big corrupt packet versus corrupt big packet). However, the method get_name()
returns a canonical name, the fully qualified determinants in the reverse order of the declaration of the
fields. For example, TRUE’corrupt big’size packet is a canonical name of one of packet’s
subtypes, given that field corrupt was defined after field size.

30.2.4.2 Explicit and significant subtypes

A when variant of a struct is called an explicit subtype if it is explicitly given some distinctive structural or
behavioral content by some when or extend constructs (see 6.3 and 6.6). Subtypes can be true variants of a
struct, i.e., have distinct content, even when they are not explicitly defined: they consist of the conjunction
of two or more explicit subtypes. These are called significant subtypes. Significant subtypes are important
because each object in the program has exactly one type that describes it exhaustively (see 30.4.2).

For example, the struct packet with enumerated field size (big or small) and Boolean field
corrupt has four possible when subtypes. If only big packet and corrupt packet are defined as
explicit variants of packet (using the constructs when big packet {…} and when corrupt
packet {…}), then only they are explicit subtypes. In this case, corrupt big packet is also a
significant subtype, since it has some distinctive features. On the other hand, small packet is neither
explicit nor significant, since instances of it are equivalent to instances of packet.

30.2.4.3 Generalized relationships

There are a number of generalized relations that apply to both like structs and when subtypes, such as
containment and mutual exclusion. However, regular inheritance relations, e.g., whether a struct is a direct
parent type or a direct subtype of another, are applicable only to like structs.

a) rf_struct.is_contained_in(rf_struct): bool

Returns TRUE if every instance of this struct is an instance of rf_struct. Otherwise, returns FALSE.
For example, bulldog is contained in dog; whereas, corrupt small packet is contained in
small packet, in corrupt packet, in packet, and in itself, but small packet is not
contained in corrupt packet.

b) rf_struct.is_disjoint(rf_struct): bool

Returns TRUE if every instance of this struct is not an instance of rf_struct and vice versa; i.e., the
two types are mutually exclusive. Otherwise, returns FALSE. like structs are disjointed if they are
not identical and neither one is contained in the other, e.g., bulldog and poodle are disjointed, big
packet and small packet are disjointed, but big packet and corrupt packet are not.

c) rf_struct.is_independent(rf_struct): bool

Returns TRUE if an instance of this struct is possibly, but not necessarily, an instance of rf_struct.
Otherwise, returns FALSE. This relation holds only between two when subtypes that are neither
Copyright © 2015 IEEE. All rights reserved. 477

IEEE
Std 1647-2015 IEEE STANDARD
contained nor mutually exclusive. For example, big packet is independent of corrupt
packet, but not of corrupt small packet.

d) rf_struct.get_when_base(): rf_like_struct

Returns the struct that is the base of the when struct family. This struct itself is returned if it is not a
when subtype (regardless of whether it actually contains when subtypes).

30.2.4.4 rf_like_struct

This struct like-inherits from rf_struct (see 30.2.2).

a) rf_like_struct.get_supertype(): rf_like_struct

Returns the immediate like parent type of this struct.

b) rf_like_struct.get_direct_like_subtypes(): list of rf_like_struct

Returns the set of immediate subtypes of this struct in the like struct hierarchy.

c) rf_like_struct.get_all_like_subtypes(): list of rf_like_struct

Returns the set of all subtypes of this struct in the like struct hierarchy.

d) rf_like_struct.get_when_subtypes(): list of rf_when_subtype

Returns the set of all defined subtypes in the when struct family for this struct. If this struct is not a
leaf in the like hierarchy (i.e., it has like subtypes), the method returns an empty list. Any subtypes
that are significant, but not defined, are not returned (see 30.2.4.5).

The following method of rf_like_struct is described in 30.3.2.3:

rf_like_struct.get_layers()

30.2.4.5 rf_when_subtype

This struct like-inherits from rf_struct (see 30.2.2).

a) rf_when_subtype.get_short_name(): string

Returns a short version of the canonical name, i.e., without determinant qualification unless ambigu-
ity requires it. For example, a type whose canonical name is corrupt’TRUE big’size
packet would (normally) have the short name corrupt big packet. Qualified determinants
appear in the short name when the same value name is a possible value of more than one field.

b) rf_when_subtype.get_determinant_fields(): list of rf_when_field

Returns the list of the determinant fields for this when subtype, that is, the fields whose values con-
stitute this specific subtype. For example, if packet has a field big of type bool and a field color of
type [red, green], then the list of determinant fields for big red packet contains exactly these two
fields.

c) rf_when_subtype.get_determinant_values(): list of int

Returns the list of the determinant values for this when subtype, that is, the values of the determi-
nant fields that constitute this specific subtype. The order of the values in the resulting list is accord-
ing to the order of the determinant fields in the list returned by get_determinant_fields(). These
values are automatically converted to the type int, according to the semantics of as_a() casting oper-
ator, as described in Section 5.8.1. For example, if packet has a field big of type bool and a field
color of type [red, green, blue], then the list of determinant fields for big blue packet contains the
values 1 for big (TRUE) and 2 for blue.

d) rf_when_subtype.is_explicit(): bool

Returns TRUE if this when subtype is explicitly defined in the program (by a when or an extend
construct). Otherwise, returns FALSE (for both significant and insignificant subtypes).

e) rf_when_subtype.get_contributors(): list of rf_when_subtype
478 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Returns the set of subtypes that contribute to the definition of this subtype, i.e., all the explicit sub-
types where this subtype is contained, including itself if that case is explicitly defined.

30.2.5 List types

This subclause defines the list types.

30.2.5.1 rf_list

This struct like-inherits from rf_type (see 30.2.1.2).

Lists are multi-purpose containers in e. The different list types are all instances of a generic definition,
similar to user-defined template types. Any type can serve as the element type of a list.

a) rf_list.get_element_type(): rf_type

Returns the element type of this list, e.g., the element type of list of big packet is big
packet.

b) rf_list.is_packed(): bool

Returns TRUE if this list is packed (a list with an element type whose size in bits is 16 or less).
Otherwise, returns FALSE.

30.2.5.2 rf_keyed_list

This struct like-inherits from rf_list (see 30.2.5.1).

rf_keyed_list.get_key_field(): rf_field

Returns the field by which the list is mapped or NULL if the key is the object itself [i.e., when the list
is defined as (key: it)].

30.2.6 Scalar types

Scalars in e have value semantics in assignment, parameter passing, equivalence, operators, etc. They are
either enumerated, numeric, or Boolean types.

30.2.6.1 rf_scalar

This struct like-inherits from rf_type (see 30.2.1.2).

a) rf_scalar.get_size_in_bits(): int

Returns the size of this scalar type in bits.

b) rf_scalar.get_range_string(): string

Returns a string representation of the scalar range of values in the format of range modifiers (e.g.,
the string “[1..4,7,9..10]”).

30.2.6.2 rf_numeric

This struct like-inherits from rf_scalar (see 30.2.6.1).

a) rf_numeric.is_signed(): bool

Returns TRUE if the numeric type is signed. Otherwise, returns FALSE.
Copyright © 2015 IEEE. All rights reserved. 479

IEEE
Std 1647-2015 IEEE STANDARD
b) rf_numeric.get_set_of_values(): set

Returns a set that contains all the legal values of this numeric type, similar to using the
set_of_values() operator (see 5.8.4). If this type is an unbounded integer type without a range
restriction, an exception is thrown.

c) rf_numeric.get_full_set_of_values(): set

Returns a set that contains all possible values of this numeric type, similar to using the
full_set_of_values() operator (see 5.8.5). If this type is an unbounded integer type, an exception is
thrown.

30.2.6.3 rf_enum

This struct like-inherits from rf_scalar (see 30.2.6.1).

a) rf_enum.get_items(): list of rf_enum_item

Returns the set of named values for this type. The legal values of an enum type (see 4.3.2.3) are not
restricted by a range declaration, e.g., the type introduced by the statement type my_color:
color [red..blue] has the same items as type color. Such declarations only affect
generation properties of the type.

b) rf_enum.get_item_by_value(value: int): rf_enum_item

Returns the named value object for value or NULL if no such value exists in this type’s range.

c) rf_enum.get_item_by_name(name: string): rf_enum_item

Returns the named value object for name or NULL if no value by such name exists in this type’s
range.

The following method of rf_enum is described in 30.3.2.2:

rf_enum.get_layers()

30.2.6.4 rf_enum_item

The following method of rf_named_entity is described in 30.2.1.1:

Enum items are pairs of identifier-integer, which are the possible values of a variable of that enum type. The
integer values of enum items are the numbers assigned to them explicitly in the declaration (e.g., [red =
3, green = 17]) or the default (consecutive) numbers.

a) rf_enum_item.get_defining_type(): rf_enum

Returns the enum type in which this item was introduced.

b) rf_enum_item.get_value(): int

Returns the integer value associated with this item as a signed integer.

30.2.6.5 rf_bool

This struct like-inherits from rf_scalar (see 30.2.6.1).

Boolean types in e are the predefined type bool and its (possibly user-defined) width derivatives such as
bool (bits:8). Boolean types have no special features others than those declared for rf_scalar.

30.2.6.6 rf_real

This struct like-inherits from rf_scalar (see 30.2.1.2).
480 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
There is only one real type; thus, the meta-type rf_real is a singleton. It does not have any special features
other than those declared for rf_scalar.

30.2.6.7 rf_set

This struct like-inherits from rf_type (see 30.2.1.2).

There is only one set type; thus, the meta-type rf_set is a singleton. It does not have any special features
other than those declared for rf_type.

30.2.6.8 rf_string

This struct like-inherits from rf_type (see 30.2.1.2).

Strings in e are instances of a special built-in type, which is neither scalar nor compound (a struct or list).
There is only one string type; thus, the meta-type rf_string is a singleton. It does not have any special
features other than those declared for rf_type.

30.2.7 Port types

Ports in e are special purpose objects that serve to bind different units in the verification environment and
specifically to interconnect with the DUT. Each port is an instance of one the four port types. There are five
kinds of parameterized port types: simple_port, buffer_port, method_port,
interface_port, and tlm_socket; and a non-parameterized kind: event_port.

30.2.7.1 rf_port

This struct like-inherits from rf_type (see 30.2.1.2).

a) rf_port.is_input(): bool

Returns TRUE if this port type is declared as an input with the in or the inout specifier.

b) rf_port.is_output(): bool

Returns TRUE if this port type is declared as an output with the out or the inout specifier.

c) rf_port.get_element_type(): rf_type

Returns the element type of this port type. For event ports, which do not have element type, returns
NULL.

30.2.7.2 rf_simple_port

This struct like-inherits from rf_port (see 30.2.7.1).

Simple port types have no special features others than those declared for rf_port.

30.2.7.3 rf_buffer_port

This struct like-inherits from rf_port (see 30.2.7.1).

Buffer port types have no special features others than those declared for rf_port.

30.2.7.4 rf_event_port

This struct like-inherits from rf_port (see 30.2.7.1).
Copyright © 2015 IEEE. All rights reserved. 481

IEEE
Std 1647-2015 IEEE STANDARD
Event port types have no special features others than those declared for rf_port.

30.2.7.5 rf_method_port

This struct like-inherits from rf_port (see 30.2.7.1).

Method port types have no special features others than those declared for rf_port.

30.2.7.6 rf_interface_port

This struct like-inherits from rf_port (see 30.2.7.1).

Interface port types have no special features others than those declared for rf_port.

30.2.7.7 rf_tlm_socket

This struct like-inherits from rf_port (see 30.2.7.1).

TLM socket types have no special features others than those declared for rf_port.

30.2.8 Sequence types

This subclause defines the sequence types.

30.2.8.1 rf_sequence

This struct like-inherits from rf_like_struct (see 30.2.4.4).

a) rf_sequence.get_driver_struct(): rf_struct

Returns the sequence driver unit type for this sequence type.

b) rf_sequence.get__kind(): rf_enum

Returns the kind enumerated type for this sequence type.

30.2.8.2 rf_bfm_sequence

This struct like-inherits from rf_sequence.

a) rf_bfm_sequence.get_item_struct(): rf_struct

Returns the item type for this sequence type.

30.2.8.3 rf_virtual_sequence

This struct like-inherits from rf_sequence.

Virtual sequence types have no special features others than those declared for rf_sequence.

30.2.9 Template types

This subclause defines the template and template instance types.

30.2.9.1 rf_template

This struct like-inherits from rf_named_entity (see 30.2.1.1). See also Clause 8.
482 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
a) rf_template.is_public(): bool

Returns TRUE if this template has unrestricted access. Otherwise, returns FALSE (when this tem-
plate was declared with a package modifier).

b) rf_template.get_package(): rf_package

Returns the package to which this template belongs.

c) rf_template.get_qualified_name(): string

Returns the fully qualified name of the template (i.e., with the declaring package name followed by
the :: operator).

d) rf_template.is_unit(): bool

Returns TRUE if this template is a unit template (i.e., all its instances are units). Otherwise, returns
FALSE.

e) rf_template.get_supertype(): rf_like_struct

Returns the immediate like parent type of this template, which is the parent type of its instances. If
the parent type specified in the template declaration is parameterized by the template parameters,
which means that each template instance has a different parent type, then it returns NULL.

f) rf_type.num_of_params(): int

Returns the number of type parameters that this template has.

g) rf_type.get_all_instances(): list of rf_template_instance

Returns all the existing instances of this template.

30.2.9.2 rf_template_instance

This struct like-inherits from rf_like_struct (see 30.2.4.4).

a) rf_template_instance.get_template(): rf_template

Returns the template of which this type is an instance.

b) rf_template.get_template_parameters(): list of rf_type

Returns the list of types on which the template was parameterized to created this template instance.

30.2.10 Macros: rf_macro

This struct like-inherits from rf_named_entity (see 30.2.1.1). See also Clause 8.

a) rf_macro.get_category(): string

Returns the name of the syntactic category to which this macro belongs. For example, if the macro
name is <my'action>, it returns the string “action”.

b) rf_template.get_match_expression(): string

Returns the match expression string of this macro.

c) rf_struct.get_package(): rf_package

Returns the package to which this macro belongs.

d) rf_struct.is_computed(): bool

Returns TRUE if this macro is a define-as-computed macro. Returns FALSE if this macro is a
define-as macro.

30.2.11 Routines: rf_routine

This struct like-inherits from rf_named_entity (see 30.2.1.1). See also Clause 8.

a) rf_routine.get_result_type(): rf_type
Copyright © 2015 IEEE. All rights reserved. 483

IEEE
Std 1647-2015 IEEE STANDARD
Returns the object that represents the result type of this routine or NULL if the routine does not
return any value.

b) rf_routine.get__parameters(): list of rf_parameter

Returns a list of formal parameters of this routine. If the routine has no parameters, the list is empty.

30.2.12 Querying for types: rf_manager

The starting point in every query into the type information is a set of services that are not related to any
specific kind of meta-objects. They are scoped together as methods of a singleton class named rf_manager,
the instance of which is under global. This struct has other general services that are defined in 30.3.5, 30.4.1,
and item k) in 30.4.3.

a) rf_manager.get_type_by_name(name: string): rf_type

Returns the type with name, or NULL if no type by that name exists in the system.

b) rf_manager.get_struct_by_name(name: string): rf_type

Returns the struct type with name, or NULL if no struct type by that name exists in the system.

c) rf_manager.get_user_types(): list of rf_type

Returns a list of all the types declared in the user modules.

d) rf_manager.get_template_by_name(name: string): rf_template

Returns the template with name, or NULL if no template by that name exists in the system.

e) rf_manager.get_user_templates(): list of rf_template

Returns a list of all the templates declared in the user modules.

f) rf_manager.get_macro_by_name(name: string): rf_macro

Returns the macro with name, or NULL if no macro by that name exists in the system.

g) rf_manager.get_user_macros(): list of rf_macro

Returns a list of all the macros declared in the user modules.

h) rf_manager.get_macros_by_category(category: string): list of rf_macro

Returns a list of all the macros of the syntactic category category declared in the user modules. For
example, get_macros_by_category(action) returns all macros that belong to category <action>. If
there is no syntactic category with the given name, it returns an empty list.

i) rf_manager.get_routine_by_name(name: string): rf_routine

Returns the routine with name, or NULL if no routine by that name exists in the system.

j) rf_manager.get_user_routines(): list of rf_routine

Returns a list of all the routines declared in the user modules.

The following method of rf_manager is described in 30.3.5:

rf_manager.get_module_by_name()

rf_manager.get_module_by_index()

rf_manager.get_user_modules()

rf_manager.get_package_by_name()

The following method of rf_manager is described in 30.4.1:

rf_manager.get_struct_of_instance()

rf_manager.get_exact_subtype_of_instance()

rf_manager.get_all_unit_instances()
484 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
The following method of rf_manager is described in 30.4.4:

rf_manager.get_list_element()

rf_manager.get_list_element_unsafe()

rf_manager.set_list_element()

rf_manager.set_list_element_unsafe()

rf_manager.get_list_size()

rf_manager.get_list_size_unsafe()

30.3 Aspect information

The structure and behavior of objects at runtime consists of fields, methods, events, etc. In e, the definition
of these constituents can be separated into different modules of the software and extended on a per-type
basis as part of the aspect-oriented (AO) modeling paradigm (i.e., decomposed as different concerns). Thus,
the mapping between how the code is laid out and imported, and the end result of accumulated software
layers once all of the extensions have been resolved, is non-trivial.

This part of the API primarily models the mapping between named entities and the structure of their
definitions in the source code. Different meta-objects are used to represent the elements in the code that
constitute the definition of a given named entity; they are classified according to the kind of named entity
they define. rf_definition_element serves as a common base type for these types (see 30.3.1.3).

30.3.1 Definition elements

This subclause describes the definition elements.

30.3.1.1 Extensible entities and layers

In common OO languages, the definition of a class begins and ends in one single stretch of code. Conversely
the definition of structs in e can be separated between different locations in the source files. A struct is
introduced and initially defined by a struct statement and then possibly further defined by later extend
statements. Each such “piece” of definition is called a struct layer. An enumerated type can similarly be
initially defined with some set of named values and extended later with more named values. Each of these is
an enum layer.

Methods can be overridden or refined not only in subtypes, but also later in the same struct [by is also/first/
only constructs (see 17.1.3)]. Thus, the definition of a method for some given object is a series of one or
more definition “pieces” that are called method layers. Events, like methods, are declared once in some
struct and are possibly overridden later in the same struct or in subtypes. The same applies to other kinds of
struct members. These concepts are explained as follows (see 30.3.3).

Generally speaking, entities that can be declared at one location in the source code and extended in later
locations, such as struct types, enum types, methods and events, are called extensible entities. The definition
of extensible entities consists of a series of one or more elements (layers), the first of which is the
declaration and the rest are extensions. Named entities of all kinds can be queried for their declaration (see
30.3.1.3). Extensible named entities (e.g., rf_struct and rf_method) can also be queried for their extensions
(e.g., see 30.3.2.3).

30.3.1.2 Anomalies of definition elements

The separation between a named entity and its definition is natural where extensible entities are concerned.
However, it is somewhat artificial for non-extensible entities, e.g., numeric types and fields. Nevertheless,
Copyright © 2015 IEEE. All rights reserved. 485

IEEE
Std 1647-2015 IEEE STANDARD
the same scheme applies trivially to non-extensible entities. Their definition consists of exactly one
element—the declaration. For example, the rf_field object (see 30.4.3) that represents the field size of the
struct packet can be queried for the source location of its declaration, not directly, but through a different
object [of type rf_definition_element (see 30.3.1.3)], which represents its declaration.

Moreover, some named entities are not explicitly defined by e code at all and so have no definition elements
whatsoever, not even a declaration. For example, list types are instantiations of a parameterized built-in
type. They are used in e code and represented in the type system just as any other type, but they are never
defined by e code itself. See also 30.3.2.

30.3.1.3 rf_definition_element

a) rf_definition_element.get_defined_entity(): rf_named_entity

Returns the named entity that is being defined by this definition element; i.e., this element is part of
the definition of the returned named entity.

b) rf_definition_element.get_module(): rf_module

Returns the module where this definition element appears.

c) rf_definition_element.get_source_line_num(): int

Returns the line number of the beginning of the clause in the source file.

d) rf_definition_element.is_before(rf_definition_element): bool

Returns TRUE if this definition element appears before rf_definition_element in the load order.
Otherwise, returns FALSE. This is based on a full-order relation on definition elements, which is
defined as the ordinal number of modules and then the line number in the file.

e) rf_definition_element.get_documentation(): string

Returns the inline documentation of this definition element. Inline documentation is the comment in
the consecutive lines directly preceding the definition in the source files. An empty string is returned
if the source file is not found.

f) rf_definition_element.get_documentation_lines(): list of string

Returns the inline documentation of this definition element as a list of strings separated by newline
characters in the source file. An empty list is returned if the source file is not found.

g) rf_named_entity.get_declaration(): rf_definition_element

Returns the declaration (the first definition element) of this entity or NULL for any types defined
implicitly as variants of existing types (see 30.3.2).

h) rf_named_entity.get_declaration_module(): rf_module

Returns the module in which this entity is declared first, or NULL for any types defined implicitly as
variants of existing types (see 30.3.2).

i) rf_named_entity.get_declaration_source_line_num(): int

Returns the line numbr of the beginning of teh first delcaration clause for this entity in the source
file, or NULL for any types defined implicitly as variants of existing types (see 30.3.2).

30.3.2 Type layers

enum and struct types are extensible entities, so their definition can consist of one or more layers. Other
kinds of types are not extensible and so have only the declaring layer. However, not all types have explicit
definitions. Some of these types can be used in context, without being previously declared, as follows:

— Numeric types can be used in context with a size modification [e.g., uint (bits: 16)]. The size
modification implies a different type, but one that has no explicit declaration.

— enum types can be spelled out inline, they have no separate declarations or explicit names.
486 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
— List and port types (except event ports) are instances of predefined parameterized types; they are not
declared or defined in e.

— Not all when subtypes are explicitly defined, but they can still be used in context as types.

The first two cases are scalar types that could have been declared and given an explicit name by a type
statement. In the other two cases, there is no way to make the type declaration explicit. Some when subtypes
are explicitly defined in a different sense by using when or extend constructs. Even then, the layers of the
when subtypes cannot always be separated from those of other subtypes or the when base. From the
viewpoint of aspect information, all these cases are treated in the same way: All types that fall under one of
the previous cases do not have any layers. Calling the method get_declaration() (see 30.3.1) on them
returns NULL, and for implicitly defined enum, calling get_layers() (see 30.3.2.1) returns an empty list. As
for structs, the service get_layers() is restricted to like structs. For template instance types, which do not
have an explicit definition but can be explicitly extended by using extend constructs, calling
get_declaration() returns the declaration layer of the template itself, which is also considered the first type
layer.

30.3.2.1 rf_type_layer

This struct like-inherits from rf_definition_element (see 30.3.1.3).

Structs and enums are extensible entities; they are defined in layers. Struct and enum layers are both type
layers. This abstraction does not have features of its own, but is used by other services [see
get_type_layers() in 30.3.4].

30.3.2.2 rf_enum_layer

This struct like-inherits from rf_type_layer (see 30.3.2.1).

a) rf_enum_layer.get_added_items(): list of rf_enum_item

Returns the named values added by this enum layer.

b) rf_enum.get_layers(): list of rf_enum_layer

Returns all enum layers that constitute this enum type.

30.3.2.3 rf_struct_layer

This struct like-inherits from rf_type_layer (see 30.3.2.1).

a) rf_struct_layer.get_field_declarations(): list of rf_definition_element

Returns the field declarations added to the struct by this struct layer.

b) rf_struct_layer.get_method_layers(): list of rf_method_layer

Returns the method layers added to the struct by this struct layer.

c) rf_like_struct.get_layers(): list of rf_struct_layer

Returns all struct layers that constitute this struct type.

30.3.3 Struct member layers

Once a method in e is declared for a given struct, it can never be replaced by a different method in a subtype
or a later extension. Rather, all later modifications of the definition, in all three modes, also, first, and only,
in extensions as well as in when subtypes and like heirs, are definition elements of the same method—they
are method layers. For example, the method bark(), once declared for struct dog, is one and the same for
all kinds of dogs. But different method layers may be executed upon calling bark() for different dog
objects, so they display different behaviors.
Copyright © 2015 IEEE. All rights reserved. 487

IEEE
Std 1647-2015 IEEE STANDARD
The reason for this deviation from standard OO terminology is e can be used to modify the behavior in
derived structs, as well as when variants, and in later extensions of that same struct. Therefore, the need to
distinguish between the method (the common semantics or message) on the one side and the definition of the
behavior associated with it for some set of objects on the other side is more acute. These same
considerations and terminology also apply to other extendable struct members .

30.3.3.1 rf_struct_member_layer

This struct like-inherits from rf_definition_element (see 30.3.1.3).

a) rf_struct_member_layer.get_defining_struct(): rf_struct

Returns the struct in the scope of which this layer appears.

b) rf_struct_member_layer.get_context_layer(): rf_struct_layer

Returns the struct layer where this layer appears.

30.3.3.2 rf_method_layer

This struct like-inherits from rf_struct_member_layer (see 30.3.3.1).

a) rf_method_layer.get_extension_mode(): rf_extension_mode

Returns one of the values—empty, undefined, is, also, first, or only—according to how
this method layer was declared.

b) rf_method_layer.is_c_routine(): bool

Returns TRUE if this method layer is implemented by a C routine. Otherwise, returns FALSE.

c) rf_method.get_layers(): list of rf_method_layer

Returns a list of all layers of this method in all struct types where it is defined. The returned list is
ordered by load order from early to late.

d) rf_method.get_relevant_layers(rf_struct): list of rf_method_layer

Returns a list of all layers of this method that apply to rf_struct. If rf_struct does not have this
method at all, an empty list is returned. For example, the method to_string() (see 27.5.4) is defined
for every struct in e, so calling get_layers() returns all extensions of this method in the system.
However, calling get_relevant_layers() for the struct packet only returns the extensions of
to_string() defined in the context of the struct packet and its subtypes.

30.3.3.3 rf_extension_mode

This is a predefined enumerated type that represents existing method extension modes:

type rf_extension_mode:[empty, undefined, is, also, first, only]

30.3.3.4 rf_event_layer

This struct like-inherits from rf_struct_member_layer (see 30.3.1.3).

a) rf_event.get_layers(): list of rf_event_layer

Returns a list of all layers of this event in all struct types where it is defined. The returned list is
ordered by load order from early to late.

b) rf_event.get_relevant_layer(): rf_event_layer

Returns the active layer, i.e., the last defined layer, of this event that applies to rf_struct. If rf_struct
does not have this event at all, NULL is returned.
488 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
30.3.3.5 rf_check_layer

This struct like-inherits from rf_struct_member_layer (see 30.3.3.1).

a) rf_check_layer.get_text(): string

Returns the text string of this check action or expect layer, which is produced as the error message
when the check condition does not hold.

30.3.3.6 rf_expect_layer

This struct like-inherits from rf_check_layer (see 30.3.3.5).

a) rf_expect.get_layers(): list of rf_expect_layer

Returns a list of all layers of this expect in all struct types where it is defined. The returned list is
ordered by load order from early to late.

b) rf_expect.get_relevant_layer(): rf_expect_layer

Returns the active layer, i.e., the last defined layer, of this expect that applies to rf_struct. If rf_struct
does not have this expect at all, NULL is returned.

30.3.3.7 rf_check_action

This struct like-inherits from rf_check_layer (see 30.3.3.5).

a) rf_check_action.get_containing_method_layer(): rf_method_layer

Returns the method layer in which this check action resides. If the check action does not reside in a
method, it returns NULL.

b) rf_check_action.has_condition(): bool

Returns TRUE if this check action has a condition being checked, i.e., it is a check that action (see
16.2.1). Returns FALSE otherwise, i.e., if it is a plain dut_error() or dut_errorf() action (see 16.2.2
and 16.2.3).

c) rf_check.get_check_actions(): list of rf_check_action

Returns a list of all check actions that constitute this check, in all struct types where it is defined.
The returned list is ordered by load order from early to late.

d) rf_check.get_relevant_check_actions(rf_struct): list of rf_check_action

Returns a list of all check actions that constitute this check, and that apply to rf_struct. If rf_struct
does not have this check at all, an empty list is returned.

30.3.3.8 rf_constraint_layer

This struct like-inherits from rf_struct_member_layer (see 30.3.3.1)).

a) rf_constraint_layer.get_constraint_string(): string

Returns the string that represents the condition expression of this constraint layer. For example, if
the constraint declaration is keep x == 5, the returned string is "x == 5".

b) rf_constraint.get_layers(): list of rf_constraint_layer

Returns a list of all layers of this constraint in all struct types where it is defined. The returned list is
ordered by load order from early to late

c) rf_constraint.get_relevant_layer(rf_struct): rf_constraint_layer

Returns the active layer, i.e., the last defined layer, of this constraint that applies to rf_struct. If
rf_struct does not have this constraint at all, NULL is returned.
Copyright © 2015 IEEE. All rights reserved. 489

IEEE
Std 1647-2015 IEEE STANDARD
d) rf_constraint.get_declaration_string(): string

Returns the string that represents the condition expression of this constraint declaration. If the con-
straint has more than one layer, the string of the first layer is returned.

30.3.4 Modules and packages

This subclause describes the modules and packages.

30.3.4.1 rf_module

Modules are simply e files. However, with the ability to extend structs and separate different concerns or
crosscuts of a system, modules play an important role in organizing the program. If a struct may be
considered the vertical encapsulation principle, then modules are the horizontal one. A struct consists of a
number of related layers of definition in different modules and, symmetrically, the module consists of a
number of related layers of different structs—it can be thought of as a layer of the entire system. Thus,
modules can be queried for their overall contribution to the structure of a system in the reflection API.

a) rf_module.get_name(): string

Returns the name of this module, basically the name of the e file without the .e extension.

b) rf_module.get_index(): int

Returns this module’s ordinal number in the load order.

c) rf_module.get_type_layers(): list of rf_type_layer

Returns a list of all the type layers defined in this module. A module’s overall contribution to the
structure of a system is the set of declarations of new types and extensions of existing types.

d) rf_module.get_package(): rf_package

Returns the e package with which this module is associated. Any modules that are not explicitly
associated with some package [using the package statement (see 22.1)] are implicitly part of the
package main.

e) rf_module.is_user_module(): bool

Returns TRUE if the module is user defined. Otherwise, returns FALSE.

f) rf_module.get_direct_imports(): list of rf_module

Returns the list of modules that are directly imported by this module. This includes all the modules
referred to in import statements (see 21.1.1) in this module.

g) rf_module.get_all_imports(): list of rf_module

Returns the list of modules that are directly or indirectly imported by this module. This includes all
the modules referred to in import statements (see 21.1.1) in this module, as well as modules
imported by other modules which are imported by this module.

h) rf_module.get_lines_num(): int

Returns the number of lines in the source file of this module.

i) rf_module.is_encrypted(): bool

Returns TRUE if the module is encrypted (see Clause 32). Otherwise, returns FALSE.

30.3.4.2 rf_package

A package (see Clause 22) is a set of one or more e modules that together implement some closely related
functionality. This package defines a scope for restricting the access of named entities. It also is represented
in the reflection API by a meta-object.

a) rf_package.get_name(): string

Returns the name of this package.
490 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
b) rf_package.get_modules(): list of rf_module

Returns the set of modules associated with this package.

30.3.5 Querying for aspects

Similar to the services for type information queries (see 30.2.12), the following services can be used to
perform aspect information queries:

a) rf_manager.get_module_by_name(name: string): rf_module

Returns the module with the name or NULL if no module by this name is currently loaded.

b) rf_manager.get_module_by_index(index: int): rf_module

Returns the module with the given index in the load order.

c) rf_manager.get_user_modules(): list of rf_module

Returns a list of all user modules that are currently loaded.

d) rf_manager.get_package_by_name(name: string): rf_package

Returns the package with the name or NULL if no package by this name is currently loaded.

30.4 Value query and manipulation

The parts of the API described in previous subclauses, type information and aspect information, both reflect
static features of the program. During a run of the program, values are being manipulated. Each of those
values is an instance of a type and all operations carried upon them are defined by their type. This part of the
API enables the user to query and manipulate values using the representations of types. This feature is
known as meta-programming. It can serve to construct data browsers, debugging aids, and other generic
runtime features.

See also 5.2 and 5.8.2.

30.4.1 Types of objects

The natural entry point for querying or manipulating objects is getting a representation of their type. For any
given object, there is always one most specific type of which it is an instance, even if that type has not been
explicitly defined in the code (i.e., it is a cross of a number of explicitly defined when subtypes). A query
can be generated for the like struct of an instance and any when variants discarded, or the query can be for
the specific when subtype. The when subtype of an instance depends on its state, which may change with
the course of the run.

a) rf_manager.get_struct_of_instance(instance: base_struct): rf_like_struct

Returns the most specific like struct of the struct instance and disregards any when variants, even if
they apply to the instance. To query for the specific when subtype of an object, use:
get_exact_subtype_of_instance().

b) rf_manager.get_exact_subtype_of_instance(instance: base_struct): rf_struct

Returns the type of instance. The returned meta-object represents the most specific significant type
that applies to the instance, i.e., the one containing all other types that apply to the instance. For
example, if the parameter is a packet, which has the defined subtypes big packet and
corrupt packet, and a particular packet happens to be both corrupt and big, then the
returned type would be corrupt big packet, even though it is not a defined subtype.

The static type of a field is sometimes more specific than the exact subtype of the object that is the
field’s actual value; this happens when the static type is an insignificant when subtype (see
30.2.4.2).

c) rf_struct.is_instance_of_me(instance: base_struct): bool
Copyright © 2015 IEEE. All rights reserved. 491

IEEE
Std 1647-2015 IEEE STANDARD
Returns TRUE if instance is an instance of this struct.

d) rf_manager.get_all_unit_instances(root: any_unit): list of any_unit

Returns a list of all units instantiated directly or indirectly under root, including root itself. The units
appear in the list in depth-first order, i.e., root appears first in the list, and each unit is directly fol-
lowed by units instantiated under it.

30.4.2 Values and value holders

When dealing with values in a generic way (meta-programming), there needs to be some safe way to refer to
values of all types: struct instances, lists, strings, and scalars. Since these values are very different in their
semantics and there is no abstract type common to all, the reflection API wraps values of all types with an
object called rf_value_holder. This object holds a value together with its type, and guarantees its
consistency and continuity when the original variable goes out of scope and across garbage collections.

Value holders are returned from value queries or explicitly created by the user. They are used in setting
values or calling methods. Actual uses of the value itself, however, involve passing through an untyped
value and brute casting, which is not type-safe. Two operators are implemented generically for all
values—equating and getting a string representation.

a) rf_value_holder.get_type(): rf_type

Returns the type of this value. When the value is a struct instance, the type of the holder is not neces-
sarily the most specific subtype of that instance (e.g., a legal value holder whose type is any_struct
can hold an instance of packet).

b) rf_value_holder.get_value(): untyped

Enables [by using the unsafe operator (see 5.8.2)] assignment of the value into a typed variable. The
variable shall be a type to which this value is assignable according to e casting rules; however, this
cannot be enforced.

c) rf_type.create_holder(value: untyped): rf_value_holder

Returns a value holder of this type for value, which shall be an instance of this type (or of a subtype
in case it is a struct type). Very simple sanity checks are performed on the value; if they fail, an
exception is thrown. These checks are by no means exhaustive; it is the user’s responsibility to cre-
ate the right holder for a value.

d) rf_type.value_is_equal(value1: untyped, value2: untyped): bool

Returns TRUE if value1 and value2 are equivalent or identical [using the same semantics as that of
the == operator (see 4.10.2)]. Otherwise, returns FALSE. The behavior is not defined if one of the
two values is not of this type.

e) rf_type.value_to_string(value: untyped): string

Returns a string representation of value [this is the same as the to_string() operator]. The behavior is
not defined if the value is not of this type.

30.4.3 Object operators

Object operators include reading and writing fields, calling methods, emitting or monitoring events, and so
on. These operators are available with meta-objects that represent struct members. Value holders are the safe
way to handle values in a generic way (see 30.4.2). However, using them involves the dynamic allocation of
memory, which can impact performance where this feature is heavily used.

Some object operators have two versions: one uses value holders and makes some checks, throwing
exceptions in the cases where preconditions do not hold; the other uses bare untyped values (see 5.2) and
skips checks. This brute force version of each operator is marked as unsafe and should be avoided where
possible.
492 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
a) rf_field.get_value(instance: base_struct): rf_value_holder

Returns the value of this field in the struct instance. If the struct type of the instance does not have
this field, an exception is thrown.

b) rf_field.get_value_unsafe(instance: base_struct): untyped

Returns the value of this field in the struct instance. If the struct type of the instance does not have
this field, the behavior is undefined.

c) rf_field.set_value(instance: base_struct, value: rf_value_holder)

Sets the value of this field in the struct instance to the new value. If the struct type of the instance
does not have this field, an exception is thrown.

d) rf_field.set_value_unsafe(instance: base_struct, value: untyped)

Sets the value of this field in the struct instance to the new value. If the struct type of the instance
does not have this field, the behavior is undefined.

e) rf_field.is_consistent(instance: base_struct): bool

Returns TRUE if the field value is consistent with the field declaration. Otherwise, returns FALSE.
For example, if the declared type of the field is RED packet, it is not consistent if the value is a
BLUE packet; if the declared type is uint[1..10], it is not consistent if the value is outside the 1..10
range; if the field has a declared list size, e.g., l[10]: list of uint, it is not consistent if the list size is
not 10.

f) rf_method.invoke(instance: base_struct, parameters: list of rf_value_holder): rf_value_holder

Calls this method on the struct instance, using the list of (zero or more) values as the method’s
parameters, and returns a value holder of the method’s return value (or NULL if the method has
none). If the struct type of the instance does not have this method or there is a mismatch in the num-
ber and types of parameters, an exception is thrown. This method cannot be called from an
rf_method, which is time consuming.

f) rf_method.invoke_unsafe(instance: base_struct, parameters: list of untyped): untyped

Calls this method on the struct instance, with the list of (zero or more) values as the method’s
parameters, and returns the method’s return value. If this method does not return a value, the value
returned from invoke_unsafe is undefined. If the struct type of the instance does not have this
method or there is a mismatch in the number and types of parameters, the behavior is undefined.
This method cannot be called from an rf_method, which is time consuming.

g) rf_event.is_emitted(instance: base_struct): bool

Returns TRUE if this event of the instance was emitted so far in the current cycle. Otherwise, returns
FALSE. If the struct type of the instance does not have this event, an exception is thrown.

h) rf_event.is_emitted_unsafe(instance: base_struct): bool

Returns TRUE if this event of the instance was emitted so far in the current cycle. Otherwise, returns
FALSE. If the struct type of the instance does not have this event, the behavior is undefined.

i) rf_event.emit(instance: base_struct)

Emits the event on the instance. If the struct type of the instance does not have this event, an
exception is thrown.

j) rf_event.emit_unsafe(instance: base_struct)

Emits the event on the instance. If the struct type of the instance does not have this event, the
behavior is undefined.

k) rf_method.start_tcm(instance: any_struct, parameters: list of rf_value_holder)

Starts this TCM on the instance given as a parameter. If the struct type of the instance does not
declare this TCM, an error is issued. Similarly, if the given parameters are not of the types in the
order required by this TCM, or this method is not a TCM, an error is issued. Note that this TCM may
have a return value, but it is not accessible with start_tcm().

l) rf_method.start_tcm_unsafe(instance: any_struct, parameters: list of untyped)
Copyright © 2015 IEEE. All rights reserved. 493

IEEE
Std 1647-2015 IEEE STANDARD
Starts this TCM on the instance given as a parameter. If the struct type of the instance does not
declare this TCM, the behavior is undefined. Similarly, if the given parameters are not of the types
in the order required by this TCM, or this method is not a TCM, the behavior is undefined. Note that
this TCM may have a return value, but it is not accessible with start_tcm_unsafe().

m) rf_constraint.is_satisfied(instance: any_struct): bool

Returns TRUE if the constraint is satisfied by instance. Otherwise, returns FALSE. If the constraint
is soft, it always returns TRUE.

n) rf_expect.stop(instance: any_struct)

Stops this expect of instance. It is similar to calling the quit() method, but affects only specific ex-
pect and not all the temporals of the struct.

o) rf_expect.rerun(instance: any_struct)

Reruns this expect of instance. It is similar to calling the rerun() method, but affects only specific
expect and not all the temporals of the struct.

30.4.4 List operators

The three main list operators—reading an element, writing to an index, and querying the size—are available
as general services, i.e., methods of rf_manager. Two versions of the operators are available: the safe
version, using value holders, and the brute one, using untyped values. See also 30.4.3.

a) rf_manager.get_list_element(list: rf_value_holder, index: int): rf_value_holder

Returns the value of the given list at the given index. If the value is not a list or the index is out of
bounds, an exception is thrown.

b) rf_manager.get_list_element_unsafe(list: untyped, index: int): untyped

Returns the value of the given list at the given index. If the value is not a list or the index is out of
bounds, the behavior is undefined.

c) rf_manager.set_list_element(list: rf_value_holder, index: int, new_value: rf_value_holder)

Sets the value of the given list at the given index. If the first parameter is not a list, the index is out of
bounds, or the new value is not of an instance of the list’s element type, an exception is thrown.

d) rf_manager.set_list_element_unsafe(list: untyped, index: int, new_value: untyped)

Sets the value of the given list at the given index. If the first parameter is not a list, the index is out of
bounds, or the new value is not of an instance of the list’s element type, the behavior is undefined.

e) rf_manager.get_list_size(list: rf_value_holder): int

Returns the number of elements currently in the given list. If the value is not a list, an exception is
thrown.

f) rf_manager.get_list_size_unsafe(list: untyped): int

Returns the number of elements currently in the given list. If the value is not a list, the behavior is
undefined.
494 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
31. Predefined resource sharing control structs

This clause describes some predefined methods that are useful in controlling TCMs and resource sharing
between TCMs. See also Clause 27.

31.1 Semaphore methods

The e language provides three predefined structs that are useful in controlling resource sharing between
TCMs, as follows:

— semaphore

This is the typical semaphore. The maximum value ranges between 1 and MAX_INT. By default, it
is MAX_INT and the initial value (number of available resources) is 0.

— rdv_semaphore

A rendezvous semaphore is a semaphore with no resources. It requires the meeting of a producer and
a consumer for either to proceed. When they finally proceed, the up() thread always runs first,
followed immediately by the down() thread.

— locker

The methods of this struct provide a fair, FIFO-ordered sharing of resources between multiple
competing methods.

A locker is useful when a single entity needs to prevent others from a shared resource. lock() and release()
need to be issued by the same entity. A semaphore can be more flexible.

Table 44 gives a brief description of the predefined methods of the semaphore and rdv_semaphore structs.

Table 45 describes the predefined methods of the locker struct.

Table 44—Semaphore methods

Method Description

up() Increments the semaphore’s value. Blocks if the value is already the maximum possible.

down() Decrements the semaphore’s value. Blocks if the value is already 0.

try_up() Increments the semaphore’s value. If the value is already the maximum possible, returns
without blocking.

try_down() Decrements the semaphore’s value. If the value is already 0, returns without blocking.

set_value() Sets the initial value of the semaphore.

get_value() Returns the current value of the semaphore.

set_max_value() Sets an upper limit to the possible value of the semaphore.

get_max_value() Returns the maximum possible value.
Copyright © 2015 IEEE. All rights reserved. 495

IEEE
Std 1647-2015 IEEE STANDARD
31.2 How to use the semaphore struct

A field of type semaphore typically serves as a synchronization object between two types of TCMs:
producer and consumer.

— Any consumer TCM uses the predefined down() TCM of the semaphore to gain control of a new
resource managed by the semaphore. If no resources are available at the time down() is called, the
consumer TCM is blocked until such a resource is available.

— Any producer TCM uses the predefined up() TCM of the semaphore to increase the amount of
available resources of the semaphore. This resource is made available for consumer TCMs. If the
semaphore already contains the maximum number of resources at the time up() is called, the
producer TCM is blocked until a semaphore resource is consumed.

The amount of available resources is zero (0) by default, but can be set otherwise by using the set_value()
method. The current amount of available resources can be obtained using the get_value() method.

There is a limit to the possible number of available resources. Typically, the maximum is MAX_INT, but it
can be set to other values between 0 and MAX_INT by using the set_max_value() method. The current limit
for available resources can be obtained using the get_max_value() method.

Any producer TCM is blocked if the semaphore already holds the maximum number of available resources.

31.2.1 up() and down()

The up() TCM increases the number of available resources of the semaphore by 1. If the number of
available resources is already the maximum, the TCM is blocked. Blocked calls to up() are serviced
according to their request order (on a FIFO basis).

The down() TCM decreases the number of resources of the semaphore by 1. If no resources are available,
the TCM is blocked. Blocked calls to down() are serviced according to their request order (on a FIFO basis).

Table 45—Locker methods

Method Description

lock() The first TCM to call the lock() method of a field of type locker gets the lock and can
continue execution. The execution of the other TCMs is blocked.

release() When a TCM that has the lock calls release(), control goes to the next TCM in line. The
order in which the lock is granted is by a FIFO order of client lock() requests.

Purpose Synchronize producer and consumer TCMs

Category Predefined TCM of semaphore struct

Syntax
semaphore.up()
semaphore.down()

Parameters semaphore An expression of type semaphore or rdv_semaphore.
496 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
In an rdv_semaphore, up() and down() are blocked unless they coincide. The down() TCM always breaks
the block first.

Syntax example:

sem1.up();

sem1.down()

31.2.2 try_up() and try_down()

The try_up() and try_down() methods try to increment or decrement the number of available resources by
1, respectively. If the number of available resources is already at its maximum or minimum, respectively,
these methods return immediately without any effect (in particular, no blocking). If the number of resources
was changed, the returned value is TRUE. If the number of resources was not changed, the returned value is
FALSE.

— The FIFO order of service of the semaphore is kept even when the try_up() and try_down()
methods are involved, e.g., a try_up() shall never succeed if there are pending calls to up().

— try_up() and try_down() never generate a context switch.

Syntax example:

compute sem1.try_up();

compute sem1.try_down()

31.2.3 set_value() and get_value()

The set_value() method sets the number of available resources of the semaphore. By default, a semaphore is
initialized with zero (0) available resources. The new value shall be a non-negative integer, no larger than
MAX_INT. If the set_max_value() method of the struct was used, the new value shall also be smaller or
equal to the last setting of the maximum number of resources. If these conditions do not hold, a runtime error
shall be issued.

Purpose Synchronize producer and consumer methods

Category Predefined method of semaphore struct

Syntax
semaphore.try_up(): bool
semaphore.try_down(): bool

Parameters semaphore An expression of type semaphore or rdv_semaphore.

Purpose Set and get the number of available resources of a semaphore

Category Predefined method of semaphore struct

Syntax semaphore.set_value(new_value: int)
semaphore.get_value(): int

Parameters
semaphore An expression of type semaphore or rdv_semaphore.

new_value An expression of type signed int.
Copyright © 2015 IEEE. All rights reserved. 497

IEEE
Std 1647-2015 IEEE STANDARD
— set_value() cannot be called if either up() or down() was previously called. In such case, an error
shall be issued. Setting the value of an rdv_semaphore to something other than zero (0) shall also
result in a runtime error.

— The get_value() method returns the current number of available resources of the semaphore.

Syntax example:

sem1.set_value(7);
cur_value = sem1.get_value()

31.2.4 set_max_value() and get_max_value()

The set_max_value() method sets the maximum number of available resources of the semaphore. By
default, a semaphore is initialized with a maximum of MAX_INT available resources. The new value shall
be a positive integer, no larger than MAX_INT. If set_value() was previously called, the new maximum shall
not be smaller than the number of available resources. If these conditions do not hold, a runtime error shall
be issued.

— The value of an rdv_semaphore is constantly zero (0). Therefore its default maximum value is zero
(0), and it cannot be set to a value other than that. Trying to do so shall result in a runtime error.

— set_max_value() cannot be called if either up() or down() was previously called. In such case, an
error shall be issued.

— It is safer to invoke the set_max_value() method before any other semaphore method.

— The get_max_value() method returns the current limit for available resources of the semaphore.

Syntax example:

sem1.set_max_value(17);
cur_max_value = sem1.get_max_value()

Purpose Set and get the maximum number of available resources of a semaphore

Category Predefined method of semaphore struct

Syntax semaphore.set_max_value(new_value: int)
semaphore.get_max_value(): int

Parameters
semaphore An expression of type semaphore or rdv_semaphore.

new_value An expression of type signed int.
498 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
31.2.5 lock() and release()

locker is a predefined struct with two predefined methods: lock() and release(). These methods are TCMs.
Once a field is declared to be of type locker, that field can be used to control the execution of TCMs by
making calls from the TCMs to locker.lock() and locker.release().

If locker.lock() is called from multiple TCMs, the first TCM gets the lock and can continue execution. The
execution of the other TCMs is blocked. Thus, any resources that are shared between the TCMs are only
available to the TCM that gets the lock.

When a TCM calls release(), control goes to the next TCM that is waiting on the locker. The order in which
the lock is granted is by a FIFO order of client lock() requests.

An e program uses non-preemptive scheduling, which means thread execution is interrupted only when the
executing thread reaches a wait, sync, TCM call, release() lock() request, or buffer port operation [get() and
put()]. This has two implications:

a) Locks are not needed unless the code to be executed between the lock() and the release() contains a
wait, sync, TCM call, or buffer port operation.

b) Code that is used by multiple threads and is not time-consuming can be put in a regular method, so
no locks are needed.

The following restrictions also apply:

— Calling lock() again before calling release() results in a deadlock. The TCM attempting to acquire
the locker stops and waits for the locker to be released. This TCM never executes because it cannot
release the locker. Naturally, none of the other TCMs that wait for the locker are executed.

— The release of the locker shall be explicit. If the locking thread ends (either normally or abnormally)
without a call to release(), the locker is not released. Again, none of the other TCMs that wait for the
locked are executed.

Syntax example:

lckr.lock();

lckr.release()

Purpose Control access to a shared resource

Category Predefined TCM of locker struct

Syntax locker-exp.lock()
locker-exp.release()

Parameters locker-exp An expression of type locker.
Copyright © 2015 IEEE. All rights reserved. 499

IEEE
Std 1647-2015 IEEE STANDARD
500 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
32. Intellectual property protection

This clause describes intellectual property (IP) protection, which aims to shield valuable information
contained in an IP without sacrificing the usability of the IP as a whole. A commonly used method is to
transform the clear-text code contained in the IP to a cryptographic representation in order to prevent
unauthorized use, review, or modification. This method can be used to allow controlled access to the IP in its
encrypted form within an IEEE 1647 compiler.

32.1 Encryption

An IP provider will therefore need to encrypt any sensitive and commercially valuable information
contained in the IP before making it available. As the IEEE 1647 LRM does not provide for language
constructs that facilitate this process, an IEEE 1647 compiler must provide a facility for encrypting the code
contained in the IP.

The IP provider will need to encrypt the IP using the same tool that the end user will use to decrypt it (see
Figure 21). This is necessary in order to ensure that the integrity of the encrypted information within the IP
is not compromised. The IP provider will therefore be required to produce separate versions of the IP for any
given IEEE 1647 compiler implementation.

32.2 Decryption

An IEEE 1647 compiler must also be able to decrypt the encrypted IP that was produced with its encryption
facility, in order for that IP to be usable (see Figure 22). The compiler will therefore derive the entire source
IP internally during this process, but external access to the originally encrypted information must be
restricted for IP protection purposes. As a result, an end-user or higher level tool will still be able to use the
IP but will not have access to review or modify any encrypted information without the IP provider's consent.

Figure 21—IP encryption flow

IEEE 1647
Source
Files

IEEE 1647
Encrypted
Files

IEEE 1647
Non-encrypted
Files

Source IP Encrypted IPIEEE 1647
Compiler

Private
Encryption
Facility
Copyright © 2015 IEEE. All rights reserved. 501

IEEE
Std 1647-2015 IEEE STANDARD
32.3 Reflection API

An IEEE 1647 compiler must export information about whether a module was defined in an encrypted file,
by setting the result of the rf_module.is_encrypted() method in the reflection API accordingly. However,
since any API can be overridden by the user, such methods should not be used to enforce IP protection
features. Furthermore, the compiler must not expose the structure of the encrypted code through general
reflection queries, as it may contain sensitive and commercially valuable IP information.

32.4 Encryption targets

While encrypting IEEE 1647 code is critical for IP protection, it can result in significant IP integration and
support overhead. Since the end user does not have access to the entire code in the IP, less debugging
information is available. Moreover, modifications and extensions to the IP are more difficult or even
impossible due to the limited information available to the end user. A set of encryption guidelines and
recommendations aimed to minimize this overhead, while providing for reasonable IP protection, can be
found in Annex F.

IEEE 1647
Encrypted
Files

IEEE 1647
Non-encrypted
Files

Encrypted IP IEEE 1647
Compiler

IEEE 1647
Encrypted
Files

IEEE 1647
Non-encrypted
Files

IEEE 1647
Source
Files

Source IP
(internal view)

Encrypted IP
(external view)

Figure 22—IP decryption flow
502 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Annex A

(informative)

Bibliography

Bibliographical references are resources that provide additional or helpful material but do not need to be
understood or used to implement this standard. Reference to these resources is made for informational use
only.

[B1] Coding examples are available from the IEEE 1647 Working Group Web site.12

[B2] Cormen, T., et al., Introduction to Algorithms. MIT Press, 2009.

[B3] Iman, Sasan, and Joshi, Sunita, The e Hardware Verification Language. Springer, 2004.

[B4] Palnitkar, Samir, Design Verification with e. Prentice Hall PTR, 2003.

[B5] Piziali, Andrew, Functional Verification Coverage Measurement and Analysis. Springer Science+
Business Media, LLC, 2008.

[B6] Robinson, David, Aspect-Oriented Programming with the e Verification Language: A Pragmatic
Guide for Testbench Developers, First Edition. Morgan Kauffman, 2007.

[B7] Wall, L., Christiansen, T., and Orwant, J., Programming Perl, Third Edition. O’Reilly, 2000.

12Available at http://www.ieee1647.org/references.html.
Copyright © 2015 IEEE. All rights reserved. 503

IEEE
Std 1647-2015 IEEE STANDARD
504 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Annex B

(normative)

Source code serialization

This annex addresses two questions:

a) How is the source code of a program serialized?

b) How does this affect the semantics of the definition and use of named entities, macros, and
preprocessor directives?

The definitions here capture the language rules that correspond to existing practice and code base.

— B.2 gives the first step in answering the preceding question b, by considering the simplest case where
a module with no import statements is loaded.

— B.3 describes the abstract considerations of import statement semantics and their effect on definition
order and use scopes.

— B.4 addresses question a by describing the concrete semantics of import statements.

A whole new complication is brought about by the question of visibility scopes of preprocessor rules, which
are identifiers declared by #define statements. These can be empty (as compilation flags) or have
replacement strings (constants). This issue is addressed both in itself, and also because it has direct bearing
on the load order, since import statements can themselves be inside a #ifdef scope. The issue of
preprocessor directive visibility rules is addressed in B.5.

B.1 Ordering problem in e

From a structural viewpoint, a program consists of definitions of named entities (types, fields, methods, etc.)
in terms of other entities. Since a program is analyzed in a serial manner, there is the question of how to
reference a named entity relative to where it is introduced.

In e, the way source code is serialized in its analysis has much farther reaching consequences. This is mainly
due to its aspect-oriented (AO) nature, by which the components of a system are described gradually. Since
the definition of named entities can be spread between different locations in the source code, the order of
analysis of the code not only determines the semantic correctness of the code, but it also affects the behavior
of the program. For example, when fields are added to a struct in different extensions, the analysis order of
the extensions determines how a struct object is packed or unpacked. An even more typical example is the
way the analysis order determines how a method actually runs if it has different extensions in different files.

As a part of the AO modeling paradigm, files are given an important role in the structure of a system. They
are treated in e as modules; thus, the terms source file and module are used interchangeably henceforth. This
is unlike other languages, in which the separation of code into different files either carries no significance at
all (as in C) or else corresponds exactly to the distribution of code between classes (as in Java). So in e, the
question of serialization becomes the question of how to order source files or modules in the process of
analysis.

Another peculiarity of e, on which the ordering question has similar bearing, is the ability to extend and
modify the syntax language by the program with macros. Here, too, the order can determine whether such
modification applies in some context, and thus, affects the correctness of the program or even its behavior.
Copyright © 2015 IEEE. All rights reserved. 505

IEEE
Std 1647-2015 IEEE STANDARD
Two other e features are directly connected to order semantics. One is the ability to forward-reference an
entity within the module in which it is introduced. This ability is extended to address cyclic dependencies
between modules. The other is the e preprocessor-like sub-language. The preprocessor rules determine the
load order and are actually analyzed by a separate phase according to C-style serialization.

B.2 Within a single module

Consider a case where a single module with no import statements is loaded. Both entities that are declared
by the current module and entities that were declared by modules already loaded by previous load
commands need to be considered here.

B.2.1 Use scope

The rules on the use of entities within a single module in e are more liberal than those of other languages.
Obviously, entities declared in modules already loaded can be referred to anywhere in the current module.
However, an entity declared in the module itself can be used anywhere within that module. For example:

— A struct can have a field of a struct type declared further down in the source file.

— Constraints can be put on a field that is not declared yet.

— An enum item can be presupposed by the implementation of a method and actually be added to the
enum type later in the file (by an extend statement).

— A when subtype can be declared on a field that is actually declared for that struct later in the file.

This permissive policy takes care of the problem of mutually dependent definitions. It releases the language
from the need for forward declaration constructs, as is common in other languages. At the same time, it
imposes a relaxation algorithm in resolving the references of named entities. References of named entities
are resolved in a serial order, which is just the order of the code, but in as many iterations as needed. (A
second iteration might not be enough for the resolution of types, since new fields can be introduced under
when constructs at any depth of nesting and other when subtypes might depend on them as well.) This
iterative resolution process guarantees that whenever there is a resolution, it shall be found.

A further rule is ambiguities shall not arise from forward references. Obviously, when two entities with the
same names are declared in the same module, only the second one is reported as an error. More importantly,
in the resolution of short name when subtype references (such as, “big packet” as opposed to “big size
packet”), a declaration of a new field or the addition of a new enum item shall not result in an ambiguity of
code in previous lines of the same module.

Unlike named entities, which can be forward-referenced anywhere in the same module, macros apply to
code in the same module from the point of definition onwards. Macros cannot be forward-referenced, since
they are purely syntactic rules; there is no entity they introduce that can be referenced.

B.2.2 Definition order

Some named entities in e are extensible in the sense they can be declared and defined initially at one place in
the program’s source code, and then their definition can be extended in other places. Extensible entities in e
are structs, methods, events, and enum types. The initial definition, and each of the extensions of such
entities, is given by some single linguistic construct (e.g., in the case of structs, the struct and extend
statements). The part of the definition given by a single construct is called a layer of the definition. More
than one layer of the definition of the same entity can be located in the same module and different layers can
be located in different modules.
506 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
The order of layers in the definition of an entity counts for more than just resolution of reference, so here the
straightforward rule applies. A new layer that is added in the module currently loading to an entity, which
was declared previously, comes after any layers in the modules already loaded. The order of layers of the
same entity in the currently loading module depends on the order of the constructs’ appearance in the source
file. Here, as opposed to the use scope of names, the declaration shall appear before any extension, even
within the same module. For example, a struct type can be forward-referenced in the declaration of a
variable, but the struct cannot be extended or inherited before the struct itself is declared.

Following are a few examples of the significance of order within definition layers:

— When a method is extended twice in the same module with the is also modifier, the extension that
appears last in the source file shall run last when the method is called.

— If a method declared by previous modules is extended with the is first modifier, this code shall run
before any other, including any layers of that method defined by a super-type of that struct.

— When enum items are added to an enum type by two different statements (a type and an extend
statement) the values of the last items added take the subsequent integer values (unless they are
explicitly assigned).

B.3 Importing and dependency

Definitions in one module make use not only of entities defined within it or in e’s core library, but also of
entities declared in other modules. The import statement declares that one module relies on the declarations
of another module. This statement guarantees the imported module is loaded before (or along with) the
importing module. Thus, an import statement declares direct dependency between two modules, and
dependency, in general, is the transitive closure of the direct dependency relation.

The dependency relation is not necessarily asymmetric. Sometimes the definitions in one module
presuppose declaration of another module and vice versa. In such cases, whichever way the definitions in
these modules are serialized, a forward reference occurs in the use of some named entity across the module
boundary. Therefore, in cyclic dependencies, the code is actually treated as if it were all located in a single
module in the sense previously described, namely being a single use scope of entities. In other words,
entities declared in any of the mutually dependent modules can be used anywhere within these source files.
Therefore, code in modules that depend on each other need to be serialized so no other module comes in
between them. So, cyclic dependencies affect load order.

These considerations call for the introduction of a generalized concept—a dependency unit. Dependency
units are single modules or sets of mutually dependent modules (identified by import statements). One
dependency unit depends on another when a module of that dependency unit imports a module of the other
dependency unit. Unlike dependency between modules, the dependency relation between dependency units
is asymmetric and can be sorted topologically. Rephrasing the semantics of an import statement: it
guarantees the imported module is loaded previously or in the same dependency unit as the importing
module.

There are three requirements on the load order of modules, as follows:

a) If module a depends on module b, but b does not depend on a, module b loads before module a.

b) Modules in a single dependency unit load in consecutive order. More precisely, when modules a and
b depend on each other and module c loads between them, then modules a and c also depend on each
other.

c) Whenever possible, the order of import statements in the source code needs to be taken into
consideration. Module a should load before module b if both are imported by module c and the
import statement of a appears in the source code before the import statement of b. This is true only
Copyright © 2015 IEEE. All rights reserved. 507

IEEE
Std 1647-2015 IEEE STANDARD
when module c is the first module that imports module b and circular dependencies do not require
otherwise.

These requirements can be taken as the user-view definition of the load order determined by import
statements. Any ordering of modules that satisfies requirements a) and b) is, in principle, a legitimate
implementation of the semantics of the import statement from the user’s viewpoint. The extent to which
consideration c) plays a role in the definition, however, remains open.

In particular, rules a) and b) do not fully determine the load order of modules within a dependency unit, on
the one hand, or the order between unrelated dependency units, on the other. Consideration c) might reduce
the indeterminacy, but still leave room for a different ordering.

Ideally, this is not something the user needs to know. The correctness and behavior of a program that is well
designed in terms of aspect orientation should not be affected by the different sorting of its dependency unit
or ordering of modules within a dependency unit. However, to guarantee used entities are in scope,
explicitly declare any dependencies by using import statements.

B.4 Concrete load order

The module that is explicitly mentioned in the load command (or equivalently a single compilation) is called
the root module of that load. The set of modules that are loaded by a single load command is called a load
cluster. These are all the modules upon which the root module depends, except those that are already
loaded. The order for loading modules during the execution of the load command is uniquely determined by
the code in the files of the load cluster. Modules that are already loaded are ignored in this process, since
their source files might not even be available.

Consider a directed graph, where the modules of some load cluster are nodes and the import statements
correspond to edges from the importing module to the imported one. This is called the import graph for a
given root module. Here, the description and correctness proof of the strongly connected component (SCC)
algorithm from Introduction to Algorithms [B2] is presupposed and the same terminology is being
employed.

a) Discovery time and finish time are added to each node in the import graph using a simple DFS. The
algorithm starts from the root module, where the exploration order of modules adjacent to a given
module corresponds to the order of the import statements in the source file [consideration c) in B.3].

b) The SCCs of the graph, which correspond to dependency units, are found. Collapsing all nodes in a
SCC to a single node and keeping all edges between SCCs leaves a directed acyclic graph (DAG),
which can be called the SCC-DAG.

Load ordering according to any topological sort on the SCC-DAG yields requirement a) (in B.3),
and any consequent order within each SCC is just requirement b) (in B.3).

c) The load order of the whole load cluster is determined by using a DFS on the SCC-DAG. This DFS
starts from the SCC of the root module and explores new SCCs in the following order: It starts from
edges that originate from nodes with the greatest finish time and proceeds to edges originating from
nodes in a descending finish time order. The edges originating from the same node are traversed in
an order corresponding again to the order of the import statements in the module. After allocating
load time to all dependent SCCs, the order of the modules inside the current one can then be deter-
mined, which is by descending finish time.

Now, the following definitions also serve to describe the algorithm in pseudo-code:

IG is an import graph.

V[IG] is the set of all modules in the import graph—the load cluster.
508 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
root[IG] is the root module of the load cluster.

Adj[u] is the set of all modules imported by module u.

d[u] and f[u] are respectively the discovery time and finish time of vertex u calculated by the DFS on
the import graph.

SCC[u] is the strongly connected component to which vertex u belongs, as is calculated by the SCC
algorithm.

Plus, an array color (with the usual meaning) is used for each vertex and a global variable time:

Calculate-Load-Order(IG)

for each u ∈ V[IG] do
color[u] ← WHITE

time ← 0
Visit-SCC(SCC[root[IG]])

Visit-SCC(c)

color[c] ← GRAY
for each u ∈ c in descending f[u] order do

for each v ∈ Adj[u] (in the import statement order) do
if color[SCC[u]] = WHITE

Visit-SCC(SCC[u])
for each u ∈ c in descending f[u] order do

load-time[u] ← time ←time+1
color[c] ← BLACK

The resulting load order is given in the load-time array, where each module has a unique index in the load
process. Thus, the order can be determined: module u loads after module v iff load-time[u] < load-time[v].

NOTE 1—If there are no circular dependencies, each SCC consists of just one module. The load order in this case is
simply the ascending order of the finish time, since the algorithm runs just like a simple DFS.

NOTE 2—A circular dependency breaks this intuitive ordering, since the nodes from one SCC to another are not
explored in an order corresponding to that of the import statements of the corresponding source file. Specifically,
adding an import statement at some file in a big design might affect the load order globally and not just for modules
dependent on it.

B.5 Visibility scope of preprocessor directives

This subclause describes the issue of preprocessor directive visibility rules.

B.5.1 Overview

The #define statement in e, along with #ifdef, #ifndef, #else, and #undef, is intended to be used in a way
similar to that of C preprocessor. This makes the visibility scope of #define rules very different from “real”
e entities—both named entities and macros.

So far, only the order that figures in the use of named entities and macros has been discussed. This can be
called the load order to distinguish it from the different conception of ordering that is involved in
determining the visibility scope of #define statements. This order is given by treating the import statements
just like a C preprocessor treats the #include directive. A #define statement that appears before an import
statement is visible by, or applies to, all the code in the imported file (unless that module was loaded
previously), although in terms of load order the declaration of the #defined name actually comes after it.
This order is called the include order.
Copyright © 2015 IEEE. All rights reserved. 509

IEEE
Std 1647-2015 IEEE STANDARD
In general, the same source files are analyzed by two separate phases. The preprocessing phase is
responsible for the discovery of the dependency relation. It figures out the load cluster and the order within
it. It also executes the preprocessor directives, but does so according to the include order, as the load order
is not yet known.

The second phase is the actual parsing of the full e code and its analysis. This phase imposes a serialization
on the source code that can differ from the first phase. This discrepancy between the scopes of applicability
of different statements in e has some unintuitive consequences that are demonstrated in the following
subclauses.

B.5.2 Cases where order differs

There are two patterns where the include order is different from the load order, and so, the scope of
application of the #define statements is reversed.

B.5.2.1 Case 1

The simplest case occurs where the cyclic import rule [requirement b) in B.3] overrides the import
statement order in the source file [requirement c) in B.3], as shown in Figure B.1.

Here module b loads before module a, even though a is discovered first in the DFS. Definitions in b are
available in a if they obey load order, but not if they obey include order, and vice versa.

B.5.2.2 Case 2

This case (see Figure B.2) shows the effect of e’s concrete ordering (see B.4), which is not inherent in the
abstract requirements.

a.e
import top

b.e

top.e
import a;
import b

Figure B.1—Overriding the import statement
510 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Here, module a was discovered before module b, but loads after it. In this case, too, definitions in b are
available in a if they obey load order, but not if they obey include order. What is interesting about this
example is the fact that the two modules whose ordering reverses have no import statements (or at least
none relating to the cycle) and so they have no trace of cyclic dependency.

B.5.3 Examples

The following examples demonstrate the surprising consequence of B.3, B.4, and B.5.1.

Example 1

This uses Case 1 (see B.5.2.1) to show how the order of definition and use of the preprocessor versus proper
e is reversed.

top.e

<’
import a;
import b
‘>

a.e

<’
import top;
#define A_SCANNED;
type t_a : t_b // ’t_a’ definition presupposes ’t_b’ definition
’>

b.e

<’
#ifdef A_SCANNED {
type t_b : int // ’t_b’ definition presupposes the C-like
 // define ’A_SCANNED’
}
’>

b.e

top.e
import a;
import c

c.e
import b;
import top

a.e

Figure B.2—Ordering reversals without cyclic dependencies
Copyright © 2015 IEEE. All rights reserved. 511

IEEE
Std 1647-2015 IEEE STANDARD
In this test case, it might seem that whichever way the code in modules a and b are ordered, module a will
fail to load. But it does load, since the #define directive of A_SCANNED precedes the #ifdef statement
according to include order, even though the type declaration of t_b precedes its use in the declaration of
t_a according to the load order. If module a did not import module top, the load order falls back to the
#include order and the code fails to load.

Example 2

This uses Case 2 (see B.5.2.2) to show how the definition of syntactic rules with e macros applies according
to the load order and how this can be made to stand in reverse order compared to a preprocessor C-like
define statement.

a.e

<'

#define A_SCANNED;

sys_add_field foo

'>

b.e

<’

#ifdef A_SCANNED {

 define <sys_add_field’statement> "sys_add_field <name>" as {

 extend sys {

 <name> : int

 }

 }

}

’>

c.e

<'

import b;

import top

'>

top.e

<'

import a;

import c

'>

This also loads perfectly well. But, if the cyclic dependency between modules top and c is removed (by
commenting out the second line in c.e), the code fails to load because the load order between modules a
and b reverses.
512 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Annex C

(informative)

Comparison of when and like inheritance

There are two ways to implement object-oriented (OO) inheritance in e:

— Like inheritance is the classical, single inheritance familiar to users of all OO languages.

— When inheritance is a concept introduced by e. It is less familiar initially, but lends itself more easily
to the kind of modeling done in e.

This annex discusses the pros and cons of both of these types of inheritance and recommends when to use
each of them.

C.1 Summary of when versus like

In general, “when” inheritance should be used for modeling all DUT-related data structures. It is superior
from a knowledge representation point of view and from an extensibility point of view. When inheritance
can

— explicitly reference a field that determines the when subtype.

— create multiple, orthogonal subtypes.

— use random generation to generate lists of objects with varying subtypes.

— easily extend the struct later.

Although like inheritance has more restrictions than when inheritance, it is recommended in some special
cases because of the following:

a) Like inheritance is somewhat more efficient than when inheritance.

b) Generation of objects that use like inheritance can also be more efficient.

C.1.1 A simple example of when inheritance

A when subtype of a generic struct can be created using any field in the struct that is a Boolean or
enumerated type. This field, which determines the when subtype of a particular struct instance, is called the
when determinant.

Example 1

In the following example, the when determinant is legal.

struct packet {
 legal : bool;
 when legal packet {
 pkt_msg() is {
 out("good packet")
 }
 }
}

Copyright © 2015 IEEE. All rights reserved. 513

IEEE
Std 1647-2015 IEEE STANDARD
NOTE—The following syntax is used in this document because it looks closer to the “like” version:

extend legal packet {...}

This syntax is exactly equivalent to the when construct:

extend packet {when legal packet {...}}

Example 2

The following example shows a generic packet struct with three fields—protocol, size, and
data—and an abstract method show(). In this example, the protocol field is the determinant of the
when version of the packet, i.e., this field determines whether the packet instance has a subtype of IEEE,
Ethernet, or foreign. In this example, the Ethernet packet subtype is extended by adding a field
and extending the show() method.

type packet_protocol : [Ethernet, IEEE, foreign];

struct packet {
 protocol : packet_protocol;
 size : int [0..1k];
 data[size] : list of byte;
 show() is undefined // To be defined by children
};

extend Ethernet packet {
 e_field : int;
 show() is {
 out("I am an Ethernet packet")
 }
}

Example 3

Of course, it is possible for a struct to have more than one when determinant. In the following example, the
Ethernet packet subtype is extended with a field of a new enumerated type, Ethernet_op.

type Ethernet_op : [e1, e2, e3];

extend Ethernet packet {
 op : Ethernet_op
};

extend e1 Ethernet packet {
 e1_foo : int;
 show() is {
 out("I am an e1 Ethernet packet")
 }
}

Because it is possible for a struct to have more than one when determinant, the inheritance tree for a struct
using when inheritance consists of any number of orthogonal trees, each rooted at a separate enumerated or
Boolean field in the struct. Figure C.1 shows a when inheritance tree consisting of three orthogonal trees
rooted in the legal, protocol, and op fields.

NOTE—The when subtypes that have not been explicitly defined, such as IEEE packet, exist implicitly.
514 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
C.1.2 A simple example of like inheritance

A like child of a generic struct can be created by using the like construct. In the following example, a child
Ethernet_packet is created from the generic struct packet and is extended by adding a field and
extending the show() method.

Example

struct packet {
 size : int [0..1k];
 data[size] : list of byte;
 show() is undefined // To be defined by children
};

struct Ethernet_packet like packet {
 e_field : int;
 show() is {
 out("I am an Ethernet packet")
 }
}

In the same way, an IEEE_packet can be created from packet using like:

struct IEEE_packet like packet {
 i_field : int;
 show() is {
 out("I am an IEEE packet")
 }
}

Or an e1_Ethernet_packet can be created from Ethernet_packet using like inheritance:

packet

e1 e2 e3

op

IEEE Ethernet foreign

protocol

legal

FALSE

TRUE

Figure C.1—When inheritance tree for packet struct subtypes
Copyright © 2015 IEEE. All rights reserved. 515

IEEE
Std 1647-2015 IEEE STANDARD
struct e1_Ethernet_packet like Ethernet_packet {
 e1_foo : int;
 show() is {
 out("I am an e1 Ethernet packet")
 }
}

In contrast to the when inheritance tree, the like inheritance tree for the packet type is a single tree where
each subtype needs to be defined explicitly, as shown in Figure C.2. This difference between the like and
when inheritance trees is the essential difference between like and when inheritance.

C.2 Advantages of using when inheritance for modeling

While the like version and the when version look similar, and the like version might seem more natural to
those familiar with other OO languages, the when version is much better for the kind of modeling typically
done in e. There are several reasons for this, as follows:

— Determinant fields can be explicitly referenced.

— Multiple orthogonal subtypes can be used.

— Lists of objects with varying subtypes can be used.

— The struct can be extended later.

— A new type can be created by simple extension.

C.2.1 Determinant fields can be explicitly referenced

In the when version, the determinant of the when is an explicit field. In the like version, there is no explicit
field that determines whether a packet instance is an Ethernet packet, an IEEE packet, or a foreign packet.
The explicit determinant fields provide several advantages, as follows:

— Explicit determinant fields are more intuitive.

Fields are more tangible than types and correspond better to the way hardware engineers perceive
architectures. Having a field whose value determines what fields exist under it is familiar to
engineers. (It is similar to C unions, for example.)

— Attributes of determinants that are physical fields can be used.

If the determinant is a physical field, it might be desirable to specify its size in bits, the mapping of
enumerated items to values, where it is in the order of fields, and so on. These things are done very
naturally with when inheritance, because the determinant is just another field. For example:

packet

IEEE_packetEthernet_packet

e1_Ethernet_packet

Figure C.2—Like inheritance tree for packet struct subtypes
516 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
%protocol : packet_protocol (bits:2)

— With like inheritance, a field can be defined similarly to the when determinant, but it also needs to be
tied into the type with code similar to the following:

var pkt : packet;

case protocol {
 Ethernet {var epkt : Ethernet packet; gen epkt; pkt = epkt};
 IEEE {var ipkt : IEEE packet; gen ipkt; pkt = ipkt}
}

Plus, there is an added inconvenience of having to generate or calculate protocol separately from the
rest of the packet.

— The when determinant can be constrained.

Using when inheritance, it is very natural to write constraints like these in a test:

keep protocol in [Ethernet, IEEE];
keep protocol != IEEE;
keep soft protocol == select {
 20 : IEEE;
 80 : foreign
 };
keep packets.is_all_iterations(.protocol, ...)

Constraining the value of fields in various ways is a main feature of generation. Doing the same with
like inheritance is more complicated. For example, the first constraint above could be stated
something like this:

keep me is an Ethernet_packet or me is an IEEE_packet
 // This pseudocode is not a legal constraint specification

However, constraints such as this can become quite complex in like inheritance. Furthermore, there
is no way to write the last two constraints.

C.2.2 Multiple orthogonal subtypes can be used

Suppose each packet (of any protocol) can be either a normal (data) packet, an ack packet, or a nack
packet, except that foreign packets are always normal.

Example

type packet_kind: [normal, ack, nack];

extend packet {
 kind : packet_kind;
 keep protocol == foreign => kind == normal
};

extend normal packet {
 n1 : int
}

How can this be done in like inheritance (disregard for now the issue of extending the packet struct later)?

a) Assuming the requirement previously stated is known in advance and should be modeled using like
inheritance in the best possible way:
Copyright © 2015 IEEE. All rights reserved. 517

IEEE
Std 1647-2015 IEEE STANDARD
struct normal_Ethernet_packet like Ethernet_packet {
 n1 : int
};

struct ack_Ethernet_packet like Ethernet_packet { ... };
struct nack_Ethernet_packet like Ethernet_packet { ... };
struct normal_IEEE_packet like IEEE_packet { ... }

This requires eight declarations.

b) Then, the Ethernet_op possibilities need to be taken into account:

struct ack_e1_Ethernet_packet like e1_Ethernet_packet { ... }

This works, but requires ((N1 * N2 * ... * Nd) − IMP) declarations, where d is the number
of orthogonal dimensions, Ni is the number of possibilities in dimension i, and IMP is the number
of impossible cases.

c) Another issue is how to represent the impossible cases.

Multiple inheritance would solve some of these problems, but would introduce new complications.

With when inheritance, all the possible combinations exist implicitly, but they do not have to be enumerated.
It is only when something needs to be specified about a particular combination that it is enumerated, as in
the following examples:

extend normal IEEE packet { ni_field : int }; // Adds a field
extend ack e1 Ethernet packet { keep size == 0 } // Adds a constraint

All in all, the when version is more natural from a knowledge representation point of view, because of the
following:

— It is immediately clear from the description what goes with what.

— Types only need to be specified if there is something to say about them.

C.2.3 Lists of objects with varying subtypes can be used

The job of the generator is to create (in this example, packet instances). By default, all possible packets are
generated. In both versions, a list of packets is created, e.g.,

extend sys { packets : list of packet }

However, the generator should only generate fully instantiated packets. In the when version, that happens
automatically—there is no other way.

With like inheritance, when a parent struct is generated, only that parent struct is created; none of the like
children are created. For example, the following gen action always creates a generic packet, never an
Ethernet packet or an IEEE packet:

pkt : packet;
gen pkt

Thus, in practice, only fields whose type is a leaf in the like inheritance tree should be generated, e.g.,

p : e1_Ethernet_packet;
gen p
518 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
C.2.4 The struct can be extended later

There are some restrictions on extending structs that have like children, however; see 6.3 for more details.

C.2.5 A new type can be created by simple extension

The following example extends the packet_protocol type and adds new members to the packet
subtype:

extend packet_protocol : [brand_new];

extend brand_new packet {
 ...new struct members...
}

The old environment is automatically able to generate the brand_new packets. With like inheritance, all
instances of the procedural generation code need to be identified first and then a new case needs to be added
to the case statement.

C.3 Advantages of using like inheritance

Like inheritance is a shorthand notation for a subset of when inheritance. It is restricted, but more efficient.
Like inheritance often has better performance than when inheritance for the following reasons:

— Method calling is faster for like inheritance.

— When generation is slower than like generation. This can be important if a large part of the total
runtime is attributable to generation.

— When inheritance uses more memory, because all of the fields of all of the when subtypes consume
space all the time.

NOTE—If this becomes a problem in a particular design, there is a workaround. Rather than having many separate fields
under the when, put all the fields into a separate struct and put a single field for that struct under the when. For example,
the following coding style could use a lot of memory if there are many fields declared under the Ethernet packet subtype:

type packet_protocol : [Ethernet, IEEE, foreign];

struct packet {
 protocol : packet_protocol;
 when Ethernet packet {
 e_field0 : int;
 e_field1 : int;
 e_field2 : int;
 e_field3 : int;
 // ...
 }
}

A more efficient coding style follows, where a single field is declared under the Ethernet_packet subtype.

type packet_protocol : [Ethernet, IEEE, foreign];

struct Ethernet_packet {
 e_field0 : int;
 e_field1 : int;
 e_field2 : int;
 e_field3 : int;
Copyright © 2015 IEEE. All rights reserved. 519

IEEE
Std 1647-2015 IEEE STANDARD
 // ...
};

struct packet {
 protocol : packet_protocol;
 when Ethernet packet {
 e_packet : Ethernet_packet
 }
}

C.4 When to use like inheritance

Like inheritance should be used for modeling only when the performance win is big enough to offset the
restrictions, e.g.,

— For objects that use a lot of memory, such as a register file, where the number of distinct registers is
very large, and for each such register a field of the register type needs to be generated, such as,
pc: pc_reg, psr: psr_reg, and so on.

— For objects that do not require randomization, such as a scoreboard or a memory.

Like inheritance should also be used for non-modeling, programming-like activities, such as implementing a
generic package for a queue.
520 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Annex D

(normative)

Name spaces

This annex defines an extension to the encapsulation scheme—the scoping of names. The naming problem
in e is addressed by using packages as name spaces for types. This overloading of the notion of a package is
natural and common in other languages.

D.1 The naming problem in e

Currently, all types and structs in e share one global name space, in which every name needs to be unique.
This problem is more acute in e than in other programming languages, because there are no separate binary
libraries or object files. As verification projects grow in size and depend more on components developed
externally, the risk of name collisions increases. Such name clashes can be hard to work around, especially
when they occur during integration of code from different parties.

Fields, methods, and events shall have a unique name in the context of their structs, including those added in
distant extensions of the struct. Similarly, enum items shall have a unique identifier within a single enum
type, even when they are added by later extensions. Name collisions might occur also for these entities,
although they are much less likely.

In e, this problem is addressed by using a naming convention that assigns a globally unique name to every
type and a unique name to every struct member or enum item in extensions outside of the declaring package.
The unique name consists of the simple name of the entity prefixed by the package name, e.g., the unit that
represents a monitor in the vr_xbus package is named vr_xbus_monitor_u.

The problem with this convention is most names become very long; so the code can become cumbersome
and unreadable. The readability of the output can also be impacted. Another problem is the convention is not
enforced by an e compiler; thus, it becomes the developer’s responsibility not to pollute the global name
space with unqualified names.

D.2 Resolution overview

This material previews the resolution for using name spaces in e.

D.2.1 Packages as name spaces

Packages, being the major encapsulation vehicle in e, are the natural candidates for serving as name spaces.
As in the e naming convention, package names serve to qualify type names declared within their context.
But unlike the e naming convention, this solution involves full linguistic support for name qualification. The
support consists of syntactic differences between qualified and unqualified type names, and semantic rules
for resolving the reference of unqualified names.

D.2.2 Name spaces for other named entities

According to e, fields, methods, events, and enum items shall qualify their names with the package name
only when declared in extensions outside the package where their context type is declared. These cases are
Copyright © 2015 IEEE. All rights reserved. 521

IEEE
Std 1647-2015 IEEE STANDARD
relatively rare, so keeping to the convention does not affect the readability of the code significantly.
Furthermore, even when the convention is not strictly kept, the probability of a name collision is low. On the
other hand, having packages serve as name spaces for struct members or enum items is unintuitive and hard
to define. Therefore, the name space scheme described here is restricted to types only.

D.2.3 Name resolution

Types can be referenced by their given name or a qualified name. Referencing a type by a qualified name
succeeds given a type by that name exists in the right package (in code that is already loaded). As is required
by the compatibility constraint, unqualified references succeed also if only one type by that name exists in
some package. In the case of unqualified references where more than one type by the same name exists in
different packages, the compiler tries to resolve the reference according to set priorities. A type declared
within the context package has the highest priority. Public types declared in packages used by the context
package are next in priority. Only then follow all the rest, i.e., types in packages not used by the context
package. See also D.3.

D.2.4 The use relation

import statements are used to declare dependencies between different parts of a design; they determine if a
package uses another package. A package uses another package when one of its modules directly imports
one of the other package’s modules. An important consequence of this definition is the use relation is
defined in terms of packages, which puts more weight on the package as a whole. This goes together well
with the idea of using packages as encapsulation units and name spaces as encapsulation mechanisms. The
downside of this is every inter-package import statement affects the name resolutions of the whole package.
This may force unnecessary qualification of names in the modules. For more details, see D.4.

D.2.5 Reserved type names

One set of types in e is considered essential or core, e.g., int, string, and sys. No reasonable e program
would assign the name of any of those types to a user-defined type. Core types are declared under a special
package called e_core. Within the name space model, e_core type names are reserved. Unlike other type
names, they cannot be used in another package. For more information, see D.3.3.

D.3 Qualified and unqualified names

Types (scalars or structs) declared inside a package belong to the name space of that package. Type names
shall be unique in the context of the package, but types in different packages can have the same name.
Fields, methods, and events shall have unique names within their context struct even if they are declared in
extensions in different packages. The same goes for enum items in the context of the enum type. Many
other built-in derivatives of explicitly defined types, such as lists and size-modified scalars, are available to
a program. These are not associated directly with a package, but rather through their explicit base type.

D.3.1 Name rules

— An explicitly declared type can be referenced using an unqualified name (an e identifier) or a
qualified name in the form:

id :: id

The second identifier is the type’s given name, and the first is the package in which it was declared.
The double colon (::) is called the scope operator.
522 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
NOTE—The scope operator does not relate directly to built-in derivatives of a type. Rather, it relates to the explicitly
declared type that serves as the base for the derivatives. For example, the qualified name of list of packet would
be list of vr_xbus::packet and not vr_xbus::list of packet. Similarly, in the case of when
qualifiers, big corrupt packet would be big corrupt vr_xbus::packet.

— Only an unqualified name can be used in the declaration of a new type (a type, struct, or unit
statement).

— In any other construct where type names matter, both qualified and unqualified names are
syntactically legal.

— Whether the module is associated explicitly with a package (by a package statement) or implicitly
with package main (if there is no package statement) is irrelevant to naming, i.e., types declared in
modules that do not explicitly associate themselves with a specific package are part of the name
space of package main.

— The names of types declared in the package e_core are reserved and cannot be used in the
declaration of new types anywhere.

D.3.2 Type reference resolution

— A qualified name always fully determines the reference. If there is no type by the given name in the
given package, a type not found error is issued.

— The reference of unqualified names is determined on the basis of the following three priorities (listed
in order of priority):

1) A type declared within the context package

2) A public type declared in a package that is used by the context package (see D.4)

3) A public type declared in packages outside of the current context [priorities 1) and 2)]

— If more than one public type with the same name and priority is found during the search process (this
is only possible for priorities 2 and 3), then an ambiguity error is issued. In this case, the user needs
to resolve the ambiguity by qualifying the type name.

D.3.3 e_core types

The set of types declared in the built-in package e_core is privileged. Unlike all other types, the names of the
e_core types remain unique, even if they have been added by user extension. When a user tries to define a
type using the name of an e_core type, an error is reported. However, these names are not reserved
keywords; they can be used as identifiers in any other context (variable names, method names, and so on).

The e_core types are: int, uint, byte, bit, time, real, bool, string, set, sys, global, file, base_struct,
any_struct, any_unit, event_port, external_pointer, and untyped.

D.4 Use relation

An import statement declares the dependency of one module on another. These dependencies determine the
load order of modules in a single load command or compilation (see Annex B). As part of the name space
scheme, a use relation between packages is defined in terms of module dependency. A package uses another
package if any modules belonging to the former directly import modules belonging to the latter. As
explained in D.3.2, packages used by the current module’s package are second in the search list for type
resolution, after the context package itself, but before the rest of the packages.
Copyright © 2015 IEEE. All rights reserved. 523

IEEE
Std 1647-2015 IEEE STANDARD
D.4.1 Load clusters

The definition of the use relation requires some amplification. Packages are not necessarily loaded all at
once; new modules of already known packages can be loaded at any stage. Hence, when determining which
packages are used by a module being loaded at a given stage, some modules of a specific package may not
be taken into account.

On the other hand, it is not enough to take into account only modules that have already been loaded. A
typical case would be when the top file of package A imports the top file of package B and then imports the
rest of package A’s files. Package A’s files are actually loaded before the top file is, but would naturally
presuppose package B as being used already in their context. For this reason the concept of a load cluster is
needed.

A load cluster is the set of modules that are loaded by a single load command (or a single compilation). All
modules that together form a load cluster depend on a common root in the dependency graph—the module
explicitly mentioned in the load command. Consequently, package A uses package B at a given stage in the
load process if there is a module m of package A that is either already loaded or is part of the current load
cluster and m directly imports some module of package B.

NOTE 1—A module that is imported by a module in the current load cluster might be already loaded by previous load
commands. Whether or not it is already loaded does not affect the use relation.

NOTE 2—If more than one module is named by a load command or a single compilation (e.g., load a.e, b.e), the
two modules with all of their dependencies are treated as a single load cluster.

D.4.2 Examples

These examples demonstrate various use relationships.

D.4.2.1 Example 1

This example illustrates a simple use relation, as shown in Figure D.1.

m.e
package B

a.e
package A;
import m

test.e
import a

Figure D.1—Simple use relation
524 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Since module test.e is the one explicitly loaded, and thus is the root of the load cluster, package B uses
package A and package main (the package of module test.e) uses package B. Type references would be
resolved accordingly.

D.4.2.2 Example 2

This example (see Figure D.2) shows how the use relation takes into account the whole load cluster.

Since module b_top.e is the root of the load cluster, package B uses both package A and package C. Thus, in
resolving type names in module b.e, both A and C are name spaces with priority over packages outside of the
current context, even though this module is loaded before module b_top.e (but only after modules a.e and
c.e are imported).

NOTE — Types (like any other named entities) declared in c.e could not be used in b.e, because they are still not loaded.
Of the named entities declared within package C, only those in modules that are previously loaded can be referenced at
all, that is, with or without qualification.

D.4.2.3 Example 3

This example (see Figure D.3) shows how previous load commands affect the use relation in the current
load cluster, but not vice versa.

b.e
package B

b_top.e
package B;
import a;
import b;
import c

a.e
package A

c.e
package C

Figure D.2—Use relation for a load cluster
Copyright © 2015 IEEE. All rights reserved. 525

IEEE
Std 1647-2015 IEEE STANDARD
Module c1.e is explicitly loaded by a load command, and module c2.e is loaded by a subsequent load
command. In this case, when c1.e is loaded, package C is only using package B. Names in package B
shadow names in package A in the context of c1.e. When module c2.e is loaded, both package A and B are
used by package C; therefore, a type name declared in both A and B with the same name would be
ambiguous in the context of c2.e.

D.5 Built-in APIs

This subclause defines how name spaces can impact (using) APIs.

D.5.1 Reflection and name spaces

The reflection API deals with type names in two ways: getting a type with a given name and getting the
name for a given type. Both need to address name spaces.

rf_manager. get_type_by_name() can be used to get a representation of a type with a given name. If the
parameter uses the scope operator, the qualified name’s type is returned (or NULL if no such type exists). If
the parameter is a simple name, the requested type is determined similar to the resolution process for the
interactive scope described in D.3.2. If more than one type with the same unqualified name exists with the
same priority, NULL is returned.

The interactive context package determines which types have priority for resolution. Therefore, meta-
programming code using reflection might behave differently when the context package changes. The context
for name resolution has nothing to do with the module in which the call to get_type_by_name() actually
appears, but only with the context package when the call is executed.

The method rf_type.get_name() continues returning the type’s unqualified name. A method called
rf_type.get_qualified_name() returns a string with the fully qualified name (in :: format).

See also Clause 30.

a1.e
package A

b.e
package B;
import a1

c1.e
package C;
import b

a2.e
package A

c2.e
package C;
import a2

Figure D.3—Use relation dependencies
526 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
D.5.2 Coverage callback support

As a part of the coverage API, use of type names is made programmatically as user input (as parameters to
methods) or as output (a field set by the service).

Methods that take type names (possibly with wild cards) as parameters are
user_cover_struct.scan_cover(), covers.set_weight(), and covers.set_at_least(). The same rules for
commands in interactive scope explained in D.3.2 hold here. When a type name without wild cards is used,
the usual resolution process of using the priorities with respect to the interactive context package applies.
When a wild card is used, the reference is taken to be all types whose name matches the pattern, regardless
of the package qualifier.

The field user_cover_struct.struct_name can be used to make a type name an output. For compatibility,
this field can only be a simple name. A field of user_cover_struct called package_name holds the name of
the package in which the output type was declared. See also 14.7.1.

D.6 Code comparison

This subclause uses example code for three e verification components—vr_xbus, vr_xserial, and
vr_xsoc—to compare how typical code looks with the e naming conventions and how it would be written
with name space support (note the highlighted differences shown in Table D.1).The only places where
qualified names are required by the compiler are places where they are also needed for the readability of the
code (e.g., the scoping operator is needed in the vr_xsoc_*.e example).
Copyright © 2015 IEEE. All rights reserved. 527

IEEE
Std 1647-2015 IEEE STANDARD
Table D.1—Comparing code with and without name spaces

Typical e code Modified to use name spaces

vr_xbus_*.e

package vr_xbus;
type vr_xbus_env_name_t : [];
unit vr_xbus_env_u {

name : vr_xbus_env_name_t;
monitor : vr_xbus_monitor_u

};
unit vr_xbus_monitor_u {...}

vr_xbus_*.e

package vr_xbus;
type env_name_t : [];
unit env_u {

name : env_name_t;
monitor : monitor_u

};
unit monitor_u {...}

vr_xserial_*.e

package vr_xserial;
type vr_xserial_env_name_t : [];
unit vr_xserial_env_u {

name : vr_xserial_env_name_t;
agent : vr_xserial_agent_u

 is instance
};
unit vr_xserial_agent_u {...}

vr_xserial_*.e

package vr_xserial;
type env_name_t : [];
unit env_u {

name : env_name_t;
agent : agent_u is instance

};
unit agent_u {...}

vr_xsoc_*.e

package vr_xsoc;
type vr_xsoc_env_name_t : [];
unit vr_xsoc_env_u {

name :
vr_xsoc_env_name_t;

xbus_evc : vr_xbus_env_u;
xserial_A_evc : vr_serial_env_u;
xserial_B_evc : vr_serial_env_u

}

vr_xsoc_*.e

package vr_xsoc;
type env_name_t : [];
unit env_u {

name : env_name_t;
xbus_evc : vr_xbus::env_u;
// No qualification would result
// in an ambiguity error
xserial_A_evc : vr_serial::env_u;
xserial_B_evc : vr_serial::env_u

}

528 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Annex E

(informative)

Reflection API examples

E.1 Type information interface

The following is an example of a very simple use of the type information interface. It is the implementation
of a method that receives a struct name as parameter, and prints out the fields with their types, and the
methods with their parameter and return types.

print_struct(name: string) is {
 var s : rf_struct = rf_manager.get_type_by_name(name)
 .as_a(rf_struct);

 outf("struct - %s\n",s.get_name());

 if s is a rf_like_struct (ls) then {
 outf(" inherits from - %s\n",
 ls.get_supertype().get_name())
 };

 for each (f) in s.get_declared_fields() do {
 outf(" field - %s: %s\n", f.get_name(),
 f.get_type().get_name())
 };

 for each (m) in s.get_declared_methods() do {
 outf(" method - %s()\n",m.get_name());

 for each (p) in m.get_parameters() do {
 outf(" parameter - %s: %s\n", p.get_name(),
 p.get_type().get_name())
 };

 if m.get_result_type() != NULL then {
 outf(" result type - %s\n",
 m.get_result_type().get_name())
 }
 }
}

The following two files serve as a trivial design in order to show the output of the print_struct utility (the
same code is referenced in the examples in other subclauses).

file1.e

type size_t : [big, medium, small];

struct packet {
 size : size_t;
 data : int (bits:256);
 foo(id:int, name:string) is empty
Copyright © 2015 IEEE. All rights reserved. 529

IEEE
Std 1647-2015 IEEE STANDARD
};

extend sys {
 packets : list of packet;
 keep packets.size() > 3 and packets.size() < 7
}

file2.e

import file1.e;

extend packet {
 corrupt : bool;
 foo(id:int, name:string) is also {};

 bar(): int is empty
}

This is the output of running the utility on the preceding code:

file2> print_struct("packet")
struct - packet

inherits from - any_struct
field - size: size_t
field - data: int (bits: 256)
field - corrupt: bool
method - foo()

parameter - id: int
parameter - name: string

method - bar()
result type - int

E.2 Aspect information interface

The following code illustrates the way aspect information interface might be used. It is an implementation
of a method that prints out the content of modules in terms of the type layers that they add to the overall
design, a set of modules that are loaded (compiled) on top of the e execution environment.
530 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
print_user_modules() is {
 for each (m) in rf_manager.get_all_user_modules() do {
 outf("module - %s\n",m.get_name());
 for each (tl) in m.get_type_layers() do {
 if tl is a rf_struct_layer (sl) then {
 outf("struct layer - %s\n",
 sl.get_defined_entity().get_name());

 for each (fd) in sl.get_field_declarations() do {
 outf(" field declaration - %s\n",
 fd.get_defined_entity().get_name())
 };

 for each (ml) in sl.get_method_layers() do {
 outf(" method layer - %s (%s)\n",
 ml.get_defined_entity().get_name(),
 ml.as_a(rf_method_layer).get_method_kind()
 .to_string())
 }
 }
 }
 }
}

Here is a possible output of this utility. In this case, it runs on the trivial design from the previous example
(see E.1), namely modules file1.e and file2.e.

file2> print_user_modules()
module - file1
struct layer - packet

field declaration - size
field declaration - data
method layer - foo (is)

struct layer - sys
field declaration - packets

module - file2
struct layer - packet

field declaration - corrupt
method layer - foo (also)
method layer - bar (is)

E.3 Value query interface

It is hard to find an intuitive use for the object query interface that is simple enough to serve as an example.
The following code is a very simple utility that prints out the state of objects recursively. It is somewhat
artificial, since it prints out only enumerated and Boolean fields.

print_struct_recursive(obj: any_struct) is {
 var s : rf_struct = rf_manager.get_struct_of_instance(obj);

 outf("instance of %s\n",s.get_name());
Copyright © 2015 IEEE. All rights reserved. 531

IEEE
Std 1647-2015 IEEE STANDARD
 for each (f) in s.get_fields() do {
 if f.get_declaration().get_module().is_user_module() then {
 outf("field %s - ",f.get_name());
 var vh : rf_value_holder = f.get_value(obj);

 if vh.get_type() is a rf_scalar (e) then {
 outf("%s",vh.get_type().
 value_to_string(vh.get_value().unsafe()))

 } else if vh.get_type() is a rf_struct (s) then {
 print_struct_recursive(vh.get_value().unsafe())

 } else if vh.get_type() is a rf_list (l) and
 l.get_element_type() is a rf_struct {
 outf("\n");
 var size : int = rf_manager.get_list_size(vh.get_value());
 for i from 0 to size-1 do {
 outf("%d: ",i);
 print_struct_recursive(rf_manager.
 get_list_element(vh,i).get_value().unsafe())
 }
 };
 outf("\n")
 }
 }
}

Here is the result of calling this method, given the little design of the previous examples (see E.1 modules
file1.e and file2.e).

file2> gen -seed = 5
Doing setup ...
Generating the test using seed 5...
file2> print_struct_recursive(sys)
instance of sys
field packets -
0: instance of packet
field size - small
field data - -5319061515555392341
field corrupt - TRUE
1: instance of packet
field size - small
field data - 3230878320328792872
field corrupt - FALSE
2: instance of packet
field size - medium
field data - 2775930122720983980
field corrupt - TRUE
3: instance of packet
field size - big
field data - 2044827916054152830
field corrupt - FALSE
532 Copyright © 2015 IEEE. All rights reserved.

IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2015
Annex F

(informative)

Encryption targets

Deciding on which parts of an IP to encrypt (encryption targets) can have a significant impact on the IP
provider and the end user, in terms of integrating, supporting, and extending the IP. The guidelines set forth
in this annex aim to minimize this overhead while providing for reasonable IP protection.

F.1 Files

Code that is part of an IP may be encrypted when the code is as follows:

a) Considered stable

b) Complete and self-sufficient

c) Considered to have commercial or business value

It is strongly encouraged to use the following recommendations for encrypted files:

1) A non-encrypted header file should accompany each encrypted file to publish its external and
internal interface, identify important constructs and indicate their access permissions.

2) Encrypted files should include debugging aids such as assertions and messaging constructs to
provide information about the internal state.

F.2 IP Components

A group of files may define standard IP components such as a bus functional model (BFM) or a sequence
library. Certain components can greatly affect the interaction of the end user with the IP and therefore,
additional recommendations should be taken into consideration, as shown in Table 46.

Table 46—Encryption recommendations for IP components

Architectural model Can be left unencrypted as it is helpful to the end user to see the overall structure of
the IP.

Bus functional model Can safely be encrypted as it is unlikely to require significant extensions or debugging
once stable.

Sequence library Can be left unencrypted for the end user to use and extend in tests.

Checkers Can safely be encrypted apart from any associated events or method prototypes that
the end user may use to extend them.

Coverage models Can safely be encrypted apart from the coverage groups and important coverage items
that the end user may use to extend coverage information.

Constraints Can be left unencrypted to facilitate generation analysis and debugging.
Copyright © 2015 IEEE. All rights reserved. 533

IEEE
Std 1647-2015 IEEE STANDARD
534 Copyright © 2015 IEEE. All rights reserved.

	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Verification environments
	1.4 Basic concepts relating to this standard
	1.5 Conventions used
	1.6 Use of color in this standard
	1.7 Contents of this standard

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. e basics
	4.1 Lexical conventions
	4.2 Syntactic elements
	4.3 Struct hierarchy and name resolution
	4.4 Ranges
	4.5 Operator precedence
	4.6 Evaluation order of expressions
	4.7 Bitwise operators
	4.8 Boolean operators
	4.9 Arithmetic operators
	4.10 Comparison operators
	4.11 String matching
	4.12 Extraction and concatenation operators
	4.13 Scalar modifiers
	4.14 Parentheses
	4.15 list.method()
	4.16 Special-purpose operators

	5. Data types
	5.1 e data types
	5.2 Untyped expressions
	5.3 Assignment rules
	5.4 Real data type
	5.5 Precision rules for numeric operations
	5.6 Automatic type casting
	5.7 Defining and extending scalar types
	5.8 Type-related constructs

	6. Structs, subtypes, and fields
	6.1 Structs overview
	6.2 Defining structs: struct
	6.3 Extending structs: extend type
	6.4 Restrictions on inheritance
	6.5 Extending subtypes
	6.6 Creating subtypes with when
	6.7 Extending when subtypes
	6.8 Defining fields: field
	6.9 Defining list fields
	6.10 Projecting list of fields
	6.11 Defining attribute fields

	7. Units
	7.1 Overview
	7.2 Defining units and fields of type unit
	7.3 Unit attributes
	7.4 Predefined methods of any_unit
	7.5 Unit-related predefined methods of any_struct
	7.6 Unit-related predefined routines

	8. Template types
	8.1 Defining a template type
	8.2 Instantiating a template type

	9. e ports
	9.1 Introduction to e ports
	9.2 Using simple ports
	9.3 Using buffer ports
	9.4 Using event ports
	9.5 Using method ports
	9.6 Defining and referencing ports
	9.7 Port attributes
	9.8 Buffer port methods
	9.9 MVL methods for simple ports
	9.10 Global MVL routines
	9.11 Comparative analysis of ports and tick access
	9.12 e port binding
	9.13 Transaction level modeling interface ports in e
	9.14 TLM Sockets in e

	10. Constraints and generation
	10.1 Types of constraints
	10.2 Generation concepts
	10.3 Type constraints
	10.4 Defining constraints
	10.5 Invoking generation

	11. Temporal struct members
	11.1 Events
	11.2 on
	11.3 on event-port
	11.4 expect | assume
	11.5 Procedural API for Temporal Operators on event and expect struct Members

	12. Temporal expressions
	12.1 Overview
	12.2 Temporal operators and constructs
	12.3 Success and failure of a temporal expression

	13. Time-consuming actions
	13.1 Synchronization actions
	13.2 Concurrency actions
	13.3 State machines

	14. Coverage constructs
	14.1 Defining coverage groups: cover
	14.2 Defining basic coverage items: item
	14.3 Defining cross coverage items: cross
	14.4 Defining transition coverage items: transition
	14.5 Extending coverage groups: cover ... using also ... is also
	14.6 Extending coverage items: item ... using also
	14.7 Coverage API
	14.8 Coverage methods for the covers struct

	15. Macros
	15.1 Overview
	15.2 define-as statement
	15.3 define-as-computed statement
	15.4 Match expression structure
	15.5 Interpretation of match expressions
	15.6 Macro expansion code

	16. Print, checks, and error handling
	16.1 print
	16.2 Handling DUT errors
	16.3 Handling user errors
	16.4 Handling programming errors: assert

	17. Methods
	17.1 Rules for defining and extending methods
	17.2 Invoking methods
	17.3 Parameter passing
	17.4 Using the C interface

	18. Creating and modifying e variables
	18.1 About e variables
	18.2 var
	18.3 =
	18.4 op=
	18.5 <=

	19. Packing and unpacking
	19.1 Basic packing
	19.2 Predefined pack options
	19.3 Customizing pack options
	19.4 Packing and unpacking specific types
	19.5 Implicit packing and unpacking

	20. Control flow actions
	20.1 Conditional actions
	20.2 Iterative actions
	20.3 File iteration actions
	20.4 Actions for controlling the program flow

	21. Importing and preprocessor directives
	21.1 Importing e modules
	21.2 #ifdef, #ifndef
	21.3 #define
	21.4 #undef

	22. Encapsulation constructs
	22.1 package: package-name
	22.2 package: type-declaration
	22.3 package | protected | private: struct-member
	22.4 Scope operator (::)

	23. Simulation-related constructs
	23.1 force
	23.2 release
	23.3 Tick access: 'hdl-pathname'
	23.4 simulator_command()
	23.5 stop_run()

	24. Messages
	24.1 Overview
	24.2 Message model
	24.3 Message execution
	24.4 Structured debug messages
	24.5 message and messagef
	24.6 Tag
	24.7 Verbosity
	24.8 Predefined type sdm_handler
	24.9 Messages Interface

	25. Sequences
	25.1 Overview
	25.2 Sequence statement
	25.3 do sequence action
	25.4 Sequence struct types and members
	25.5 BFM-driver-sequence flow diagrams

	26. List pseudo-methods library
	26.1 Pseudo-methods overview
	26.2 Using list pseudo-methods
	26.3 Pseudo-methods to modify lists
	26.4 General list pseudo-methods
	26.5 Math and logic pseudo-methods
	26.6 List CRC pseudo-methods
	26.7 Keyed list pseudo-methods

	27. Predefined methods library
	27.1 Predefined methods of sys
	27.2 Predefined methods of any_struct
	27.3 Methods and predefined attributes of unit any_unit
	27.4 Set Pseudo-methods
	27.5 Other Pseudo-methods
	27.6 Coverage methods

	28. Predefined routines library
	28.1 Deep copy and compare routines
	28.2 Integer arithmetic routines
	28.3 Real arithmetic routines
	28.4 bitwise_op()
	28.5 get_all_units()
	28.6 String routines
	28.7 Output routines
	28.8 Operating system interface routines
	28.9 set_config()
	28.10 Random routines

	29. Predefined file routines library
	29.1 File names and search paths
	29.2 File handles
	29.3 Low-level file methods
	29.4 General file routines
	29.5 Reading and writing structs

	30. Reflection API
	30.1 Introduction
	30.2 Type information
	30.3 Aspect information
	30.4 Value query and manipulation

	31. Predefined resource sharing control structs
	31.1 Semaphore methods
	31.2 How to use the semaphore struct

	32. Intellectual property protection
	32.1 Encryption
	32.2 Decryption
	32.3 Reflection API
	32.4 Encryption targets

	Annex A
	Annex B
	Annex C
	Annex D
	Annex E
	Annex F

