
Mixed Netlists

Ernst Christen (Ernst.Christen@synopsys.com)
John Shields (jshields@acm.org)

1. Introduction

This paper defines syntax and semantics to extend IEEE Std. 1076.1-1999 to support
mixed nets, i.e. nets that are not purely nodes, or quantity nets, or event-driven nets, but in
which objects of different kinds participate. Mixed nets arise naturally when using sche-
matic-based design entry, by connecting, in the schematic, ports of unlike kinds by means
of a wire. The definitions are based on the concepts of a structural wire and views of the
wire. Each view provides the semantics of an object of a particular kind and type or nature,
and it can be configured to be implemented by an instance of a design unit that converts
between the wire and the object.

1.1 Requirements

The DOD contains a number of objectives related to the interface between a continuous
object (a terminal or a quantity) and a discrete object (a signal). We believe that the same
kind of objectives should apply to the interface between a terminal and a quantity.

In many cases quantity ports and signal ports are abstractions of conservative connections,
which in the 1076.1 language are described by terminal ports with appropriate reference
terminals. The interface between different objects must therefore bridge different levels of
abstraction, which requires the capability to describe arbitrary behavior at the interface.
The following list of requirements for mixed netlists takes this into consideration.

a) Support top-down design, by supporting the hierarchical decomposition of a model that
includes interfaces between signals, terminals, and quantities.

b) Support unidirectional interfaces (e.g. quantity -> terminal, terminal -> quantity)

c) Support bidirectional interfaces (e.g. for a bus driver/receiver)

d) Support modeling of such effects as input/output impedance, timing, current drive
capability.

e) DO12: The model of the interface between analog and digital descriptions should be
customizable by the user. We extend this to also include the interface between terminals
and quantities.

f) DO32: Default conversions between analog and digital connection points should be
provided. We extend this to also include the interface between terminals and quantities.

g) Support "analog" and "digital" implementations of a design unit that can be selected by
configurations.
Mixed Netlists June 19, 2005 1

2. Definitions

The definitions are written in the form of text to be inserted into the VHDL 1076.1-1999
LRM. Paragraphs enclosed in brackets set the context and are not part of the definition
itself. A reference of the form LRM 4.3.1-53.3 is to the IEEE 1076.1-1999 Language Ref-
erence Manual, Section 4.3.1, 3rd paragraph on p.53.

2.1 Shapes

[at LRM 3.6?]

3.6 Shapes

A shape defines the properties of a wire, expressed by referring to the structural properties
of a type or nature by an attribute name. The shape of a scalar type or a scalar nature is a
scalar. The shape of a record type or a record nature is a record in which there is a match-
ing element for each element of the record type or record nature whose name is the name
of the element of the record type or record nature and whose shape is the shape of the ele-
ment of the record type or record nature. The shape of an unconstrained array type is an
unconstrained array whose elements have the shape of the subtype defined by the element
subtype indication of the unconstrained array definition and whose index subtype defini-
tions are the index subtype definitions of the unconstrained array type. Similarly, the shape
of an unconstrained array nature is an unconstrained array whose elements have the shape
of the subnature defined by the subnature indication of the unconstrained nature definition
and whose index subtype definitions are the index subtype definitions of the unconstrained
array nature. The shape of an constrained array type is a constrained array whose elements
have the shape of the subtype defined by the element subtype indication of the constrained
array definition and whose index constraints are the index constraints of the constrained
array definition. Similarly, the shape of an constrained array nature is a constrained array
whose elements have the shape of the subnature defined by the subnature indication of the
constrained nature definition and whose index constraints are the index constraints of the
constrained nature definition.

Note—It is a consequence of these rules that a nature and the across and through types
defined by the nature definition have the same shape.

[at 14.1]

T’SHAPE

Kind: Shape.
Prefix: Any type denoted by the static name T.
Result: The shape of the type denoted by T.

N’SHAPE

Kind: Shape.
Prefix: Any nature denoted by the static name N.
Mixed Netlists June 19, 2005 2

Result: The shape of the nature denoted by N.

2.2 Wires

[at 4.3.1]

An object declaration declares an object of a specified type, nature, or shape. Such an
object is called an explicitly declared object.

object_declaration ::=
...
| wire_declaration

[at 4.3.1.7]

4.3.1.7 Wire declarations

A wire declaration declares one or more wires. A wire is an object that during elaboration
is converted to a signal or a quantity of a particular type with a particular mode (if applica-
ble), or to a terminal with a particular nature. The shape of the converted object matches
the shape of the wire.

wire_declaration ::=
wire identifier_list : shape_indication ;

shape_indication ::=
 type_mark ’ SHAPE
| nature_mark ’ SHAPE

Each wire of a scalar shape and each scalar subelement of a composite shape is a scalar
wire.

[at 4.3.2]

An interface declaration declares an interface object of a specified type, nature, or shape.
...; interface terminals, interface quantities, and interface wires that appear as ports of a
design entity, a component, or a block.

interface_declaration ::=
...
| interface_wire_declaration

interface_wire_declaration ::=
wire identifier_list : shape_indication

NOTES

4—An interface object of class wire gets a mode during elaboration if the wire is con-
verted to a signal or quantity.
Mixed Netlists June 19, 2005 3

[at 4.3.2.1-64.1]

add interface wire declaration

[at 4.3.2.2]

actual_designator ::=
...
| wire_name
| open

[at 4.3.2.2-66.2]

[Need text defining legal forms of association elements]

[There are additional places in the LRM where objects or interface objects are enumer-
ated. These must be identified and updated]

2.3 Wire Views

[at 4.3.2.3]

4.3.2.3 Wire views

The name of a wire can appear in the text of a model only in a wire declaration, an inter-
face wire declaration, in a wire object specification, and as the prefix of an attribute name
that defines a view of the wire. In all other places a wire must be referenced through a wire
view that defines the object kind, type or nature, and mode (if applicable) of the reference.

A wire view is specified by an attribute name whose prefix is a wire name and whose argu-
ments specify the nature or type and mode (if applicable) of the wire view. In the text of a
model, a wire view of kind terminal with a specified nature can appear anywhere the name
of a terminal of the nature can appear. Similarly, a wire view of kind quantity with a spec-
ified type and mode can appear anywhere the name of a quantity of the type and mode can
appear. Finally, a wire viewof kind signal with a specified type and mode can appear any-
where the name of a signal of the type and mode can appear.

It is an error if more than one wire view for the same wire appears in a declarative region.
[This is not completely correct if the same wire is associated as an actual with more than
one formal port in a port map. More work is required.]

Examples:

library ieee;
use ieee.electrical_systems.all;
entity inverter is

port (wire input, output: REAL’SHAPE; terminal supply: electrical);
end entity inverter;
Mixed Netlists June 19, 2005 4

architecture digital of inverter is
begin

output’SIGNAL(BIT, out) <= not input’SIGNAL(BIT, in);
end architecture digital;

architecture analog of inverter is
quantity vin across input’TERMINAL(electrical);
quantity vout across iout through output’TERMINAL(electrical);
quantity vcc across supply;

begin
vout == vcc - vin;

end architecture analog;

[at 14.1]

W’TERMINAL(N)

Kind: Terminal.
Prefix: Any wire denoted by the static name W.
Parameter: A nature mark denoted by the name N.
Result nature: The nature defined by the nature mark N.
Result: A terminal whose nature is N.
Restrictions: N’SHAPE must match the shape of W.

W’QUANTITY(T, mode)

Kind: Quantity.
Prefix: Any wire denoted by the static name W.
Parameters: T: A type mark denoted by the name T.

mode: The mode specifying how the quantity view is used. Must
be either in or out.

Result type: The type defined by the type mark T.
Result: A quantity whose type is T and whose mode is as specified.
Restrictions: T’SHAPE must match the shape of W.

W’SIGNAL(T, mode)

Kind: Signal.
Prefix: Any wire denoted by the static name W.
Parameters: T: A type mark denoted by the name T.

mode: The mode specifying how the signal view is used. Must be
in, out, inout, or buffer.

Result type: The type defined by the type mark T.
Result: A signal whose type is T and whose mode is as specified.
Restrictions: T’SHAPE must match the shape of W.
Mixed Netlists June 19, 2005 5

2.4 Wire Configurations

[at 5.5?]

5.5 Wire configuration specification

A wire configuration specification identifies a collection or a class of wires and associates
binding information with the wire views of these wires. The wires may appear in the port
association list or the declarative region of the block in which the wire configuration spec-
ification appears and any block nested within the block.

wire_configuration_specification ::=
for wire_object_specification

{ conversion_specification }
end for ;

object_specification ::=
 terminal name_list : nature_mark
| quantity name_list : [in | out] type_mark
| signal name_list : [mode] type_mark

name_list ::=
 simple_name { , simple_name }
| others
| all

The wire object specification identifies the wires with whose wire views binding informa-
tion is to be associated, as follows:

• If the reserved word terminal, a list of simple names and a nature mark is supplied,
then the wire configuration specification applies to the wire views of the wires denoted
by the simple names that have been converted during elaboration to terminals whose
nature is the nature denoted by the nature mark.

• If the reserved words terminal and others and a nature mark is supplied, then the wire
configuration specification applies to the wire views of the wires that have been con-
verted during elaboration to terminals whose nature is the nature denoted by the nature
mark, provided that each such wire is not explicitly named in the name list of a previous
wire object specification with the reserved word terminal and the same nature mark.

• If the reserved words terminal and all and a nature mark is supplied, then the wire con-
figuration specification applies to the wire views of all wires that have been converted
during elaboration to terminals whose nature is the nature denoted by the nature mark.

• If the reserved word quantity, a list of simple names, a type mark and optionally a
mode is supplied, then the wire configuration specification applies to the wire views of
the wires denoted by the simple names that have been converted during elaboration to
quantities whose type is the type denoted by the type mark and whose mode, if applica-
ble, is the specified mode.
Mixed Netlists June 19, 2005 6

• If the reserved words quantity and others, a type mark and optionally a mode is sup-
plied, then the wire configuration specification applies to the wire views of the wires
that have been converted during elaboration to quantities whose type is the type
denoted by the type mark and whose mode, if applicable, is the specified mode, pro-
vided that each such wire is not explicitly named in the name list of a previous wire
object specification with the reserved word quantity and the same type mark and
mode, if applicable.

• If the reserved words quantity and all, a type mark and optionally a mode is supplied,
then the wire configuration specification applies to the wire views of all wires that have
been converted during elaboration to quantities whose type is the type denoted by the
type mark and whose mode, if applicable, is the specified mode.

• If the reserved word signal, a list of simple names, a type mark and optionally a mode
is supplied, then the wire configuration specification applies to the wire views of the
wires whose name denoted by the simple names that have been converted during elabo-
ration to signals whose type is the type denoted by the type mark and whose mode, if
applicable, is the specified mode.

• If the reserved words aignal and others, a type mark and optionally a mode is supplied,
then the wire configuration specification applies to the wire views of the wires that have
been converted during elaboration to signals whose type is the type denoted by the type
mark and whose mode, if applicable, is the specified mode, provided that each such
wire is not explicitly named in the name list of a previous wire object specification with
the reserved word signal and the same type mark and mode, if applicable.

• If the reserved words signal and all, a type mark and optionally a mode is supplied,
then the wire configuration specification applies to the wire views of all wires that have
been converted during elaboration to signals whose type is the type denoted by the type
mark and whose mode, if applicable, is the specified mode.

5.5.1 Conversion specification

A conversion specification associates binding information with wire views of the wires
identified by the enclosing wire configuration specification.

conversion_specification ::=
for object_specification binding_indication ;

The object specification further specifies the wire view with which binding information is
to be associated, as follows:

• If a list of simple names is supplied, then each simple name must denote a terminal
port, a quantity port, or a signal port, and the conversion specification applies to the
wire view associated as an actual with the port as a formal.

• If the reserved word terminal, a list of simple names and a nature mark is supplied,
then the conversion specification applies to the wire views whose kind is terminal and
whose nature is the nature denoted by the nature mark, except the wire views associated
as actuals with a formal port whose name appears in an object name list in the wire con-
figuration specification.
Mixed Netlists June 19, 2005 7

• If the reserved word quantity, a type mark and optionally a mode is supplied, then the
conversion specification applies to the wire views whose kind is quantity, whose type is
the type denoted by the type mark and whose mode, if applicable, is the mode specified
by the reserved words in or out, except the wire views associated as actuals with a for-
mal port whose name appears in an object name list in the wire configuration specifica-
tion.

• If the reserved word signal, a type mark and optionally a mode is supplied, then the
conversion specification applies to the wire views whose kind is signal, whose type is
the type denoted by the type mark and whose mode, if applicable, is the specified mode,
except the wire views associated as actuals with a formal port whose name appears in
an object name list in the wire configuration specification.

It is an error if the object specification of a conversion specification is a name list and the
wire object specification of the enclosing wire configuration specification is also a name
list. Similarly, it is an error if the object specification of a conversion specification
includes one of the reserved word terminal, quantity, or signal and the wire object speci-
fication of the enclosing wire configuration specification includes the same reserved word.
It is also an error if the object specification of a conversion specification is a name list or
includes a mode and the wire object specification of the enclosing wire configuration
specification includes a mode. Conversely, it is an error if the object specification of a con-
version specification that includes the reserved words quantity or signal does not include
a mode and the wire object specification of the enclosing wire configuration specification
also does not include a mode.

2.5 Elaboration

[at 12.1.1]

12.1.1 Wire Conversion

A wire root is a wire declared by a wire declaration or a wire port associated with an actual
that designates a terminal, quantity, or signal. A wire net is a wire root and the transitive
closure of each wire port that is associated with an actual that is either the wire root or a
wire port of the wire net. The members of a wire net are the wire root and each wire port of
the wire net.

After the elaboration steps described in 12.1 have been completed, each wire net is con-
verted as follows:

• If a member of a wire net has a wire view that is a terminal, then the wire declaration
defining the wire root, if any, is converted to a terminal declaration whose nature is the
nature of the wire view, and each wire port that is a member of the wire net is converted
to a terminal port whose nature is the nature of the wire view. It is an error if the wire
net has more than one wire view of kind terminal and the natures of these wire views
don’t match.
Mixed Netlists June 19, 2005 8

• Otherwise, if a member of a wire net has a wire view that is a quantity, then the wire
declaration defining the wire root, if any, is converted to a quantity declaration whose
type is the type of the wire view, and each wire port that is a member of the wire net is
converted to a quantity port whose type is the type of the wire view. It is an error if the
wire net has more than one wire view of kind quantity and the types of these wire views
don’t match.

The mode of each quantity port (including the quantity port at the root of the net, if any)
is determined as follows, The contributing modes of a port are the mode of each wire
view, if any, of the wire port being converted to the port, and the mode of each (possibly
converted) formal port, if any, whose associated actual is the port. If all contributing
modes of the quantity port are in, then the mode of the quantity port is in. If exactly one
of the contributing modes of the quantity port is out, inout, or buffer, then the mode of
the quantity port is out. It is an error if more than one contributing mode of a quantity
port is out, inout, or buffer.

• Otherwise, if a member of a wire net has a wire view that is a signal, then the wire dec-
laration defining the wire root, if any, is converted to a signal declaration whose type is
the type of the wire view, and each wire port that is a member of the wire net is con-
verted to a signal port whose type is the type of the wire view. It is an error if the wire
net has more than one wire view of kind signal and the types of these wire views don’t
match.

The mode of each signal port (including the signal port at the root of the net, if any) is
determined as follows, If all the contributing modes of a signal port are the same, then
the mode of the signal port is this mode, otherwise the mode of the signal port is inout.

It is an error if a wire net has no wire view.

[at 12.2.4-159.2]

Elaboration of a port association list consists of the elaboration of each port association
element in the association list whose actual is not the reserved word open. Elaboration of a
port association element consists of the elaboration of the formal part followed by the
association of the port or subelement or slice thereof with the object or subelement or slice
thereof designated by the actual part. If the formal part is a wire port or subelement or slice
thereof and the actual part does not designate a wire, the following rules apply:

• If the actual part designates a terminal, then the formal part is replaced by a wire view
whose kind is terminal and whose nature is the nature of the actual part.

• If the actual part designates a quantity, then the formal part is replaced by a wire view
whose kind is quantity and whose type is the type of the actual part. The mode of the
wire view is left unspecified.

• If the actual part designates a signal, then the formal part is replaced by a wire view
whose kind is signal and whose type is the type of the actual part. The mode of the wire
view is left unspecified.

Similarly, if the actual part of a port association element designates a wire and the formal
part is not a wire port or subelement or slice thereof, the following rules apply:
Mixed Netlists June 19, 2005 9

• If the formal part is a terminal port or subelement or slice thereof, then the actual part is
replaced by a wire view whose kind is terminal and whose nature is the nature of the
formal part.

• If the formal part is a quantity port or subelement or slice thereof, then the actual part is
replaced by a wire view whose kind is quantity and whose type and mode is the type
and mode, respectively, of the formal part.

• If the formal part is a signal port or subelement or slice thereof, then the actual part is
replaced by a wire view whose kind is signal and whose type and mode is the type and
mode, respectively, of the formal part.

If the elaboration of a port association element does not yield a formal part with an
unspecified mode, then the association of the formal part with the actual part also involves
a check that the restrictions on port associations (see 1.1.1.2) are met. It is an error if this
check fails.

[Needs work to handle individual subelement associations]

[Additional work in the remainder of this section to accommodate wire views]

3. References

[DOD] 1076.1 Design Objective Document V2.3

Revision History

0.1 Sep.8, 1995 Ernst Christen
Original version

0.2 Jan.14, 1996 Ernst Christen
Major update, including comments from LDC meetings and information about simple
mixed associations.

0.3 April 24, 1996 Ernst Christen
Replaced VHDL-A by VHDL 1076.1 or equivalent.

0.4 July 25, 2004 Ernst Christen, John Shields
Complete rework, based on structural wires.

0.5 June 19, 2005 Ernst Christen, John Shields
Updated based on work on paper for FDL’04
Mixed Netlists June 19, 2005 10

	Mixed Netlists
	1. Introduction
	1.1 Requirements

	2. Definitions
	2.1 Shapes
	2.2 Wires
	2.3 Wire Views
	2.4 Wire Configurations
	2.5 Elaboration

	3. References
	Revision History

