

Working Group Meeting September 14, 2010

## **Agenda**

- Call to order
- ◆ Approval of agenda
- **♦** Administrative issues
  - Minutes of last meeting
  - Publicity
  - Review of IEEE patent policy
  - 1076.1.1 and 1076.1 updates
- ♦ Project overview and status
- Next meeting
- **♦ AOB**
- ◆ Adjourn

### **Administrative Issues 1**

- ♦ Approval of minutes of WG meeting held August 10, 2010
- **♦ Publicity** 
  - Publication in Simulation News in Europe
    - Missed deadline August 2010
    - · Looking for next available slot
  - DASC column in IEEE Design and Test magazine expected to start late 2010 or early 2011
    - · WG chairs will be asked to contribute
- ◆ Review of IEEE patent policy
  - http://standards.ieee.org/board/pat/pat-slideset.pdf



http://www.eda.org/vhdl-ams/-

### **Administrative Issues 2: Standard Revisions**

- ♦ 1076.1.1 revision
  - Before ballot, LRM must go through Mandatory Editorial Coordination
    - · May require some updates to LRM
    - Plan is to get this done before the end of this month
- **◆ 1076.1 revision** 
  - 1076.1 PAR draft
  - · PAR held up by questions regarding copyrights
    - Do we have to get Copyright permission from organizations that gave it to 1076?
    - · Issue is being debated between IEEE and DASC

http://www.eda.org/vhdl-ams/ - 2

### **Revision of IEEE Std 1076.1**

### ◆ Scope

- Synchronize with IEEE Std 1076-2008. This will bring, among other features:
  - VHPI-AMS
  - · IP protection, encryption
  - Genericity, i.e. the ability to write a model that is independent of the energy domain (e.g. a generic resistance model)
- Integration of IEEE Std 1076.1.1 Packages for Multiple Energy Domain Support
- Selected language enhancements prioritized by survey among users and other interested parties
  - · Frequency domain modeling
  - Package supporting table-driven modeling
  - Package supporting vector/matrix operations
  - Other projects not yet started
    - Mixed Netlists
    - PDE Support
    - Uniform use of SPICE Models

IEEE DASC P1076.1 WG Meeting - September 14, 2010

http://www.eda.org/vhdl-ams/

http://www.eda.org/vhdl-ams/ - 6

### **VHPI-AMS: Overview**

- ◆ The VHDL Procedural Interface is a application programming interface to VHDL tools.
- VHPI allows an external application to access information about a VHDL model during analysis, elaboration and execution.
- This enables:
  - · the creation of tools such as debuggers or profilers for VHDL models
  - support foreign models, which are models written in part (foreign subprograms) or in their entirety using a standard programming language like C.

## **VHPI-AMS: Scope**

- ◆ The VHPI-AMS is an extension of the VHPI defined in IEEE 1076-2008.
  - Extension will include modification/addition to machine readable package.
- ◆ The VHPI-AMS will not extend the digital information model to IEEE 1076-2008.
- ◆ Derived requirements that will be supported:
  - Standard utilities provided in VHPI extended for VHDL-AMS objects. Examples include printing, comparing values, error handling.
  - Static design data provided in VHPI extended for VHDL-AMS objects.
  - Object access to query new objects such as free quantities and through/across quantities on branches.
  - Extend VHPI foreign interface to support VHDL-AMS objects.
  - Simulation interaction and control for stop/start
  - Extension of VHPI Tool Execution specification (Section 20 in IEEE 1076-2008) to consider the analog/mixed-signal simulation cycle



IEEE DASC P1076.1 WG Meeting - September 14, 2010

http://www.eda.org/vhdl-ams/ - 7

## **VHPI-AMS: Scope Restrictions**

- ◆ Derived requirements that will be considered
  - Modifications of the value of a quantity values (setting values but not forcing) may be supported in this version. This is similar to Section 22.5 Updating object values in IEEE 1076-2008.
- Derived requirements that will not be supported:
  - Modification of generics on elaborated design (which may cause reelaboration) during restart. This could be done by a tool in an implementation specific fashion and does not require support in VHPI.
  - Modification of topology during simulation (forcing values, shorting and opening nodes) and adding/deleting elements.
  - No special semantics for meta simulation (monte carlo, worst case, etc...) will be added. These may still be implementable with the core VHPI and above extensions.





### **VHPI-AMS: Resources**

#### Resources

- M. Vlach: Programming Interface Requirements for an AMS Simulator, ISCAS'2004
  - This paper provides an overview of requirements for VHDL-AMS VHPI.



http://www.eda.org/vhdl-ams/-

### **VHPI-AMS: Status**

#### ♦ Status

- Review of Verilog-AMS VPI extensions
- · Initial analysis of extensions to information model
- Investigating possible donation

### Next Steps

- Review existing VHPI-AMS functions and identify modifications or additions
- Investigating technical feasibility of writing to quantities and related use cases
- Define detailed requirements based on these investigations

## 1076.1.1 Integration: Overview

### Purpose

- IEEE Std 1076.1.1 is a companion to IEEE Std 1076.1 that provides a collection of standard definitions to support the creation of models in multiple energy domains: electrical, translational, rotational, thermal, and others.
- Just as IEEE 1076-2008 integrated the previously separate standards defining the packages std\_logic\_1164, math\_real, math\_complex, numeric\_bit, numeric\_std, the plan is to make the 8 packages defined by IEEE Std 1076.1.1 an integral part of IEEE Std 1076.1.
- Existing 1076.1.1 will then be discontinued.



IEEE DASC P1076.1 WG Meeting - September 14, 2010

http://www.eda.org/vhdl-ams/ - 1

## 1076.1.1 Integration: Scope

- ◆ Integrate 1076.1.1 text into new 1076.1 LRM
- ◆ Add 1076.1 packages to machine readable packages (library IEEE)
  - FUNDAMENTAL\_CONSTANTS, MATERIAL\_CONSTANTS
  - ENERGY\_SYSTEMS, ELECTRICAL\_SYSTEMS, MECHANICAL\_SYSTEMS, RADIANT\_SYSTEMS, THERMAL\_SYSTEMS, FLUIDIC\_SYSTEMS
- ◆ Review all descriptions/definitions against IEEE SI 10-2002 and IEEE PSI-10/D1.May 2010.
- Investigate adding support for dimensions and consistency of dimensions on connections. This could provide support for external dimensional consistency but not part of standard.
  - A dimension refers to the physical value being modeled and not the unit used to represent it. Example of length being a dimension but foot or meter being a unit.





## 1076.1.1 Integration: Status

#### Status

- Waiting on new LRM creation to integrate existing 1076.1.1 text and packages and to do the SI review.
- Investigated early white papers on dimensional analysis for 1076.1.1.
- Reviewed Modelica to understand its use of units and dimensions.
- Defined Scope and Rational for Dimension support.

#### Next Steps

- Complete existing 1076.1.1 integration when new LRM format is reworked.
- Define detailed requirements for Dimension support.



http://www.eda.org/vhdl-ams/ - 13

## Frequency Domain Modeling: Overview

### **♦** Purpose

- Allow a user to write a model whose frequency domain behavior depends on the simulation frequency
- · Scope is support for small-signal behavior
  - No intent to support harmonic balance or other algorithms that are sometimes called large signal AC.

#### Restrictions

 A large signal model for DC and time domain must still be defined, as there is no closed form transformation of a frequency domain model into time domain.

#### Resources

- J. Haase, E. Hessel, H.-T. Mammen: <u>Proposal to Extend Frequency</u> Domain Analysis in VHDL-AMS, FDL'09
  - This paper provides some of the mathematical background.
     Emphasis is on frequency domain behavior described by a table.

## **Frequency Domain Modeling: Status**

#### ♦ Status

- · Properties/limitations small-signal algorithms understood
  - · Mathematical background
  - Implications of changing equations for frequency domain
  - · Algorithmic changes in an implementation are minor
- Changes to LRM minor
- Guidelines for writing models with frequency-dependent behavior understood
  - How to write a model to get the expected behavior
  - · Modeling style is imposed by small-signal algorithms
- Findings documented mostly in meeting slides

### Next steps

- Write-up of all aspects of frequency domain modeling support
- Expose to WG for approval



IEEE DASC P1076.1 WG Meeting - September 14, 2010

http://www.eda.org/vhdl-ams/ - 15

http://www.eda.org/vhdl-ams/ - 16

## **Table Driven Modeling**

#### Subcommittee members

- Ernst Christen
- · Joachim Haase
- Arpad Muranyi
- Alain Vachoux

#### ◆ Purpose

- Measured and simulated data are gathered into tables.
- · Tables include, possibly multidimensional, data points.
- They are indexed by a number of independent variables and all necessary information to properly interpret and use these data points.
- · Table using may be mandatory in the following cases:
  - · No analytical model exists
  - · To achieve faster simulation

#### ♦ Scope

- Definition of VHDL-AMS data structures and functions that support this functionality
- Development of VHDL-AMS package(s) that will serve as reference implementation
- The development of an optimized implementation is out of the scope.



## **Table Driven Modeling: Plan of Activities**

#### **♦ Schedule**

- Phase 1: Establish the "Requirements for Table Look-Up Modeling with VHDL-AMS"
- · Phase 2: Discussion of VHDL(-AMS) implementation aspects
- Phase 3: Definition of VHDL(-AMS) function and package headers
- Phase 4: Reference implementation of functions
- Phase 5: Test of the reference implementation
- Phase 6: Finishing of documentation proposal for the standard revision

#### ◆ Timeline

- Begin in June 2010
- Expected end in summer 2011

#### State of affairs

- · Phase 1 finished
- Requirement document to be submitted to the WG for discussion and vote by the end of the week



IEEE DASC P1076.1 WG Meeting - September 14, 2010

http://www.eda.org/vhdl-ams/ - 17

## **Table Driven Modeling: Requirements (1)**

### ♦ Description of functions that shall be supported

- Multidimensional real-valued functions  $f: \mathbb{R}^n \to \mathbb{R}, y = f(x_1, x_2, ..., x_n)$ 
  - n ≤ 4 shall be supported.
  - n > 4 should be supported.
  - · Data points are given on a grid.
  - · It is not required that the grid is fully populated.
  - · It is not required that the data points are ordered.
- One-dimensional complex-valued functions  $f: R \to C, y = f(x)$

### Interpolation of given data points

- Interpolation methods: closest data point, piecewise constant, piecewise linear, quadratic spline, cubic spline
- · Extrapolation methods:
  - · same (as interpolation), constant, linear, periodic
  - · none (failure if data point outside table is accessed)

## **Table Driven Modeling: Requirements (2)**

#### Table Data Sources

- Storage of data points using arrays shall be supported.
- Storage of data points using files shall be supported.
- The following file formats should/may be supported
  - Verilog-AMS
  - Touchstone
  - IBIS
  - Excel CSV



IEEE DASC P1076.1 WG Meeting - September 14, 2010

http://www.eda.org/vhdl-ams/ - 19

## **Vector/Matrix Support: Plan**

- Call for participation to form the subcommittee
  - 4 5 people joined
- ◆ Develop requirements (work-in-progress)
  - Cooperated with other related subcommittees to define the basic requirements
  - Develop detailed requirements based on the basic requirements (will ready in September-October)
- Present detailed requirements to working group for approval (October 2010)
- Develop Technical solution from detailed requirements (3-4 months)
- ◆ Present the solution to working group for approval (Jan-Feb 2011)
- Review LRM changes implemented from LCS for accuracy and clarity (2 months)
- ◆ Completion of work (May 2011)

IEEE DASC P1076.1 WG Meeting - September 14, 2010



## **Vector/Matrix Support: Requirements**

 Matrix/vector operations are defined as reference in standard package [required]

 Implementation should produce the same result as definition but does not need to exactly follow the definition.

### **♦ Matrix definition**

 Real and complex type [required] Non-floating data type [required] Block matrix notation [required]



http://www.eda.org/vhdl-ams/ - 21

## **Vector/Matrix Support: Requirements (2)**

#### ♦ Matrix/vector construction

· Identity matrix [required] Zero matrix [required]

#### ♦ Matrix/vector slicing

[required]

- v(i:j) -- a vector of ith to jth element in vector v
- A(:, j) -- a vector of jth column in matrix A
- A(r, i:j) -- a vector of ith to jth element in rth row in matrix A

### Supported mathematical operations:

• +, -, \*, /, ^ for matrix element [required] · Dot product for matrix/vector [required]

• Transpose, conjugate transpose (complex), complex conjugate (complex) for matrix/vector [required]

· Determinant for matrix/vector [required]

## **Vector/Matrix Support: Requirements (3)**

 Matrix power [required] Matrix exponential [required] Norms (1, 2, infinite) for matrix/vector [required] Trace for matrix [recommended] Kronecker Product for matrix [recommended] Dimension check in all ops. [recommended] Inverse [optional]

#### ♦ Annotation of matrix/vector

[recommended]

· Supply additional information such as matrix property (triangular, banded) or other user-defined property to be used along with the matrix.



IEEE DASC P1076.1 WG Meeting - September 14, 2010

http://www.eda.org/vhdl-ams/ - 23

## **Vector/Matrix Support: Requirements (4)**

- Matrix definition
  - Supports matrix of (real and complex) [required]
  - Supports matrix of (non-floating data type) [recommended]
  - Supports block matrix notation (matrix in matrix)
- ◆ Type checking for quantity vector/matrix [recommended]
- ♦ Matrix/vector operator definition in standard package [required]
  - Implementation should produce the same result as definition but not exactly follow it.





# **Next Meeting**

## **◆ Meeting schedule**

- Meeting schedule once per month, mostly web
- Always announced at www.eda.org/vhdl-ams
- Next meetings:
  Tuesday, October 12, 2010, 8am PDT
  Tuesday, November 9, 2010, 8am PDT (tentative)



http://www.eda.org/vhdl-ams/ - 25