

Working Group Meeting January 12, 2010

Ernst Christen WG Chair christen.1858@verizon.net

Agenda

- ◆ Call to order
- ◆ Approval of agenda
- Administrative issues
 - · Minutes of last meeting
 - Revision of IEEE Std 1076.1.1: Status
 - Officer elections
 - User survey
 - Status of reflector
 - Review of IEEE patent policy
- ♦ Overview of VPI-AMS for Verilog-AMS
- Next meetings
- **♦ AOB**
- ♦ Adjourn

Administrative Issues

- ◆ Approval of minutes of WG meeting held December 15, 2009
- ♦ Revision Ballot of IEEE Std 1076.1.1
 - Draft PAR approved by DASC on August 20
 - Draft PAR submitted to NesCom for October 23 meeting
 - PAR approved by IEEE-SA on November 2, 2009
 - · Peter Ashenden working on LRM, first draft by January 22
- **♦** Officer elections
 - Election results published January 5, 2010
 - · All officers confirmed

http://www.eda.org/vhdl-ams/ - 3

Administrative Issues

- ♦ User survey
 - Ready to start, awaiting resolution of reflector problems
- Status of reflector

IEEE DASC P1076.1 WG Meeting - January 12, 2010

- Since mid December messages from WG chair (as well as those of some others) are not being distributed to subscribers
 - · Problem has been identified
- Messages that were distributed were not recorded in email archive.
 - Caused by eager update of ownership of DASC files in response to election of new DASC chair. This has been fixed.
- ♦ Review of IEEE patent policy
 - http://standards.ieee.org/board/pat/pat-slideset.pdf

Overview of VPI-AMS for Verilog-AMS (1)

- ◆ Extends VPI defined by IEEE Std 1364
- ◆ Overview is based on Verilog-AMS LRM V2.3.1
- Basic capabilities
 - · Access to information about elaborated design
 - · Dynamic interaction with external application using callbacks
 - Simulation control
 - Definition/execution of user-defined system tasks and system functions
- ◆ Based on abstract data model of design and simulation kernel
- **♦ VPI functions**
 - 7 new functions
 - · Many existing functions extended to support analog needs

http://www.eda.org/vhdl-ams/ - 5

IEEE DASC P1076.1 WG Meeting - January 12, 2010

http://www.eda.org/vhdl-ams/ - 7

Overview of VPI-AMS for Verilog-AMS (2)

- ◆ Access to information about elaborated design
 - Extends the Verilog routines to traverse a design and to query information by also providing access to:
 - Disciplines
 - Natures
 - · Conservative and signal-flow ports
 - · Conservative and signal flow nodes
 - Branches
 - Flow and potential of a branch (called quantities)
 - · Contribution statements

and the data related to these items

· It does not seem to be possible to create any of these

Overview of VPI-AMS for Verilog-AMS (3)

- **♦** Dynamic interaction: Simulation interaction
 - VPI functions to retrieve data
 - vpi_get_analog_value: value of flow or potential object
 - Real and imaginary part
 - · vpi get analog time: current simulation time
 - · vpi_get_analog_delta: current time step
 - · vpi get analog frequency: current simulation frequency
 - vpi_get_real: simulation parameters
 - Start/end time
 - Maximum time step
 - Start/end frequency
 - Simulation control
 - Extends vpi_sim_control to support:
 - Request additional iterations
 - Reject a solution

Overview of VPI-AMS for Verilog-AMS (4)

◆ Dynamic interactions: callbacks

- Register a function to be called for some reason, plus arguments the function is called with.
- Callback reasons extended to include:
 - First analog solution
 - · Last analog solution
 - · Accepted analog solution at specified time
 - May force time point
 - · Accepted analog solution at delta time
 - Forces time point
 - Convergence test
 - Allows rejection of solution and selection of earlier time
- · Remove callbacks
- · Get information about callbacks

Overview of VPI-AMS for Verilog-AMS (5)

◆ Dynamic interactions: analog system tasks and functions

- Allows the definition and execution of foreign routines, which are called in the Verilog-AMS module like a predefined system task or system function
- vpi_register_analog_systf: registers an analog system task of function
 - Extends vpi register systf and includes, among others:
 - Function to be called at compile time (e.g. to check arguments)
 - Function to return function value and optionally partial derivatives
 - Function to define how partial derivatives are computed and returned
- vpi_get_analog_systf_info returns information about analog system tasks or functions
- · Partial derivatives
 - Elaboration time function defines what partials are computed
 - Can specify PD of function value or argument w.r.t. any argument
 - Simulation time function retrieves handle of a PD value to define using vpi handle multi, then returns value with vpi put value

http://www.eda.org/vhdl-ams/ - 9

Overview of VPI-AMS for Verilog-AMS (6)

Summary

- Supports purely analog models only
 - Mixed-signal behavior must be defined in Verilog-AMS model
- Support for time domain simulation reasonably well defined
 - · Functions are resistive
 - Reactive behavior must be defined in Verilog-AMS model
 - · Functions must be cycle pure
 - Function values and partial derivatives are always computed together, which may have some overhead in certain cases
 - Some ambiguities and unclear definitions or examples
- · Support for small-signal frequency domain simulation unclear
 - · Can retrieve frequency and quantity values, useful for logging
 - Definition of partials may allow small-signal model of an analog system task or function to be defined
 - · No ability to specify small-signal stimulus
- Support for noise simulation and other simulations not defined

Meeting Schedule

- **♦ Meeting schedule once per month**
- Web meetings most of the time
- **♦ Next meetings:**
 - Tuesday, February 9, 2010, 8am PST
 - Tuesday, March 9, 2010, at DATE, details TBD

IEEE DASC P1076.1 WG Meeting - January 12, 2010

http://www.eda.org/yhdl-ams/- 11