Details of Language Change
Changes shown in red font. Deletions shown in strikethrough red font. Comments shown in green font. Text that indicates an LCS dependency is shown in blue font.
Twiki has not been kind in regards to font colors and strikethrough. Word and PDF versions of these changes are attached as separate files to this LCS.
[bookmark: LRM_4_2_1_General_Subprogram_dec]LRM 4.2.1 General (Subprogram declarations)
[bookmark: Page_19_near_bottom]Page 19 near bottom
function_specification ::=
[pure | impure] function designator
subprogram_header
[[parameter] (formal_parameter_list)] return [return_identifier :] type_mark
[bookmark: Page_20_first_paragraph]Page 20 first paragraph
The specification of a procedure specifies its designator, its generics (if any), and its formal parameters (if any). The specification of a function specifies its designator, its generics (if any), its formal parameters (if any), the name that the function body may reference to retrieve attributes of return identifier (if any), the subtype of the returned value (the result subtype), and whether or not the function is pure. A function is impure if its specification contains the reserved word impure; otherwise, it is said to be pure. A procedure designator is always an identifier. A function designator is either an identifier or an operator symbol. A designator that is an operator symbol is used for the overloading of an operator (see 4.5.2). The sequence of characters represented by an operator symbol shall be an operator belonging to one of the classes of operators defined in 9.2. Extra spaces are not allowed in an operator symbol, and the case of letters is not significant.
[bookmark: Page_20_Add_after_the_first_para]Page 20 Add after the first paragraph
Add the following new material in entirety after the first paragraph (which ends with the sentence “Extra spaces are not allowed in an operator symbol, and the case of letters is not significant.”)
The return identifier allows access to the subtype of the target of the function from within the function body. The only allowable action within the function body with return identifier is as a prefix to read object attributes. The attributes returned are the attributes of the object to which the output of the function is assigning. The function with return identifier shall only be used in the following contexts:
· If type mark is an array type, the object assigned to by return identifier is an object with an explicit range constraint or an object with a default initial value assignment.
· Type mark is a scalar type (Note: Technically, this allows scalar type functions to be nested but this will probably not be of practical use since the retrieved attributes will be no different than the attributes of type mark. The practical use would be for simple assignment statements as must be the case for array types which can be unconstrained)
For an attribute name whose prefix is the return identifier and the return type mark is a scalar type or subtype, the attribute designator shall be one of BASE, LEFT, RIGHT, HIGH, LOW, ASCENDING, RANGE, REVERSE_RANGE, SUBTYPE defined in 16.2.2 (Predefined attributes of types and objects). It is an error to reference any other attributes. Reviewer’s note: RANGE and REVERSE_RANGE are not currently in the LRM. They are being added by LCS-2016-018.
For an attribute name whose prefix is the return identifier and the return type mark is an array type or subtype, the attribute designator shall be one of the attributes defined in 16.2.3 (Predefined attributes of arrays).
[bookmark: Page_21_Immediately_before_secti][bookmark: LRM_4_2_2_2_Constant_and_variabl][bookmark: LRM_4_2_2_3_Signal_parameters][bookmark: LRM_12_2_Scope_of_Declarations][bookmark: Annex_C_Syntax_Summary][bookmark: LRM_Annex_C_Syntax_Summary_Chang]LRM Annex C Syntax Summary Changes
[bookmark: Page_489_near_middle_of_the_page]Page 489 near middle of the page
Changes are shown in red font.
interface_function_specification ::= [§ 6.5.4]
[pure | impure] function designator
[[parameter] (formal_parameter_list)] return [return_identifier :] type_mark

