Details of Language Change
Changes shown in red font. Deletions shown in strikethrough red font. Comments shown in green font. Text that indicates an LCS dependency is shown in blue font.
Twiki has not been kind in regards to font colors and strikethrough. Word and PDF versions of these changes are attached as separate files to this LCS.
[bookmark: LRM_4_2_1_General_Subprogram_dec]LRM 4.2.1 General (Subprogram declarations)
[bookmark: Page_19_near_bottom]Page 19 near bottom
function_specification ::=
[pure | impure] function designator
subprogram_header
[[parameter] (formal_parameter_list)] return [identifier :] type_mark
[bookmark: Page_20_first_paragraph]Page 20 first paragraph
The specification of a procedure specifies its designator, its generics (if any), and its formal parameters (if any). The specification of a function specifies its designator, its generics (if any), its formal parameters (if any), the name that the function body may reference to retrieve attributes of the target (if any), the subtype of the returned value (the result subtype), and whether or not the function is pure. A function is impure if its specification contains the reserved word impure; otherwise, it is said to be pure. A procedure designator is always an identifier. A function designator is either an identifier or an operator symbol. A designator that is an operator symbol is used for the overloading of an operator (see 4.5.2). The sequence of characters represented by an operator symbol shall be an operator belonging to one of the classes of operators defined in 9.2. Extra spaces are not allowed in an operator symbol, and the case of letters is not significant.
[bookmark: Page_20_Add_after_the_first_para]Page 20 Add after the first paragraph
Add the following new material in entirety after the first paragraph (which ends with the sentence “Extra spaces are not allowed in an operator symbol, and the case of letters is not significant.”)

The list of ‘Determinable index range conditions’ that are coming up are copied from section 9.3.3 which defines the conditions under which “The index range of an array aggregate that has an others choice shall be determinable from the context”. The following changes are intended to create a list of conditions under which “The index range of a scalar object that shall be determinable from the context”. Changes are:
- Change “fully constrained array subtype” to “fully constrained subtype”
- Delete bullets j) and k) which have to do with aggregates which have no mapping to scalar index ranges
Text shown in blue font is dependent on LCS-2016-072a. If that LCS is approved, then the blue font text shown here should be included. If that LCS is not approved, then the blue font text shown here should not be included.
If the specification of a function includes an identifier prior to the result subtype, that identifier can be used within the function body as if it was a formal input variable of the result subtype of the function. The only allowable action within the function body with this identifier is to retrieve attributes. The attributes returned are the attributes of the target to which the output of the function is assigning. The named function with result identifier shall only be used in a context that meets one of the following conditions: (If LCS-2016-072a is not approved, since the blue font text will be removed, it would be better to reword this slightly in order to avoid having a bulleted list with only one bullet)
· If the target is an array, the target must meet one of the conditions of ‘Determinable index range conditions’ listed in section 9.3.3.3--Array aggregates.
· [bookmark: _GoBack]If the target is a scalar, must meet one of the following conditions:

a) As an actual associated with a formal parameter, formal generic, or formal port (or member thereof), where the formal (or the member) is declared to be of a fully constrained subtype
b) As the default expression defining the default initial value of a port declared to be of a fully constrained subtype
c) As the default expression for a generic constant declared to be of a fully constrained subtype
d) As the result expression of a function, where the corresponding function result type is a fully constrained subtype
e) As a value expression in an assignment statement, where the target is a declared object (or member thereof), and either the subtype of the target is a fully constrained subtype
f) As the expression defining the initial value of a constant or variable object, where that object is declared to be of a fully constrained subtype
g) As the expression defining the default values of signals in a signal declaration, where the corresponding subtype is a fully constrained subtype
h) As the expression defining the value of an attribute in an attribute specification, where that attribute is declared to be of a fully constrained subtype
i) As the operand of a qualified expression whose type mark denotes a fully constrained subtype
 The attributes of the target that may be referenced are:
· The elements BASE, LEFT, RIGHT, HIGH, LOW, ASCENDING, SUBTYPE defined in 16.2.2 (Predefined attributes of types and objects).
· All attributes defined in 16.2.3 Predefined attributes of arrays
It is an error to reference any other attributes.
LRM 9.3.3.3 Array aggregates
Page 134 middle of page
The index range of an array aggregate that has an others choice shall be determinable from the context by meeting one of the Determinable index range conditions. That is, an array aggregate with an others choice shall appear only in one of the following contexts:
Determinable index range conditions:
a) As an actual associated with a formal parameter, formal generic, or formal port (or member thereof), where either the formal (or the member) is declared to be of a fully constrained array subtype, or the formal designator is a slice name
[bookmark: Page_21_Immediately_before_secti][bookmark: LRM_4_2_2_2_Constant_and_variabl][bookmark: LRM_4_2_2_3_Signal_parameters][bookmark: LRM_12_2_Scope_of_Declarations]LRM 12.2 Scope of Declarations
[bookmark: Page_186_middle_of_page]Page 186 middle of page
h) A declaration that occurs immediately within a protected type declaration
i) An architecture body
j) A return identifier after the formal parameter declaration in a subprogram declaration or specification
[bookmark: Annex_C_Syntax_Summary][bookmark: LRM_Annex_C_Syntax_Summary_Chang]LRM Annex C Syntax Summary Changes
[bookmark: Page_489_near_middle_of_the_page]Page 489 near middle of the page
Changes are shown in red font.
interface_function_specification ::= [§ 6.5.4]
[pure | impure] function designator
[[parameter] (formal_parameter_list)] return [identifier :] type_mark

