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31. Reflection API

This clause explains how to access structural information about the type system through the application
programming interface (API), also known as the reflection API, and defines the reflection API itself. See
also Annex E (for examples).

31.1 Introduction

Reflection (sometimes called introspection) is a programmatic interface into the meta-data of a program.
Most object-oriented (OO) languages and systems supply some way of referring to meta-level
entities—mainly type-related, such as classes, methods, and fields. The richness of modeling concepts
supported by the e language calls for a much more comprehensive reflection facility than that of other
languages. Reflection interfaces are typically used for constructing external developer aid tools such as class
browsers, data browsers, debugging aids, source browsers, etc. They can also be used to implement generic
utilities, where the modeling powers of the language such as inheritance and polymorphism are not strong
enough, e.g., object serialization utilities like packing or register filling. The reflection interface in e is
designed to facilitate such third-party applications and tools, where these problems typically arise.

31.1.1 Representation

The e reflection facility is a class API. Each structural element in the program is represented by an object (an
e struct instance). One object represents, for example, the type int, another represents the struct type
any_struct, another represents the method to_string(), and so on. These representations are called meta-
objects. Meta-objects are classified into different groups that are called meta-types. These e struct types form
a hierarchy of abstractions and show the different relations between such entities. All of these meta-types
have a common prefix to their name, rf_.

31.1.2 Structure

The interface is divided into three main parts: type information, aspect information, and value query and
manipulation, which correspond to 31.2, 31.3, and 31.4 respectively. This grouping of the API’s
functionality cuts across meta-types so that the interface of one struct may consist of methods that are
defined in different parts (e.g., some methods of the struct rf_event are described in 31.2, others in 31.3, and
the rest in 31.4).

Each meta-type is introduced separately. Its location in the type hierarchy is denoted by showing its like
inheritance (if any), which has the usual inheritance implications (e.g., the method is_private(), which is
defined for the struct rf_struct_member, also exists for rf_field, which is like rf_struct_member). The
concept behind each meta-type is explained, its methods are detailed, and each method’s return type is set
off by a colon (:). For example, in rf_named_entity.get_name(): string, the type returned is a string.

31.1.3 Terminology and conventions

There is a possibility of confusion when dealing with meta-data and meta-types, as objects are used to
represent types, methods, and so on, while they themselves, like any other object, are instances of types and
have methods. However, for the sake of readability, and where there is no ambiguity, the phrase “the type/
method/field” is shorthand for “an object representing the type/method/field.” For example, the method
rf_struct.get_methods() returns a list of methods of this struct, which means it returns a list of objects
representing this struct’s methods.

Clarifying the concept of like and when inheritance (see 6.1) is a major concern. Therefore, two trivial
examples are used in many places to illustrate these definitions. One is the hierarchy of dog, with bulldog
and poodle as its like heirs. The other is the struct packet, having an enumerated field size, and a
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Boolean field corrupt, which allow for when subtypes such as small packet or big corrupt
packet.

31.2 Type information

The core of the reflection API is the representation of types in e. This part of the interface enables all type-
related queries concerning scalar types, list types, struct types, methods, fields, events, and so on. From the
viewpoint of the reflection API, units are simply structs (see 31.2.2 for how to query if a struct is a unit).

31.2.1 Named entities

This subclause defines the types of named entities.

31.2.1.1 rf_named_entity

Named entities are types, struct members, and other entities that, once declared, become part of the lexicon
of the language. Most named entities have a name (string), though for some kinds of named entities the
name is optional and they can be unnamed. Named entities are either visible or hidden. The importance of
this abstraction is related to 31.3.

a) rf_named_entity.get_name(): string

Returns the name of this entity. If the entity is unnamed, returns an empty string.

b) rf_named_entity.is_visible(): bool

Returns TRUE if this entity is visible. Otherwise, returns FALSE. Invisible (hidden) named entities
include members of any user-defined structs, which are not shown in printing and visualization
tools.

The following methods of rf_named_entity are described in 31.3.1.3:

rf_named_entity.get_declaration()

rf_named_entity.get_declaration_module()

rf_named_entity.get_declaration_source_line_num()

31.2.1.2 rf_type

This struct like-inherits from rf_named_entity (see 31.2.1.1).

a) rf_type.is_public(): bool

Returns TRUE if this type has unrestricted access. Otherwise, returns FALSE (when this type was
declared with a package modifier).

b) rf_type.get_package(): rf_package

Returns the package to which this type belongs. 

c) rf_type.get_qualified_name(): string

Returns the fully qualified name of the type (i.e., with the declaring package name followed by the
:: operator). 

d) rf_type.get_base_list_elem_type(): rf_type

Returns the type contained in this type as a base list element. If this type is not a list type, the type
itself is returned. If this type is a one-dimension list, the list element type is returned. If this type is a
multi-dimension list, the base list element type is returned. For example, if this type is list of list of
list of int, then the returned type is int. 
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e) rf_type.is_method_type(): bool

Returns TRUE if this type is a method_type, that is, declared with a method_type statement. 

The following methods of rf_type are described in 31.4.2:

rf_type.create_holder()

rf_type.value_is_equal()

rf_type.value_to_string()

31.2.2 Struct types: rf_struct

This struct like-inherits from rf_type (see 31.2.1.2). See also Clause 6.

a) rf_struct.get_fields(): list of rf_field

Returns a list containing all fields of this struct (declared by it or inherited from its parent type).

b) rf_struct.get_declared_fields(): list of rf_field

Returns a list containing all fields declared in the context of this struct [a subset of
rf_struct.get_fields()].

c) rf_struct.get_field(name: string): rf_field

Returns the field of this struct with the name or NULL if no such field exists. Field names are unique
in the context of a struct.

d) rf_struct.get_methods(): list of rf_method

Returns a list containing all methods of this struct (declared by it or inherited from its parent type).

e) rf_struct.get_declared_methods(): list of rf_method

Returns a list containing all methods declared in the context of this struct [a subset of
rf_struct.get_methods()]. Methods that are declared by a parent type and extended or overridden in
the context of this struct are not returned (see also 6.3).

f) rf_struct.get_method(name: string): rf_method

Returns the method of this struct with the name or NULL if no such method exists. Method names
are unique in the context of a struct.

g) rf_struct.get_events(): list of rf_event

Returns a list of all events of this struct (declared by it or inherited from its parent type).

h) rf_struct.get_declared_events(): list of rf_event

Returns a list of all events declared in the context of this struct [a subset of rf_struct.get_events()].
Events that are declared by a parent type and overridden in the context of this struct are not returned
(see also 6.3).

i) rf_struct.get_event(name: string): rf_event

Returns the event of this struct with the name or NULL if no such event exists. Event names are
unique in the context of a struct.

j) rf_struct.get_expects(): list of rf_expect

Returns a list of all expects of this struct (declared by it or inherited from its parent type). This
includes both named and unnamed expects.

k) rf_struct.get_declared_expects(): list of rf_expect

Returns a list of all expects declared in the context of this struct [a subset of
rf_struct.get_expects()]. Expects that are declared by a parent type and overridden in the context of
this struct are not returned (see also 6.3).
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l) rf_struct.get_expect(name: string): rf_expect

Returns the expect of this struct with the name or NULL if no such expect exists. Expect names are
unique in the context of a struct. Unnamed expects are not considered, and if an empty string is
given as parameter, NULL is returned.

m) rf_struct.get_checks(): list of rf_check

Returns a list of all checks of this struct (declared by it or inherited from its parent type). This
includes both named and unnamed checks.

n) rf_struct.get_declared_checks(): list of rf_check

Returns a list of all checks declared in the context of this struct [a subset of rf_struct.get_checks()].
Checks that are declared by a parent type and overridden in the context of this struct are not returned
(see also 6.3).

o) rf_struct.get_check(name: string): rf_check

Returns the constraint of this struct with the name or NULL if no such constraint exists. Constraint
names are unique in the context of a struct. Unnamed constraints are not considered, and if an empty
string is given as parameter, NULL is returned.

p) rf_struct.get_constraints(): list of rf_constraint

Returns a list of all constraints of this struct (declared by it or inherited from its parent type). This
includes both named and unnamed constraints.

q) rf_struct.get_declared_constraints(): list of rf_constraint

Returns a list of all constraints declared in the context of this struct [a subset of
rf_struct.get_constraints()]. Constraints that are declared by a parent type and overridden in the
context of this struct are not returned (see also 6.3).

r) rf_struct.get_constraint(name: string): rf_constraint

Returns the check of this struct with the name or NULL if no such check exists. Check names are
unique in the context of a struct. Unnamed checks are not considered, and if an empty string is given
as parameter, NULL is returned.

s) rf_struct.is_unit(): bool

Returns TRUE if this struct is a unit. Otherwise, returns FALSE. Returning TRUE is the only indica-
tion this meta-object represents a unit rather than a regular struct type.

The following methods of rf_struct are described in 31.2.4.3:

rf_struct.is_contained_in()

rf_struct.is_disjoint()

rf_struct.is_independent()

rf_struct.get_when_base()

The following method of rf_struct is described in 31.4.1:

rf_struct.is_instance_of_me()

31.2.3 Struct members

Struct members are represented by instances of the meta-types rf_field (see 31.2.3.2), rf_method (see
31.2.3.4), rf_event (see 31.2.3.6) rf_expect (see 31.2.3.7), rf_check (see 31.2.3.8), and rf_constraint (see
31.2.3.9). Each member is introduced for the first time in the context of some struct—its declaring struct. Its
access rights—(for methods, fields and events only) one of package, protected, private, or public (the
default)— are assigned to it upon its declaration.
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31.2.3.1 rf_struct_member

This struct like-inherits from rf_named_entity (see 31.2.1.1).

a) rf_struct_member.get_declaring_struct(): rf_struct

Returns the struct where this member was introduced. This applies also to the empty definition of
methods or declarations of undefined methods.

b) rf_struct_member.applies_to(rf_struct): bool

Returns TRUE if this struct member applies to instances of rf_struct; i.e., this was declared by
rf_struct or by a different struct that contains rf_struct (see also 6.2). Otherwise, returns FALSE.

c) rf_struct_member.is_private(): bool

— Returns TRUE if this struct member was declared with the private access modifier; i.e., it is
accessible only within the context of both its package and its declaring struct or its subtypes.
Otherwise, returns FALSE.

— rf_struct_member.is_protected(): bool

— Returns TRUE if this struct member was declared with protected access modifier; i.e., it is
accessible only within the context of the declaring struct or its subtypes. Otherwise, returns
FALSE.

d) rf_struct_member.is_package_private(): bool

Returns TRUE if this struct member was declared with package access modifier; i.e., it is accessible
only within the context of the package where it was declared. Otherwise, returns FALSE.

e) rf_struct_member.is_public(): bool

Returns TRUE if this struct member was declared without an access modifier; i.e., its access is not
restricted. Otherwise, returns FALSE.

31.2.3.2 rf_field

This struct like-inherits from rf_struct_member (see 31.2.3.1).

a) rf_field.get_type(): rf_type

Returns the declared type of the field.

b) rf_field.get_declared_list_size(): int

Returns the explicitly declared constant list size for fields whose type is a list. For example, if the
field declaration is:

my_list[2]: list of int;

get_declared_list_size() will return 2. If the field type is not a list, if no sizes are explicitly declared,
or if the explicitly declared size is a non-constant expression, the result is UNDEF. If the field type
is a multi-dimension list, and multiple list sizes are explicitly declared, the result is the size of the
first dimension. For example, if the field declaration is:

my_list[2][5]: list of list of int;

get_declared_list_size() will return 2.

c) rf_field.get_declared_list_sizes(): list of int

Returns the explicitly declared constant list sizes for fields whose type is a (possibly multi-dimen-
sion) list. For example, if the field declaration is:

my_list[2][x]: list of list of int;

get_declared_list_sizes() will return {2;5}. If the field type is not a list, or if no sizes are explicitly
declared, the result is an empty list. Where an explicitly declared size is a non-constant expression,
the corresponding element in the result is UNDEF. For example, if the field declaration is:
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my_list[2][x]: list of list of int;
(where x is another field of the same struct)

get_declared_list_sizes() will return {2;UNDEF}.

d) rf_field.is_physical(): bool

Returns TRUE if the field is declared physical [i.e., with the % modifier (see 6.8)]. Otherwise, returns
FALSE. Physical fields are those that are packed when the struct is packed.

e) rf_field.is_ungenerated(): bool

Returns TRUE if the field is declared as ungenerated [i.e., with the ! modifier (see 6.8)]. Otherwise,
returns FALSE. Ungenerated fields are not generated automatically when the struct is generated.

f) rf_field.is_const(): bool

Returns TRUE if the field is declared as a constant [i.e., with the const modifier (see 6.8)]. Other-
wise, returns FALSE. 

g) rf_field.get_deep_copy_attr(): rf_deep_attr

Returns the deep_copy attribute of this field in the context of the given struct (see 6.11). If the field
does not belong to this struct, the result is undefined.

h) rf_field.get_deep_compare_attr(): rf_deep_attr

Returns the deep_compare attribute of this field in the context of the given struct (see 6.11). If the
field does not belong to this struct, the result is undefined.

i) rf_field.get_deep_compare_physical_attr(): rf_deep_attr

Returns the deep_compare_physical attribute of this field in the context of the given struct (see
6.11). If the field does not belong to this struct, the result is undefined.

j) rf_field.is_unit_instance(): bool

Returns TRUE if the field is an instance of a unit [i.e., declared as is instance (see 7.2.2)].
Otherwise, returns FALSE.

k) rf_field.is_port_instance(): bool

Returns TRUE if the field is an instance of a port [i.e., declared as is instance of a port type (see
9.6)]. Otherwise, returns FALSE.

The following methods of rf_field are described in 31.4.3:

rf_field.get_value()

rf_field.get_value_unsafe()

rf_field.set_value()

rf_field.set_value_unsafe()

rf_field.is_consistent()

31.2.3.3 rf_deep_attr

This is a predefined enumerated type that represents the possible values of field deep_copy, deep_compare,
or deep_compare_physical attributes:

type rf_deep_attr: [normal, reference, ignore]

31.2.3.4 rf_method

This struct like-inherits from rf_struct_member (see 31.2.3.1).

a) rf_method.get_result_type(): rf_type
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Returns the object that represents the result type of this method or NULL if the method does not
return any value.

b) rf_method.get_parameters(): list of rf_parameter

Returns a list of formal parameters of this method. If the method has no parameters, the list is empty.

c) rf_method.is_tcm(): bool

Returns TRUE if this method may consume time; i.e., it is declared as a TCM. Otherwise, returns
FALSE.

d) rf_method.is_final(): bool

Returns TRUE if the method is declared as final (see 18.1.1). Otherwise, returns FALSE.

The following methods of rf_method are described in 31.3.1.1:

rf_method.get_layers()

rf_method.get_relevant_layers()

The following methods of rf_method are described in 31.4.3:

rf_method.invoke()

rf_method.invoke_unsafe()

rf_method.start_tcm()

rf_method.start_tcm_unsafe()

31.2.3.5 rf_parameter

a) rf_parameter.get_name(): string

Returns the name given to this parameter in the declaration method.

b) rf_parameter.get_type(): rf_type

Returns the type of this parameter.

c) rf_parameter.is_by_reference(): bool

Returns TRUE if this parameter is passed by reference; i.e., it was declared using * (see 18.3.1).
Otherwise, returns FALSE.

d) rf_parameter.get_default_value_string(): bool

Returns a string representing the expression used as the default value for this parameter. For
example, if the method declaration is foo(i: int = 5), the returned string for the parameter
will be 5. If this parameter does not have a default value, it returns an empty string.

31.2.3.6 rf_event

This struct like-inherits from rf_struct_member (see 31.2.3.1).

The following method of rf_event is described in 31.3.3.4:

rf_event.get_layers()

rf_event.get_relevant_layer()

The following methods of rf_event are described in 31.4.3:

rf_event.is_emitted()

rf_event.is_emitted_unsafe()

rf_event.emit()
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rf_event.emit_unsafe()

31.2.3.7 rf_expect

This struct like-inherits from rf_struct_member (see 31.2.3.1).

The following methods of rf_expect are described in 31.3.3.4:

rf_expect.get_layers()

rf_expect.get_relevant_layer()

The following methods of rf_expect are described in 31.4.3:

rf_expect_stop()

rf_expect_rerun()

31.2.3.8 rf_check

This struct like-inherits from rf_struct_member (see 31.2.3.1).

a) rf_check.has_condition(): bool

Returns TRUE if this check has a condition being checked. Returns FALSE otherwise, if it is a
plain dut_error() action.

The following methods of rf_check are described in 31.3.3.4:

rf_check.actions()

rf_check.get_relevant_actions() 

31.2.3.9 rf_constraint

This struct like-inherits from rf_struct_member (see 31.2.3.1).

The following methods of rf_constraint are described in 31.3.3.4:

rf_constraint.get_layers()

rf_constraint.get_relevant_layer()

rf_constraint.get_declaration_string()

The following method of rf_constraint is described in 31.4.3:

rf_constraint.is_satisfied()

rf_expect_rerun()

31.2.4 Inheritance and when subtypes

There are two mechanisms for subtyping in e. One is OO single inheritance (like inheritance), where a struct
is declared as derived from another. The other (when subtyping) is closer to predicate classes, where a
behavioral or structural feature of an object is determined by some state or attribute. In both cases, a new
struct type is defined in terms of an existing one. But the relations between the two kinds of struct types are
different, and they are represented by different kinds of meta-objects. Thus, there are two kinds of struct
types: like structs and when subtypes.

The two mechanisms, like and when, do not mix. Like inheritance lays the basic type hierarchy. Only the
leaves of the hierarchy tree, the structs that have no like subtypes, can serve as a base for when
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proliferations. Each when variant is a different type, but unlike like structs, these types are not derived from
each other and do not form a hierarchy. To mark this difference, the set of when subtypes is called a when
family and the like struct that serves as the base for these proliferations is called a when base. Also, a when
subtype can be determined by a field that is declared in the context of another when subtype; however, such
subtypes are part of the same when family with the same when base.

See also Clause 6.

31.2.4.1 Canonical names

Each value of an enumerated or a Boolean field of an object can serve as a determinant of its structure and
behavior. A set of one or more field/values pairs (determinants) corresponds to a potential when subtype.
One such type can have a number of names by which it is identified—using fully qualified determinants or
without them (e.g., big’size packet versus big packet)—and in a different determinant order
(e.g., big corrupt packet versus corrupt big packet). However, the method get_name()
returns a canonical name, the fully qualified determinants in the reverse order of the declaration of the
fields. For example, TRUE’corrupt big’size packet is a canonical name of one of packet’s
subtypes, given that field corrupt was defined after field size.

31.2.4.2 Explicit and significant subtypes

A when variant of a struct is called an explicit subtype if it is explicitly given some distinctive structural or
behavioral content by some when or extend constructs (see 6.3 and 6.6). Subtypes can be true variants of a
struct, i.e., have distinct content, even when they are not explicitly defined: they consist of the conjunction
of two or more explicit subtypes. These are called significant subtypes. Significant subtypes are important
because each object in the program has exactly one type that describes it exhaustively (see 31.4.2).

For example, the struct packet with enumerated field size (big or small) and Boolean field
corrupt has four possible when subtypes. If only big packet and corrupt packet are defined as
explicit variants of packet (using the constructs when big packet {…} and when corrupt
packet {…}), then only they are explicit subtypes. In this case, corrupt big packet is also a
significant subtype, since it has some distinctive features. On the other hand, small packet is neither
explicit nor significant, since instances of it are equivalent to instances of packet.

31.2.4.3 Generalized relationships

There are a number of generalized relations that apply to both like structs and when subtypes, such as
containment and mutual exclusion. However, regular inheritance relations, e.g., whether a struct is a direct
parent type or a direct subtype of another, are applicable only to like structs.

a) rf_struct.is_contained_in(rf_struct): bool

Returns TRUE if every instance of this struct is an instance of rf_struct. Otherwise, returns FALSE.
For example, bulldog is contained in dog; whereas, corrupt small packet is contained in
small packet, in corrupt packet, in packet, and in itself, but small packet is not
contained in corrupt packet.

b) rf_struct.is_disjoint(rf_struct): bool

Returns TRUE if every instance of this struct is not an instance of rf_struct and vice versa; i.e., the
two types are mutually exclusive. Otherwise, returns FALSE. like structs are disjointed if they are
not identical and neither one is contained in the other, e.g., bulldog and poodle are disjointed, big
packet and small packet are disjointed, but big packet and corrupt packet are not.

c) rf_struct.is_independent(rf_struct): bool

Returns TRUE if an instance of this struct is possibly, but not necessarily, an instance of rf_struct.
Otherwise, returns FALSE. This relation holds only between two when subtypes that are neither
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contained nor mutually exclusive. For example, big packet is independent of corrupt
packet, but not of corrupt small packet.

d) rf_struct.get_when_base(): rf_like_struct

Returns the struct that is the base of the when struct family. This struct itself is returned if it is not a
when subtype (regardless of whether it actually contains when subtypes).

31.2.4.4 rf_like_struct

This struct like-inherits from rf_struct (see 31.2.2).

a) rf_like_struct.get_supertype(): rf_like_struct

Returns the immediate like parent type of this struct.

b) rf_like_struct.get_direct_like_subtypes(): list of rf_like_struct

Returns the set of immediate subtypes of this struct in the like struct hierarchy.

c) rf_like_struct.get_all_like_subtypes(): list of rf_like_struct

Returns the set of all subtypes of this struct in the like struct hierarchy.

d) rf_like_struct.get_when_subtypes(): list of rf_when_subtype

Returns the set of all defined subtypes in the when struct family for this struct. If this struct is not a
leaf in the like hierarchy (i.e., it has like subtypes), the method returns an empty list. Any subtypes
that are significant, but not defined, are not returned (see 31.2.4.5).

The following method of rf_like_struct is described in 31.3.2.3:

rf_like_struct.get_layers()

31.2.4.5 rf_when_subtype

This struct like-inherits from rf_struct (see 31.2.2).

a) rf_when_subtype.get_short_name(): string

Returns a short version of the canonical name, i.e., without determinant qualification unless ambigu-
ity requires it. For example, a type whose canonical name is corrupt’TRUE big’size
packet would (normally) have the short name corrupt big packet. Qualified determinants
appear in the short name when the same value name is a possible value of more than one field.

b) rf_when_subtype.get_determinant_fields(): list of rf_when_field

Returns the list of the determinant fields for this when subtype, that is, the fields whose values con-
stitute this specific subtype. For example, if packet has a field big of type bool and a field color of
type [red, green], then the list of determinant fields for big red packet contains exactly these two
fields.

c) rf_when_subtype.get_determinant_values(): list of int

Returns the list of the determinant values for this when subtype, that is, the values of the determi-
nant fields that constitute this specific subtype. The order of the values in the resulting list is accord-
ing to the order of the determinant fields in the list returned by get_determinant_fields(). These
values are automatically converted to the type int, according to the semantics of as_a() casting oper-
ator, as described in Section 5.8.1. For example, if packet has a field big of type bool and a field
color of type [red, green, blue], then the list of determinant fields for big blue packet contains the
values 1 for big (TRUE) and 2 for blue.

d) rf_when_subtype.is_explicit(): bool

Returns TRUE if this when subtype is explicitly defined in the program (by a when or an extend
construct). Otherwise, returns FALSE (for both significant and insignificant subtypes).

e) rf_when_subtype.get_contributors(): list of rf_when_subtype
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Returns the set of subtypes that contribute to the definition of this subtype, i.e., all the explicit sub-
types where this subtype is contained, including itself if that case is explicitly defined.

31.2.5 List types

This subclause defines the list types.

31.2.5.1 rf_list

This struct like-inherits from rf_type (see 31.2.1.2).

Lists are multi-purpose containers in e. The different list types are all instances of a generic definition,
similar to user-defined template types. Any type can serve as the element type of a list.

a) rf_list.get_element_type(): rf_type

Returns the element type of this list, e.g., the element type of list of big packet is big
packet.

b) rf_list.is_packed(): bool

Returns TRUE if this list is packed (a list with an element type whose size in bits is 16 or less).
Otherwise, returns FALSE.

31.2.5.2 rf_keyed_list

This struct like-inherits from rf_list (see 31.2.5.1).

rf_keyed_list.get_key_field(): rf_field

Returns the field by which the list is mapped or NULL if the key is the object itself [i.e., when the list
is defined as (key: it)].

31.2.6 Scalar types

Scalars in e have value semantics in assignment, parameter passing, equivalence, operators, etc. They are
either enumerated, numeric, or Boolean types.

31.2.6.1 rf_scalar

This struct like-inherits from rf_type (see 31.2.1.2).

a) rf_scalar.get_size_in_bits(): int

Returns the size of this scalar type in bits.

b) rf_scalar.get_set_of_values(): set

Returns a set that contains all the legal values of this scalar type, similar to using the set_of_values()
operator. If this type is the real type, or if it is an unbounded integer type without a subrange, an
exception is issued.

c) rf_scalar.get_full_set_of_values(): set

Returns a set that contains all possible values of this scalar type, similar to using the
full_set_of_values() operator. If this type is the real type, or if it is an unbounded integer type with-
out a subrange, an exception is issued.

d) rf_scalar.get_range_string(): string

Returns a string representation of the scalar range of values in the format of range modifiers (e.g.,
the string “[1..4,7,9..10]”).
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31.2.6.2 rf_numeric

This struct like-inherits from rf_scalar (see 31.2.6.1).

rf_numeric.is_signed(): bool

Returns TRUE if the numeric type is signed. Otherwise, returns FALSE.

31.2.6.3 rf_enum

This struct like-inherits from rf_scalar (see 31.2.6.1).

a) rf_enum.get_items(): list of rf_enum_item

Returns the set of named values for this type. The legal values of an enum type (see 4.3.2.3) are not
restricted by a range declaration, e.g., the type introduced by the statement type my_color:
color [red..blue] has the same items as type color. Such declarations only affect
generation properties of the type.

b) rf_enum.get_item_by_value(value: int): rf_enum_item

Returns the named value object for value or NULL if no such value exists in this type’s range.

c) rf_enum.get_item_by_name(name: string): rf_enum_item

Returns the named value object for name or NULL if no value by such name exists in this type’s
range.

The following method of rf_enum is described in 31.3.2.2:

rf_enum.get_layers()

31.2.6.4 rf_enum_item

The following method of rf_named_entity is described in 31.2.1.1:

Enum items are pairs of identifier-integer, which are the possible values of a variable of that enum type. The
integer values of enum items are the numbers assigned to them explicitly in the declaration (e.g., [red =
3, green = 17]) or the default (consecutive) numbers.

a) rf_enum_item.get_defining_type(): rf_enum

Returns the enum type in which this item was introduced.

b) rf_enum_item.get_value(): int

Returns the integer value associated with this item as a signed integer.

31.2.6.5 rf_bool

This struct like-inherits from rf_scalar (see 31.2.6.1).

Boolean types in e are the predefined type bool and its (possibly user-defined) width derivatives such as
bool (bits:8). Boolean types have no special features others than those declared for rf_scalar.

31.2.6.6 rf_real

This struct like-inherits from rf_scalar (see 31.2.1.2).

There is only one real type; thus, the meta-type rf_real is a singleton. It does not have any special features
other than those declared for rf_scalar.
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31.2.6.7 rf_set

This struct like-inherits from rf_type (see 31.2.1.2).

There is only one set type; thus, the meta-type rf_set is a singleton. It does not have any special features
other than those declared for rf_type.

31.2.6.8 rf_string

This struct like-inherits from rf_type (see 31.2.1.2).

Strings in e are instances of a special built-in type, which is neither scalar nor compound (a struct or list).
There is only one string type; thus, the meta-type rf_string is a singleton. It does not have any special
features other than those declared for rf_type.

31.2.7 Port types

Ports in e are special purpose objects that serve to bind different units in the verification environment and
specifically to interconnect with the DUT. Each port is an instance of one the four port types. There are five
kinds of parameterized port types: simple_port, buffer_port, method_port,
interface_port, and tlm_socket; and a non-parameterized kind: event_port.

31.2.7.1 rf_port

This struct like-inherits from rf_type (see 31.2.1.2).

a) rf_port.is_input(): bool

Returns TRUE if this port type is declared as an input with the in or the inout specifier. 

b) rf_port.is_output(): bool

Returns TRUE if this port type is declared as an output with the out or the inout specifier. 

c) rf_port.get_element_type(): rf_type

Returns the element type of this port type. For event ports, which do not have element type, returns
NULL. 

31.2.7.2 rf_simple_port

This struct like-inherits from rf_port (see 31.2.7.1).

Simple port types have no special features others than those declared for rf_port.

31.2.7.3 rf_buffer_port

This struct like-inherits from rf_port (see 31.2.7.1).

Buffer port types have no special features others than those declared for rf_port.

31.2.7.4 rf_event_port

This struct like-inherits from rf_port (see 31.2.7.1).

Event port types have no special features others than those declared for rf_port.
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31.2.7.5 rf_method_port

This struct like-inherits from rf_port (see 31.2.7.1).

Method port types have no special features others than those declared for rf_port.

31.2.7.6 rf_interface_port

This struct like-inherits from rf_port (see 31.2.7.1).

Interface port types have no special features others than those declared for rf_port.

31.2.7.7 rf_tlm_socket

This struct like-inherits from rf_port (see 31.2.7.1).

TLM socket types have no special features others than those declared for rf_port.

31.2.8 Sequence types

This subclause defines the sequence types.

31.2.8.1 rf_sequence

This struct like-inherits from rf_like_struct (see 31.2.4.4).

a) rf_sequence.get_driver_struct(): rf_struct

Returns the sequence driver unit type for this sequence type. 

b) rf_sequence.get__kind(): rf_enum

Returns the kind enumerated type for this sequence type. 

31.2.8.2 rf_bfm_sequence

This struct like-inherits from rf_sequence.

a) rf_bfm_sequence.get_item_struct(): rf_struct

Returns the item type for this sequence type. 

31.2.8.3 rf_virtual_sequence

This struct like-inherits from rf_sequence.

Virtual sequence types have no special features others than those declared for rf_sequence.

31.2.9 Template types

This subclause defines the template and template instance types.

31.2.9.1 rf_template

This struct like-inherits from rf_named_entity (see 31.2.1.1). See also Clause 8.

a) rf_template.is_public(): bool
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Returns TRUE if this template has unrestricted access. Otherwise, returns FALSE (when this tem-
plate was declared with a package modifier).

b) rf_template.get_package(): rf_package

Returns the package to which this template belongs. 

c) rf_template.get_qualified_name(): string

Returns the fully qualified name of the template (i.e., with the declaring package name followed by
the :: operator). 

d) rf_template.is_unit(): bool

Returns TRUE if this template is a unit template (i.e., all its instances are units). Otherwise, returns
FALSE. 

e) rf_template.get_supertype(): rf_like_struct

Returns the immediate like parent type of this template, which is the parent type of its instances. If
the parent type specified in the template declaration is parameterized by the template parameters,
which means that each template instance has a different parent type, then it returns NULL.

f) rf_type.num_of_params(): int

Returns the number of type parameters that this template has. 

g) rf_type.get_all_instances(): list of rf_template_instance

Returns all the existing instances of this template. 

31.2.9.2 rf_template_instance

This struct like-inherits from rf_like_struct (see 31.2.4.4).

a) rf_template_instance.get_template(): rf_template

Returns the template of which this type is an instance. 

b) rf_template.get_template_parameters(): list of rf_type

Returns the list of types on which the template was parameterized to created this template instance. 

31.2.10 Macros: rf_macro

This struct like-inherits from rf_named_entity (see 31.2.1.1). See also Clause 8.

a) rf_macro.get_category(): string

Returns the name of the syntactic category to which this macro belongs. For example, if the macro
name is <my'action>, it returns the string “action”.

b) rf_template.get_match_expression(): string

Returns the match expression string of this macro. 

c) rf_struct.get_package(): rf_package

Returns the package to which this macro belongs. 

d) rf_struct.is_computed(): bool

Returns TRUE if this macro is a define-as-computed macro. Returns FALSE if this macro is a
define-as macro.

31.2.11 Routines: rf_routine

This struct like-inherits from rf_named_entity (see 31.2.1.1). See also Clause 8.

a) rf_routine.get_result_type(): rf_type
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Returns the object that represents the result type of this routine or NULL if the routine does not
return any value.

b) rf_routine.get__parameters(): list of rf_parameter

Returns a list of formal parameters of this routine. If the routine has no parameters, the list is empty.

31.2.12 Querying for types: rf_manager

The starting point in every query into the type information is a set of services that are not related to any
specific kind of meta-objects. They are scoped together as methods of a singleton class named rf_manager,
the instance of which is under global. This struct has other general services that are defined in 31.3.5, 31.4.1,
and item k) in 31.4.3.

a) rf_manager.get_type_by_name(name: string): rf_type

Returns the type with name, or NULL if no type by that name exists in the system.

b) rf_manager.get_struct_by_name(name: string): rf_type

Returns the struct type with name, or NULL if no struct type by that name exists in the system.

c) rf_manager.get_user_types(): list of rf_type

Returns a list of all the types declared in the user modules.

d) rf_manager.get_template_by_name(name: string): rf_template

Returns the template with name, or NULL if no template by that name exists in the system.

e) rf_manager.get_user_templates(): list of rf_template

Returns a list of all the templates declared in the user modules.

f) rf_manager.get_macro_by_name(name: string): rf_macro

Returns the macro with name, or NULL if no macro by that name exists in the system.

g) rf_manager.get_user_macros(): list of rf_macro

Returns a list of all the macros declared in the user modules.

h) rf_manager.get_macros_by_category(category: string): list of rf_macro

Returns a list of all the macros of the syntactic category category declared in the user modules. For
example, get_macros_by_category(action) returns all macros that belong to category <action>. If
there is no syntactic category with the given name, it returns an empty list.

i) rf_manager.get_routine_by_name(name: string): rf_routine

Returns the routine with name, or NULL if no routine by that name exists in the system.

j) rf_manager.get_user_routines(): list of rf_routine

Returns a list of all the routines declared in the user modules.

The following method of rf_manager is described in 31.3.5:

rf_manager.get_module_by_name()

rf_manager.get_module_by_index()

rf_manager.get_user_modules()

rf_manager.get_package_by_name()

The following method of rf_manager is described in 31.4.1:

rf_manager.get_struct_of_instance()

rf_manager.get_exact_subtype_of_instance()

rf_manager.get_all_unit_instances()
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The following method of rf_manager is described in 31.4.4:

rf_manager.get_list_element()

rf_manager.get_list_element_unsafe()

rf_manager.set_list_element()

rf_manager.set_list_element_unsafe()

rf_manager.get_list_size()

rf_manager.get_list_size_unsafe()

31.3 Aspect information

The structure and behavior of objects at runtime consists of fields, methods, events, etc. In e, the definition
of these constituents can be separated into different modules of the software and extended on a per-type
basis as part of the aspect-oriented (AO) modeling paradigm (i.e., decomposed as different concerns). Thus,
the mapping between how the code is laid out and imported, and the end result of accumulated software
layers once all of the extensions have been resolved, is non-trivial.

This part of the API primarily models the mapping between named entities and the structure of their
definitions in the source code. Different meta-objects are used to represent the elements in the code that
constitute the definition of a given named entity; they are classified according to the kind of named entity
they define. rf_definition_element serves as a common base type for these types (see 31.3.1.3).

31.3.1 Definition elements

This subclause describes the definition elements.

31.3.1.1 Extensible entities and layers

In common OO languages, the definition of a class begins and ends in one single stretch of code. Conversely
the definition of structs in e can be separated between different locations in the source files. A struct is
introduced and initially defined by a struct statement and then possibly further defined by later extend
statements. Each such “piece” of definition is called a struct layer. An enumerated type can similarly be
initially defined with some set of named values and extended later with more named values. Each of these is
an enum layer.

Methods can be overridden or refined not only in subtypes, but also later in the same struct [by is also/first/
only constructs (see 18.1.3)]. Thus, the definition of a method for some given object is a series of one or
more definition “pieces” that are called method layers. Events, like methods, are declared once in some
struct and are possibly overridden later in the same struct or in subtypes. The same applies to other kinds of
struct members. These concepts are explained as follows (see 31.3.3).

Generally speaking, entities that can be declared at one location in the source code and extended in later
locations, such as struct types, enum types, methods and events, are called extensible entities. The definition
of extensible entities consists of a series of one or more elements (layers), the first of which is the
declaration and the rest are extensions. Named entities of all kinds can be queried for their declaration (see
31.3.1.3). Extensible named entities (e.g., rf_struct and rf_method) can also be queried for their extensions
(e.g., see 31.3.2.3).

31.3.1.2 Anomalies of definition elements

The separation between a named entity and its definition is natural where extensible entities are concerned.
However, it is somewhat artificial for non-extensible entities, e.g., numeric types and fields. Nevertheless,
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the same scheme applies trivially to non-extensible entities. Their definition consists of exactly one
element—the declaration. For example, the rf_field object (see 31.4.3) that represents the field size of the
struct packet can be queried for the source location of its declaration, not directly, but through a different
object [of type rf_definition_element (see 31.3.1.3)], which represents its declaration.

Moreover, some named entities are not explicitly defined by e code at all and so have no definition elements
whatsoever, not even a declaration. For example, list types are instantiations of a parameterized built-in
type. They are used in e code and represented in the type system just as any other type, but they are never
defined by e code itself. See also 31.3.2.

31.3.1.3 rf_definition_element

a) rf_definition_element.get_defined_entity(): rf_named_entity

Returns the named entity that is being defined by this definition element; i.e., this element is part of
the definition of the returned named entity.

b) rf_definition_element.get_module(): rf_module

Returns the module where this definition element appears.

c) rf_definition_element.get_source_line_num(): int

Returns the line number of the beginning of the clause in the source file.

d) rf_definition_element.is_before(rf_definition_element): bool

Returns TRUE if this definition element appears before rf_definition_element in the load order.
Otherwise, returns FALSE. This is based on a full-order relation on definition elements, which is
defined as the ordinal number of modules and then the line number in the file.

e) rf_definition_element.get_documentation(): string

Returns the inline documentation of this definition element. Inline documentation is the comment in
the consecutive lines directly preceding the definition in the source files. An empty string is returned
if the source file is not found.

f) rf_definition_element.get_documentation_lines(): list of string

Returns the inline documentation of this definition element as a list of strings separated by newline
characters in the source file. An empty list is returned if the source file is not found.

g) rf_named_entity.get_declaration(): rf_definition_element

Returns the declaration (the first definition element) of this entity or NULL for any types defined
implicitly as variants of existing types (see 31.3.2).

h) rf_named_entity.get_declaration_module(): rf_module

Returns the module in which this entity is declared first, or NULL for any types defined implicitly as
variants of existing types (see 31.3.2).

i) rf_named_entity.get_declaration_source_line_num(): int

Returns the line numbr of the beginning of teh first delcaration clause for this entity in the source
file, or NULL for any types defined implicitly as variants of existing types (see 31.3.2).

31.3.2 Type layers

enum and struct types are extensible entities, so their definition can consist of one or more layers. Other
kinds of types are not extensible and so have only the declaring layer. However, not all types have explicit
definitions. Some of these types can be used in context, without being previously declared, as follows:

— Numeric types can be used in context with a size modification [e.g., uint (bits: 16)]. The size
modification implies a different type, but one that has no explicit declaration.

— enum types can be spelled out inline, they have no separate declarations or explicit names.
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— List and port types (except event ports) are instances of predefined parameterized types; they are not
declared or defined in e.

— Not all when subtypes are explicitly defined, but they can still be used in context as types.

The first two cases are scalar types that could have been declared and given an explicit name by a type
statement. In the other two cases, there is no way to make the type declaration explicit. Some when subtypes
are explicitly defined in a different sense by using when or extend constructs. Even then, the layers of the
when subtypes cannot always be separated from those of other subtypes or the when base. From the
viewpoint of aspect information, all these cases are treated in the same way: All types that fall under one of
the previous cases do not have any layers. Calling the method get_declaration() (see 31.3.1) on them
returns NULL, and for implicitly defined enum, calling get_layers() (see 31.3.2.1) returns an empty list. As
for structs, the service get_layers() is restricted to like structs. For template instance types, which do not
have an explicit definition but can be explicitly extended by using extend constructs, calling
get_declaration() returns the declaration layer of the template itself, which is also considered the first type
layer.

31.3.2.1 rf_type_layer

This struct like-inherits from rf_definition_element (see 31.3.1.3).

Structs and enums are extensible entities; they are defined in layers. Struct and enum layers are both type
layers. This abstraction does not have features of its own, but is used by other services [see
get_type_layers() in 31.3.4].

31.3.2.2 rf_enum_layer

This struct like-inherits from rf_type_layer (see 31.3.2.1).

a) rf_enum_layer.get_added_items(): list of rf_enum_item

Returns the named values added by this enum layer.

b) rf_enum.get_layers(): list of rf_enum_layer

Returns all enum layers that constitute this enum type.

31.3.2.3 rf_struct_layer

This struct like-inherits from rf_type_layer (see 31.3.2.1).

a) rf_struct_layer.get_field_declarations(): list of rf_definition_element

Returns the field declarations added to the struct by this struct layer.

b) rf_struct_layer.get_method_layers(): list of rf_method_layer

Returns the method layers added to the struct by this struct layer.

c) rf_like_struct.get_layers(): list of rf_struct_layer

Returns all struct layers that constitute this struct type.

31.3.3 Struct member layers

Once a method in e is declared for a given struct, it can never be replaced by a different method in a subtype
or a later extension. Rather, all later modifications of the definition, in all three modes, also, first, and only,
in extensions as well as in when subtypes and like heirs, are definition elements of the same method—they
are method layers. For example, the method bark(), once declared for struct dog, is one and the same for
all kinds of dogs. But different method layers may be executed upon calling bark() for different dog
objects, so they display different behaviors.
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The reason for this deviation from standard OO terminology is e can be used to modify the behavior in
derived structs, as well as when variants, and in later extensions of that same struct. Therefore, the need to
distinguish between the method (the common semantics or message) on the one side and the definition of the
behavior associated with it for some set of objects on the other side is more acute. These same
considerations and terminology also apply to other extendable struct members .

31.3.3.1 rf_struct_member_layer

This struct like-inherits from rf_definition_element (see 31.3.1.3).

a) rf_struct_member_layer.get_defining_struct(): rf_struct

Returns the struct in the scope of which this layer appears.

b) rf_struct_member_layer.get_context_layer(): rf_struct_layer

Returns the struct layer where this layer appears.

31.3.3.2 rf_method_layer

This struct like-inherits from rf_struct_member_layer (see 31.3.3.1).

a) rf_method_layer.get_extension_mode(): rf_extension_mode

Returns one of the values—empty, undefined, is, also, first, or only—according to how
this method layer was declared.

b) rf_method_layer.is_c_routine(): bool

Returns TRUE if this method layer is implemented by a C routine. Otherwise, returns FALSE.

c) rf_method.get_layers(): list of rf_method_layer

Returns a list of all layers of this method in all struct types where it is defined. The returned list is
ordered by load order from early to late.

d) rf_method.get_relevant_layers(rf_struct): list of rf_method_layer

Returns a list of all layers of this method that apply to rf_struct. If rf_struct does not have this
method at all, an empty list is returned. For example, the method to_string() (see 28.4.4) is defined
for every struct in e, so calling get_layers() returns all extensions of this method in the system.
However, calling get_relevant_layers() for the struct packet only returns the extensions of
to_string() defined in the context of the struct packet and its subtypes.

31.3.3.3 rf_extension_mode

This is a predefined enumerated type that represents existing method extension modes:

type rf_extension_mode:[empty, undefined, is, also, first, only]

31.3.3.4 rf_event_layer

This struct like-inherits from rf_struct_member_layer (see 31.3.1.3).

a) rf_event.get_layers(): list of rf_event_layer

Returns a list of all layers of this event in all struct types where it is defined. The returned list is
ordered by load order from early to late.

b) rf_event.get_relevant_layer(): rf_event_layer

Returns the active layer, i.e., the last defined layer, of this event that applies to rf_struct. If rf_struct
does not have this event at all, NULL is returned.
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31.3.3.5 rf_check_layer

This struct like-inherits from rf_struct_member_layer (see 31.3.3.1).

a) rf_check_layer.get_text(): string

Returns the text string of this check action or expect layer, which is produced as the error message
when the check condition does not hold.

31.3.3.6 rf_expect_layer

This struct like-inherits from rf_check_layer (see 31.3.3.5).

a) rf_expect.get_layers(): list of rf_expect_layer

Returns a list of all layers of this expect in all struct types where it is defined. The returned list is
ordered by load order from early to late.

b) rf_expect.get_relevant_layer(): rf_expect_layer

Returns the active layer, i.e., the last defined layer, of this expect that applies to rf_struct. If rf_struct
does not have this expect at all, NULL is returned.

31.3.3.7 rf_check_action

This struct like-inherits from rf_check_layer (see 31.3.3.5).

a) rf_check_action.get_containing_method_layer(): rf_method_layer

Returns the method layer in which this check action resides. If the check action does not reside in a
method, it returns NULL.

b) rf_check_action.has_condition(): bool

Returns TRUE if this check action has a condition being checked, i.e., it is a check that action (see
17.2.1). Returns FALSE otherwise, i.e., if it is a plain dut_error() or dut_errorf() action (see 17.2.2
and 17.2.3).

c) rf_check.get_check_actions(): list of rf_check_action

Returns a list of all check actions that constitute this check, in all struct types where it is defined.
The returned list is ordered by load order from early to late.

d) rf_check.get_relevant_check_actions(rf_struct): list of rf_check_action

Returns a list of all check actions that constitute this check, and that apply to rf_struct. If rf_struct
does not have this check at all, an empty list is returned.

31.3.3.8 rf_constraint_layer

This struct like-inherits from rf_struct_member_layer (see 31.3.3.1)).

a) rf_constraint_layer.get_constraint_string(): string

Returns the string that represents the condition expression of this constraint layer. For example, if
the constraint declaration is keep x == 5, the returned string is "x == 5".

b) rf_constraint.get_layers(): list of rf_constraint_layer

Returns a list of all layers of this constraint in all struct types where it is defined. The returned list is
ordered by load order from early to late

c) rf_constraint.get_relevant_layer(rf_struct): rf_constraint_layer

Returns the active layer, i.e., the last defined layer, of this constraint that applies to rf_struct. If
rf_struct does not have this constraint at all, NULL is returned.
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d) rf_constraint.get_declaration_string(): string

Returns the string that represents the condition expression of this constraint declaration. If the con-
straint has more than one layer, the string of the first layer is returned.

31.3.4 Modules and packages

This subclause describes the modules and packages.

31.3.4.1 rf_module

Modules are simply e files. However, with the ability to extend structs and separate different concerns or
crosscuts of a system, modules play an important role in organizing the program. If a struct may be
considered the vertical encapsulation principle, then modules are the horizontal one. A struct consists of a
number of related layers of definition in different modules and, symmetrically, the module consists of a
number of related layers of different structs—it can be thought of as a layer of the entire system. Thus,
modules can be queried for their overall contribution to the structure of a system in the reflection API.

a) rf_module.get_name(): string

Returns the name of this module, basically the name of the e file without the .e extension.

b) rf_module.get_index(): int

Returns this module’s ordinal number in the load order.

c) rf_module.get_type_layers(): list of rf_type_layer

Returns a list of all the type layers defined in this module. A module’s overall contribution to the
structure of a system is the set of declarations of new types and extensions of existing types.

d) rf_module.get_package(): rf_package

Returns the e package with which this module is associated. Any modules that are not explicitly
associated with some package [using the package statement (see 23.1)] are implicitly part of the
package main.

e) rf_module.is_user_module(): bool

Returns TRUE if the module is user defined. Otherwise, returns FALSE.

f) rf_module.get_direct_imports(): list of rf_module

Returns the list of modules that are directly imported by this module. This includes all the modules
referred to in import statements (see 22.1.1) in this module.

g) rf_module.get_all_imports(): list of rf_module

Returns the list of modules that are directly or indirectly imported by this module. This includes all
the modules referred to in import statements (see 22.1.1) in this module, as well as modules
imported by other modules which are imported by this module.

h) rf_module.get_lines_num(): int

Returns the number of lines in the source file of this module.

i) rf_module.is_encrypted(): bool

Returns TRUE if the module is encrypted (see Clause 33). Otherwise, returns FALSE. 

31.3.4.2 rf_package

A package (see Clause 23) is a set of one or more e modules that together implement some closely related
functionality. This package defines a scope for restricting the access of named entities. It also is represented
in the reflection API by a meta-object.

a) rf_package.get_name(): string

Returns the name of this package.
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b) rf_package.get_modules(): list of rf_module

Returns the set of modules associated with this package.

31.3.5 Querying for aspects

Similar to the services for type information queries (see 31.2.12), the following services can be used to
perform aspect information queries:

a) rf_manager.get_module_by_name(name: string): rf_module

Returns the module with the name or NULL if no module by this name is currently loaded.

b) rf_manager.get_module_by_index(index: int): rf_module

Returns the module with the given index in the load order.

c) rf_manager.get_user_modules(): list of rf_module

Returns a list of all user modules that are currently loaded.

d) rf_manager.get_package_by_name(name: string): rf_package

Returns the package with the name or NULL if no package by this name is currently loaded.

31.4 Value query and manipulation

The parts of the API described in previous subclauses, type information and aspect information, both reflect
static features of the program. During a run of the program, values are being manipulated. Each of those
values is an instance of a type and all operations carried upon them are defined by their type. This part of the
API enables the user to query and manipulate values using the representations of types. This feature is
known as meta-programming. It can serve to construct data browsers, debugging aids, and other generic
runtime features.

See also 5.2 and 5.8.2.

31.4.1 Types of objects

The natural entry point for querying or manipulating objects is getting a representation of their type. For any
given object, there is always one most specific type of which it is an instance, even if that type has not been
explicitly defined in the code (i.e., it is a cross of a number of explicitly defined when subtypes). A query
can be generated for the like struct of an instance and any when variants discarded, or the query can be for
the specific when subtype. The when subtype of an instance depends on its state, which may change with
the course of the run.

a) rf_manager.get_struct_of_instance(instance: base_struct): rf_like_struct

Returns the most specific like struct of the struct instance and disregards any when variants, even if
they apply to the instance. To query for the specific when subtype of an object, use:
get_exact_subtype_of_instance().

b) rf_manager.get_exact_subtype_of_instance(instance: base_struct): rf_struct

Returns the type of instance. The returned meta-object represents the most specific significant type
that applies to the instance, i.e., the one containing all other types that apply to the instance. For
example, if the parameter is a packet, which has the defined subtypes big packet and
corrupt packet, and a particular packet happens to be both corrupt and big, then the
returned type would be corrupt big packet, even though it is not a defined subtype.

The static type of a field is sometimes more specific than the exact subtype of the object that is the
field’s actual value; this happens when the static type is an insignificant when subtype (see
31.2.4.2).

c) rf_struct.is_instance_of_me(instance: base_struct): bool
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Returns TRUE if instance is an instance of this struct.

d) rf_manager.get_all_unit_instances(root: any_unit): list of any_unit

Returns a list of all units instantiated directly or indirectly under root, including root itself. The units
appear in the list in depth-first order, i.e., root appears first in the list, and each unit is directly fol-
lowed by units instantiated under it.

31.4.2 Values and value holders

When dealing with values in a generic way (meta-programming), there needs to be some safe way to refer to
values of all types: struct instances, lists, strings, and scalars. Since these values are very different in their
semantics and there is no abstract type common to all, the reflection API wraps values of all types with an
object called rf_value_holder. This object holds a value together with its type, and guarantees its
consistency and continuity when the original variable goes out of scope and across garbage collections.

Value holders are returned from value queries or explicitly created by the user. They are used in setting
values or calling methods. Actual uses of the value itself, however, involve passing through an untyped
value and brute casting, which is not type-safe. Two operators are implemented generically for all
values—equating and getting a string representation.

a) rf_value_holder.get_type(): rf_type

Returns the type of this value. When the value is a struct instance, the type of the holder is not neces-
sarily the most specific subtype of that instance (e.g., a legal value holder whose type is any_struct
can hold an instance of packet).

b) rf_value_holder.get_value(): untyped

Enables [by using the unsafe operator (see 5.8.2)] assignment of the value into a typed variable. The
variable shall be a type to which this value is assignable according to e casting rules; however, this
cannot be enforced.

c) rf_type.create_holder(value: untyped): rf_value_holder

Returns a value holder of this type for value, which shall be an instance of this type (or of a subtype
in case it is a struct type). Very simple sanity checks are performed on the value; if they fail, an
exception is thrown. These checks are by no means exhaustive; it is the user’s responsibility to cre-
ate the right holder for a value.

d) rf_type.value_is_equal(value1: untyped, value2: untyped): bool

Returns TRUE if value1 and value2 are equivalent or identical [using the same semantics as that of
the == operator (see 4.10.2)]. Otherwise, returns FALSE. The behavior is not defined if one of the
two values is not of this type.

e) rf_type.value_to_string(value: untyped): string

Returns a string representation of value [this is the same as the to_string() operator]. The behavior is
not defined if the value is not of this type.

31.4.3 Object operators

Object operators include reading and writing fields, calling methods, emitting or monitoring events, and so
on. These operators are available with meta-objects that represent struct members. Value holders are the safe
way to handle values in a generic way (see 31.4.2). However, using them involves the dynamic allocation of
memory, which can impact performance where this feature is heavily used.

Some object operators have two versions: one uses value holders and makes some checks, throwing
exceptions in the cases where preconditions do not hold; the other uses bare untyped values (see 5.2) and
skips checks. This brute force version of each operator is marked as unsafe and should be avoided where
possible.
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a) rf_field.get_value(instance: base_struct): rf_value_holder

Returns the value of this field in the struct instance. If the struct type of the instance does not have
this field, an exception is thrown.

b) rf_field.get_value_unsafe(instance: base_struct): untyped

Returns the value of this field in the struct instance. If the struct type of the instance does not have
this field, the behavior is undefined.

c) rf_field.set_value(instance: base_struct, value: rf_value_holder)

Sets the value of this field in the struct instance to the new value. If the struct type of the instance
does not have this field, an exception is thrown.

d) rf_field.set_value_unsafe(instance: base_struct, value: untyped)

Sets the value of this field in the struct instance to the new value. If the struct type of the instance
does not have this field, the behavior is undefined.

e) rf_field.is_consistent(instance: base_struct): bool

Returns TRUE if the field value is consistent with the field declaration. Otherwise, returns FALSE.
For example, if the declared type of the field is RED packet, it is not consistent if the value is a
BLUE packet; if the declared type is uint[1..10], it is not consistent if the value is outside the 1..10
range; if the field has a declared list size, e.g., l[10]: list of uint, it is not consistent if the list size is
not 10.

f) rf_method.invoke(instance: base_struct, parameters: list of rf_value_holder): rf_value_holder

Calls this method on the struct instance, using the list of (zero or more) values as the method’s
parameters, and returns a value holder of the method’s return value (or NULL if the method has
none). If the struct type of the instance does not have this method or there is a mismatch in the num-
ber and types of parameters, an exception is thrown. This method cannot be called from an
rf_method, which is time consuming.

f) rf_method.invoke_unsafe(instance: base_struct, parameters: list of untyped): untyped

Calls this method on the struct instance, with the list of (zero or more) values as the method’s
parameters, and returns the method’s return value. If this method does not return a value, the value
returned from invoke_unsafe is undefined. If the struct type of the instance does not have this
method or there is a mismatch in the number and types of parameters, the behavior is undefined.
This method cannot be called from an rf_method, which is time consuming.

g) rf_event.is_emitted(instance: base_struct): bool

Returns TRUE if this event of the instance was emitted so far in the current cycle. Otherwise, returns
FALSE. If the struct type of the instance does not have this event, an exception is thrown.

h) rf_event.is_emitted_unsafe(instance: base_struct): bool

Returns TRUE if this event of the instance was emitted so far in the current cycle. Otherwise, returns
FALSE. If the struct type of the instance does not have this event, the behavior is undefined.

i) rf_event.emit(instance: base_struct)

Emits the event on the instance. If the struct type of the instance does not have this event, an
exception is thrown.

j) rf_event.emit_unsafe(instance: base_struct)

Emits the event on the instance. If the struct type of the instance does not have this event, the
behavior is undefined.

k) rf_method.start_tcm(instance: any_struct, parameters: list of rf_value_holder)

Starts this TCM on the instance given as a parameter. If the struct type of the instance does not
declare this TCM, an error is issued. Similarly, if the given parameters are not of the types in the
order required by this TCM, or this method is not a TCM, an error is issued. Note that this TCM may
have a return value, but it is not accessible with start_tcm().

l) rf_method.start_tcm_unsafe(instance: any_struct, parameters: list of untyped)
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Starts this TCM on the instance given as a parameter. If the struct type of the instance does not
declare this TCM, the behavior is undefined. Similarly, if the given parameters are not of the types
in the order required by this TCM, or this method is not a TCM, the behavior is undefined. Note that
this TCM may have a return value, but it is not accessible with start_tcm_unsafe().

m) rf_constraint.is_satisfied(instance: any_struct): bool

Returns TRUE if the constraint is satisfied by instance. Otherwise, returns FALSE. If the constraint
is soft, it always returns TRUE.

n) rf_expect.stop(instance: any_struct) 

Stops this expect of instance. It is similar to calling the quit() method, but affects only specific ex-
pect and not all the temporals of the struct.

o) rf_expect.rerun(instance: any_struct) 

Reruns this expect of instance. It is similar to calling the rerun() method, but affects only specific
expect and not all the temporals of the struct.

31.4.4 List operators

The three main list operators—reading an element, writing to an index, and querying the size—are available
as general services, i.e., methods of rf_manager. Two versions of the operators are available: the safe
version, using value holders, and the brute one, using untyped values. See also 31.4.3.

a) rf_manager.get_list_element(list: rf_value_holder, index: int): rf_value_holder

Returns the value of the given list at the given index. If the value is not a list or the index is out of
bounds, an exception is thrown.

b) rf_manager.get_list_element_unsafe(list: untyped, index: int): untyped

Returns the value of the given list at the given index. If the value is not a list or the index is out of
bounds, the behavior is undefined.

c) rf_manager.set_list_element(list: rf_value_holder, index: int, new_value: rf_value_holder)

Sets the value of the given list at the given index. If the first parameter is not a list, the index is out of
bounds, or the new value is not of an instance of the list’s element type, an exception is thrown.

d) rf_manager.set_list_element_unsafe(list: untyped, index: int, new_value: untyped)

Sets the value of the given list at the given index. If the first parameter is not a list, the index is out of
bounds, or the new value is not of an instance of the list’s element type, the behavior is undefined.

e) rf_manager.get_list_size(list: rf_value_holder): int

Returns the number of elements currently in the given list. If the value is not a list, an exception is
thrown.

f) rf_manager.get_list_size_unsafe(list: untyped): int

Returns the number of elements currently in the given list. If the value is not a list, the behavior is
undefined.




