
IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

Copyright © 2011 IEEE. All rights reserved. 159

9.13.4.2 Supported unidirectional TLM interfaces

NOTE—Non-blocking TLM interface calls are zero-delay calls. The blocking interface calls, which correspond to e
TCM methods, consume an additional tick and one cycle of simulation time.

Table 25—Supported TLM interfaces and related methods

TLM interface Interface methods

Blocking unidirectional interfaces

tlm_blocking_put of type put(value:type)@sys.any

tlm_blocking_get of type get(value:*type)@sys.any

tlm_blocking_peek of type peek(value:*type)@sys.any

tlm_blocking_get_peek of type get(value:*type)@sys.any
peek(value:*type)@sys.any

Non-blocking unidirectional interfaces

tlm_nonblocking_put of type try_put(value:type) : bool
can_put() : bool
ok_to_put() : tlm_event

tlm_nonblocking_get of type try_get(value:*type) : bool
can_get() : bool
ok_to_get() : tlm_event

tlm_nonblocking_peek of type try_peek(value:*type) : bool
can_peek() : bool
ok_to_peek() : tlm_event

tlm_nonblocking_get_peek of type try_get(value:*type) : bool
can_get() : bool
ok_to_get() : tlm_event
try_peek(value:*type) : bool
can_peek() : bool
ok_to_peek() : tlm_event

Combined unidirectional interfaces (blocking and non-blocking)

tlm_put of type put(value:type)@sys.any
try_put(value:type) : bool
can_put() : bool
ok_to_put() : tlm_event

tlm_get of type get(value:*type)@sys.any
try_get(value:*type) : bool
can_get() : bool
ok_to_get() : tlm_event

tlm_peek of type peek(value:*type)@sys.any
try_peek(value:*type) : bool
can_peek() : bool
ok_to_peek() : tlm_event

IEEE
Std 1647-2011 IEEE STANDARD

160 Copyright © 2011 IEEE. All rights reserved.

9.13.4.3 Supported bidirectional TLM interfaces

NOTE—Non-blocking TLM interface calls are zero-delay calls. The blocking interface calls, which correspond to e
TCM methods, consume an additional tick and one cycle of simulation time.

Table 26—Supported bidirectional TLM interfaces and related methods

TLM interface Interface methods

Blocking bidirectional interfaces

tlm_blocking_master of (req-type, rsp-type) put(value: req-type)@sys.any
get(value: *rsp-type)@sys.any
peek(value: *rsp-type)@sys.any

tlm_blocking_slave of (req-type, rsp-type) put(value: rsp-type)@sys.any
get(value: *req-type)@sys.any
peek(value: *req-type)@sys.any

tlm_blocking_transport of (req-type, rsp-type) transport(request: req-type,
response: *rsp-type)@sys.any

Non-blocking bidirectional interfaces

tlm_nonblocking_master of (req-type, rsp-type) try_put(value: req-type) : bool
can_put() : bool
ok_to_put() : tlm_event
try_get(value: *rsp-type): bool
can_get(): bool
ok_to_get(): tlm_event
try_peek(value: *rsp-type): bool
can_peek(): bool
ok_to_peek(): tlm_event

tlm_nonblocking_slave of (req-type, rsp-type) try_put(value: rsp-type) : bool
can_put() : bool
ok_to_put() : tlm_event
try_get(value: *req-type): bool
can_get(): bool
ok_to_get(): tlm_event
try_peek(value: *req-type): bool
can_peek(): bool
ok_to_peek(): tlm_event

tlm_nonblocking_transport of (req-type, rsp-type) nb_transport(request: req-type,
response: *rsp-type): bool

Combined bidirectional interfaces (blocking and non-blocking)

tlm_master of (req-type, rsp-type) put(value: req-type)@sys.any
get(value: *rsp-type)@sys.any
peek(value: *rsp-type)@sys.any
try_put(value: req-type): bool
can_put(): bool
ok_to_put(): tlm_event
try_get(value: *rsp-type): bool
can_get(): bool
ok_to_get(): tlm_event
try_peek(value: *rsp-type): bool
can_peek(): bool
ok_to_peek(): tlm_event

