IEEE
FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011

9.13.4.2 Supported unidirectional TLM interfaces

NOTE—Non-blocking TLM interface calls are zero-delay calls. The blocking interface calls, which correspond to e
TCM methods, consume an additional tick and one cycle of simulation time.

Table 25—Supported TLM interfaces and related methods

TLM interface Interface methods

Blocking unidirectional interfaces

tim_blocking_put of type put(value:type) @sys.any
tim_blocking_get of type get(value:*type)@sys.any
tim_blocking_peek of type peek(value:*type)@sys.any
tim_blocking_get_peek of type get(value:*type)@sys.any

peek(value:*type)@sys.any

Non-blocking unidirectional interfaces

tIm_nonblocking_put of type try_put(value:type) : bool
can_put() : bool
ok_to_put() : tim_event

tIm_nonblocking_get of type try_get(value:*type) : bool
can_get() : bool
ok_to_get() : tim_event

tIm_nonblocking_peek of type try_peek(value:*type) : bool
can_peek() : bool
ok_to_peek() : tim_event

tIm_nonblocking_get_peek of type try_get(value:*type) : bool
can_get() : bool

ok_to_get() : tim_event
try_peek(value:*type) : bool
can_peek() : bool
ok_to_peek() : tim_event

Combined unidirectional interfaces (blocking and non-blocking)

tim_put of type put(value:type)@sys.any
try_put(value:type) : bool
can_put() : bool
ok_to_put() : tim_event

tim_get of type get(value:*type) @sys.any
try_get(value:*type) : bool
can_get() : bool
ok_to_get() : tim_event

tim_peek of type peek(value:*type)@sys.any
try_peek(value:*type) : bool
can_peek() : bool
ok_to_peek() : tim_event

Copyright © 2011 IEEE. All rights reserved. 159



IEEE
Std 1647-2011 IEEE STANDARD

9.13.4.3 Supported bidirectional TLM interfaces

NOTE—Non-blocking TLM interface calls are zero-delay calls. The blocking interface calls, which correspond to e
TCM methods, consume an additional tick and one cycle of simulation time.

Table 26—Supported bidirectional TLM interfaces and related methods

TLM interface Interface methods

Blocking bidirectional interfaces

tim_blocking_master of (reg-type, rsp-type) put(value: reg-type)@sys.any
get(value: *rsp-type)@sys.any
peek(value: *rsp-type)@sys.any

tim_blocking_slave of (reg-type, rsp-type) put(value: rsp-type)@sys.any
get(value: *reg-type)@sys.any
peek(value: *reg-type)@sys.any

tim_blocking_transport of (reg-type, rsp-type) transport(request: req-type,
response: *rsp-type) @sys.any

Non-blocking bidirectional interfaces

tim_nonblocking_master of (reg-type, rsp-type) try_put(value: reg-type) : bool
can_put() : bool

ok_to_put() : tim_event
try_get(value: *rsp-type): bool
can_get(): bool

ok_to_get(): tim_event
try_peek(value: *rsp-type): bool
can_peek(): bool

ok_to_peek(): tim_event

tim_nonblocking_slave of (reg-type, rsp-type) try_put(value: rsp-type) : bool
can_put() : bool

ok_to_put() : tim_event
try_get(value: *reg-type): bool
can_get(): bool

ok_to_get(): tim_event
try_peek(value: *reg-type): bool
can_peek(): bool

ok_to_peek(): tim_event

tiIm_nonblocking_transport of (req-type, rsp-type) | nb_transport(request: req-type,
response: *rsp-type): bool

Combined bidirectional interfaces (blocking and non-blocking)

tim_master of (reg-type, rsp-type) put(value: reg-type)@sys.any
get(value: *rsp-type)@sys.any
peek(value: *rsp-type)@sys.any
try_put(value: reg-type): bool
can_put(): bool

ok_to_put(): tim_event
try_get(value: *rsp-type): bool
can_get(): bool

ok_to_get(): tim_event
try_peek(value: *rsp-type): bool
can_peek(): bool

ok_to_peek(): tim_event

160 Copyright © 2011 IEEE. All rights reserved.





