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· [bookmark: RTF340030003900370031003a00]Constraints and generation
Test generation is a process producing data layouts according to a given specification. The specifications are provided in the form of type declarations and constraints. Constraints are statements that restrict values assigned to data items by test generation.
A constraint can be viewed as a property of a data item or as a relation between several data items. Therefore, it is natural to express constraints using Boolean expressions. Any Any valid Boolean expression in e can be turned into a constraint. Also, there are few special syntactic constructs not based on Boolean expressions for defining constraints.	Comment by marat: I would say that “Keep 2<3” is not a valid constraint, as it has nothing to constrain
[DLG] It is a valid constraint, just logically always the case. The issue with changing ANY to MOST is what does this sentence now add to the LRM?
Constraints can be applied to any data types including user-defined scalar types as well as struct and list types. It is natural to mix data types in one constraint, e.g.,
keep my_list.has(it == 0xff) => my_struct1 == my_struct2
· Types of constraints
Constraints can be subdivided according to several criteria as follows:
· Explicit or implicit
· Explicit constraints are those declared using the keep statement or inside keeping {...} block.
· Implicit constraints are those imposed by type definitions and variable declarations.
Implicit constraints are always hard.	Comment by marat: Not always true.
“l:list of int;” should imply a soft constraint to bound the list size. Something like “keep soft l.size() in [1..50]”. And there are more cases.
 I don’t know whether the standard should define how exactly to handle each specific case, but it shouldn’t bound implicit constraints to be hard neither.
Examples
x : int[1, 3, 5, 10..100];      \\ is the same as:

x : int;
  keep x in [1, 3, 5, 10..100];

l[20] : list of int;            \\ is the same as:

l : list of int;
  keep l.size() == 20
· Hard or soft
· Hard constraints are honored whenever the constrained data items are generated. A situation when a hard constraint contradicts other hard constraints, and thus cannot be honored, shall result in an error.
· Soft constraints are honored if they do not contradict hard constraints or soft constraints honored earlier of the same connected field set. If a soft constraint cannot be honored, it is disregarded. (See 10.2.6 for the explanations on how the selection of soft constraints is done.)
· Simple or compound
A constraint combining other constraints in a Boolean combination using not, and, or, and => is called compound. Otherwise, the constraint is called simple.
· [bookmark: RTF370030003000350036003a00]Generation concepts
This subclause describes the basic concepts of generation.
10.2.1 Generation action
A generation action is a specific invocation of the generation process, initiated by a gen or do action. Pre-run generation is also a generation action, and can be considered as an implicit gen sys action.
10.2.1.1 Pre-Run Generation Actions
Pre-run generation is initiated before starting the simulation run.
Pre-run generation is the generation of sys, in which sys and all generatable fields within sys, including nested structs, are allocated and generated recursively. Any field prefixed with the do-not-generate character (!) is not generated.
All unit instances must be generated during pre-run generation, so that the unit tree hierarchy is stable for the duration of the run.
10.2.1.2 On-the-Fly Generation Actions
Any field or variable can be generated on-the-fly during a simulation run by executing a gen action within a user-defined method.	Comment by Galpin Darren (IFGB ATV MCD SIP CV): Don’t think the sentence complies with the LRM language syntax – never use “one can” elsewhere in the LRM.
10.2.2 Generatable variable
A variable that is subject to the generation process and can be constrained is one of the following:
a) A field of a struct or a unit
b) A local variable that is a parameter of a gen action, and its structural descendants, if exist.
var x: int;
gen x;
c) A list-size of a generatable list.
d) A unit attribute.
10.2.3 Connected Field Sets (CFS)
Within a generation action, constraints create relationships between the fields being generated (or other generatable variables). A set of fields in a generation action that is connected by a set of constraints is called a connected field set (CFS).
A CFS has the following attributes:
a) Completeness— every generatable variable in a gen-action is a member of some CFS. All generatable variables that are connected by constraints (directly or indirectly) are placed in the same CFS.
b) Exclusivity— for any given generation action, a generatable variable is a member of one and only one CFS.
c) Generation at once— for any given generation action, all generatable variables in a CFS are generated at the same time.
d) Unified input state— the same values of the same set of sampled inputs are applied to all fields in a CFS.
e) A building block of a generation action— a generation action consists of the sequential generation of a set of CFSs.

Notes:
a) Within a single struct, different fields can belong to different CFSs. 
b) The same CFS can contain fields from different places in the hierarchy generated by the root gen-action. 
10.2.4 Inputs
Expressions in constraints are either generatable or they are inputs to the CFS (that is, they are non-generatable).
Generatable expressions are assigned a value by the current CFS
Input values are not affected by the constraints, but they can affect the values assigned to the generatable items. Thus, the inputs must be evaluated before any generatable items can be generated.
The specific values of a CFS’s inputs comprise the input state.
An input to a constraint is an expression whose path has one of the following attributes:
a) Contains a user-defined method-call
keep x == foo(y);
b) Starts with sys (that is, a global or absolute path), for example: 
keep counter == sys.counter;
c) Is me, for example:
keep root_node => parent == me;
d) Is not in the scope of the current generation action, for example:
var my_method_variable:my_struct;
gen x keeping {it == my_method_variable.id};
e) Contains a call to a predefined unidirectional method or list pseudo-method, for example:
keep read_only(z) == p.a.x;
For some constraints, it is convenient to assume some of the parameters are always treated as inputs. There are five such kinds of expressions, treating some of their parameters as inputs, even if these parameters represent generatable paths.
a) list segments: in an expression l[i..j], the segment boundaries i and j are treated as inputs in the generation of l. Thus, a constraint such as
keep ({1; 2; 3; 4; 5})[i..j] in {2; 3};
is allowed to cause a contradiction error.
b) list in list: The right hand side of a “list in list” or “is a permutation” expression is considered as an input to the constraint.
 	 keep list1.is_a_permutation(list2);//list2 is input
	
c) soft..select conditions, weights and policies: the condition, weights and policies of a soft…select constraint are inputs, and evaluated before the enforcement of the constraint. The only generatable expression in a soft…select constraint is the expression on which the distribution is applied.
keep soft b => x == select {  // b is input, only x is generatable.
1 : 10;
y  : z; //y and z are inputs
};

d) conditional reset_soft():the condition of reset_soft() constraint is an input.
e) unit instance assignment: 
 u_inst: my_unit is instance;
 u_ref:  my_unit;
 keep u_ref == u_inst; //u_inst is input

10.2.5 Unidirectional and Bidirectional Relations
Bidirectional relations imply that all the generatable fields in a constraint should be solved together in the same CFS. For example:
keep x > y;
Unidirectional relations on the other hand connect two generatable fields in which there is an implied generation order, for example:
keep x == read_only(y);
A constraint can have both unidirectional and bidirectional relations. For example, the following constraint contains the unidirectional relations x->y and x ->z and the bidirectional relation y <-> z.
keep read_only(x==0) => y==z;
In unidirectional relations where there is an implied generation order:
● The field that must be resolved first is called the determinant.
● The field that depends on the value of the determinant is called the dependent.
For example, in the following example, y is the determinant and x is the dependent:
keep x == read_only(y);

10.2.6 Inconsistently Connected Field Sets (ICFS)
The generator responds to a generation action by:
1. Partitioning the fields in the gen-action being solved into connected field sets (CFSs)
2. Within each CFS, looping through reduction and assignment until the constraints are solved.
All the fields in a given CFS are solved together.
This process works as long as any two fields are connected only by unidirectional constraints or only by bidirectional constraints. Problems arise when bidirectional constraints directly or indirectly connect two fields that have a unidirectional connection. When this happens, the generator creates inconsistently connected field sets (ICFSs), which it may or may not be able to solve.
10.2.7 Order of CFSs
There are two main types of unidirectional connections that imply an order between generatable fields:
a) Structural dependency
1. Field depends on its containing struct
2. Field in a subtype depends on its subtype determinant 
3. An item in a list depends on the list's size
b) Input dependency 
1. Field depends on input (method call, value(), global path) that uses another field as a parameter 

10.2.7.1 Structural dependencies
A descendant field is dependent on its structural ancestor (either a struct or a list) because the ancestor (the determinant) needs to be allocated in order to assign a value to the descendant field (the dependent).
For lists, the size of a list must be determined before any list element (or any descendant of that element) is generated.
10.2.7.1.1 When Subtype Dependencies in Constraints
Just like with any structural dependency, any field that is declared under a when subtype depends on the value of the when determinant. In other words, there is an implicit unidirectional constraint (a subtype dependency) between the when determinant and the dependent field:
when-determinant -> dependent-field
If a field is constrained under a when subtype, but was declared outside it, the behavior is more robust. If the when determinant is also connected to a dependent field directly or indirectly by bidirectional constraints, the when determinant is treated as bidirectional, not creating an ICFS. As shown in “Example 1”, the generator can avoid inconsistent connections by treating the subtype dependency as bidirectional. In these cases, the when determinant and the dependent field remain in the same CFS.
Exception to this rule are cases in which the when determinant is required to be an input of a constraint. Specifically, a soft…select or a reset_soft() constraint written under a when subtype makes the when subtype it’s condition, thus enforcing the when subtype to be generated before the constrained field. Another case is of named constraints, where the exact subtype should be determined for the generator to decide which layer of the named constraint should be enforced.

Example 1: Subtype Dependency Treated as Bidirectional
In this example, the when determinant “color” and the dependent field “x” are connected bidirectionally by the keep color!=YELLOW => x < y; constraint. Both the when determinant and the dependent field belong to the same CFS, and both constraints are considered bidirectional. No generation order is implied by these constraints.
color <-> x <-> y
<'
extend sys {
	p: packet_s;
};
struct packet_s {
	color: [RED,BLUE,YELLOW];
	x: uint;
	y: uint;

	keep color!=YELLOW => x < y;
	when RED packet_s {
		keep x < 100;
	};
	when BLUE packet_s {
		keep x > 50;
	};
};
'>

10.2.7.2 Input dependencies
Any constraint containing a unidirectional operator defines an input dependency. For example, in “keep x = value(y)”, “value(y)” is a unidirectional operator. In the following example, y is the determinant expression and x is the dependent expression.
10.2.7.2.1 Dependencies of method-calls
All the parameters of an expression that contains a method-call are inputs to the constraint. A slightly more complex dependency is created for the path of the method-call, thus to the struct or unit that calls the method.
· If the CFS contains no fields belonging to the path, the path should be completely generated, and it’s post_generate() routine should be called before the CFS that calls the method is solved. This is to enforce that the path is complete and the method-call is evaluated correctly.
· If a CFS contains a descendant of the method-call path, the determinant is the path of the method call, but not its descendents. Thus if the method body uses generatable fields, it is the user’s responsibility to pass them as a parameter to the method-call.
For example, for a CFS containing only the following constraint:
keep y == p.foo();
p, and all its fields, and all their fields, will be generated, and p.post_generate() will be called before solving the CFS of y.
However for the CFS:
keep p.x == p.foo();
only the p object will be generated before the CFS of p.x is solved.

· Basic flow of generation
Generation can be initiated for any field or variable. For items of struct types, the generation allocates the struct storage and recursively generates all generatable fields of the struct. All fields of a struct are considered generatable, except for the fields prefixed with ! (see 6.8). There is no specific order in which data items or the fields in a struct hierarchy are generated.
For list items, the generation allocates the list and recursively generates all its elements. There is no specific ordering for whether list items are generated after the size of the list has been fixed or that the items are generated in the order of their indexes. Constraints specified for the items can impose restrictions on the list size or on the items specified earlier in the list.
For scalar types, such as int, uint, bool, etc., the generation only generates the respective value.
The following ordering rules, however, do apply:
· pre_generate() and post_generate()
· pre_generate() of a struct is called after the struct is allocated and initialized using init(), but before any of the fields of the struct are generated. In particular, for a struct containing nested structs, the pre_generate() method is called before any of the pre_generate() methods of the nested structs.
· post_generate() is called after the generation of all fields of the struct is finished. In particular, for a struct containing nested structs, the post_generate() method is called only when all the nested generations are finished.
· Methods
A method accepting a generatable item as an argument is called after that item is fully generated.
Example
struct s {
    a : int;
    b : t;            // ’t’ is some other struct type
      keep a == f(b)
}
The constraint a==f(b) implies b is fully generated, including the calls to its pre_generate() and post_generate() before f is called on b. See also 10.2.2 and 10.2.3.
· [bookmark: RTF360032003300380038003a00]Using methods in constraints
Constraint paths can include method calls. The syntax is: 
[simple-path.]method-name([parameter, ...])[.trailing-path]
where simple-path does not include method calls and the following restrictions apply:
· If simple-path is generatable, then it is fully generated before the method is called.
· Generatable paths used as parameters of the method are fully generated before the method is called.
· For methods returning pointers to structs, the trailing path is sampled after evaluating the method and used as an input of the constraint.
Example
struct s {
    x : int[0..5];
    q : t;
      keep x < m(q).y;

    m(param:t): t is {
        result = param
    }
};

struct t {
    y : int[0..5]
}
In this example, q is generated before x and then q is used as an input in the constraint x<m(q).y. If q.y generates to 0, then the constraint x<m(q).y fails.
· [bookmark: RTF320033003000380039003a00]Classification of methods
Methods are classified into the following three categories:
· [bookmark: RTF350031003100320030003a00]Methods that behave like mathematical functions (pure). The computed result is entirely determined by the arguments passed to the method. Multiple calls to the method with the same parameters always produce the same result.
The use of such methods in constraints is safe and unrestricted.
· [bookmark: RTF390032003300390038003a00]Methods that observe the “state of the world,” but do not change it. Such method can read fields, signals, global configuration flags, etc., and base the computation on that data. Multiple calls to the method with the same parameters can produce different results.
When using the methods of this category of constraints the following rules apply:
· The method shall not base its computation on the items of the current generatable context, unless such items are passed as parameters to the method.
Example
struct packet {
    data     : list of byte;
    checksum : uint;
      keep checksum == calc_checksum(data);

    calc_checksum(data:list of byte): uint is {
        // use ’data’ to calculate checksum
    }
}

This is correct; data is generated before the method is called.
· The timing of the call and/or the number of calls to the method cannot be presumed, especially for methods reading values of the real-time or process clocks, operating-system (OS) environment variables, sizes of allocated memory, etc.
Example
extend sys {
    l[1000] : list of uint;
      keep for each in l {
        it == read_machine_real_time_clock_msec()
      }
}
It is incorrect to assume the method read_machine_real_time_clock_msec is called 1000 times, i.e., once for each list element in order (see 10.2.2.2). It is acceptable for the generator to assume this method is a pure function, and thus, call it only once for the list and assign the result to all the list elements. It is also acceptable to assign values to list elements unrelated to their natural order of indexes. Thus (normally in the presence of other constraints), the times read by the method might not be ordered with respect to the list indexes.
· [bookmark: RTF350032003500340031003a00]Methods that observe and change the “state of the world.” 
The use of such methods in constraints can create problems. Instead, use the corresponding operations within the post_generate() method.
Example
struct packet {
    data : list of data_item;

    post_generate() is {
        var id;

        for each in data do {
            if it.x < 100 then {
                it.id = id;
                id += 1
            }
        }
    }
}
In general, it is impossible to classify methods automatically into the preceding three categories. Therefore, the following warnings shall be used if a method calling issue occurs:
· method call warning #1: a method used in a constraint contains a non-local path anywhere in its body.
· method call warning #2: a method used in a constraint contains an explicit assignment to a non-local path.
· [bookmark: RTF380030003500380033003a00]Number of calls
A method used in constraints can be called zero or more times. The number of calls to a method is irrelevant for the semantics of the constraint if the method behaves as a pure function [see 10.2.2.1, category a)]. However, the results of generation can differ depending on the number of calls for the methods with side effects. Therefore, avoid using the methods of category c), and only use methods of category b) with caution.
· [bookmark: RTF370036003700320034003a00]Generatable paths and the sampling of inputs
The purpose of constraints is to constrain generatable items, i.e., those items that can be assigned random values (by the generator) satisfying the constraints. Thus, it is important to define which items are considered generatable and when.
In the context of the initial generation, all fields of sys and all fields of nested structs are generatable, except the fields declared as non-generatable (using the ! prefix).
In the context of a gen item action (see 10.5.1), item is generatable and, if item is of a struct type, all its nested fields are generatable—except the fields marked with !. If gen item action applies to a field defined as non-generatable, the item becomes generatable; however, any nested non-generatable fields remain non-generatable.
Example
struct packet {
    x : int;
   !y : int
};

extend sys {
    p1 : packet;    -- generated during pre-generation
   !p2 : packet;    -- skipped during pre-generation

    post_generate() is also {
        gen p2      -- this allocates p2 and generates p2.x but not p2.y
    }
}
Data items in constraints are referenced by using paths (see 4.3.4). In generation context, each path is either generatable or non-generatable. Generatable paths refer to items that are assigned values during the generation with respect to the corresponding constraints. Each constraint shall have all its inputs sampled before the items referenced by the generatable paths are generated.
Non-generatable paths refer to items that are not affected by generation, but those items might affect generatable items. Thus, non-generatable paths refer to inputs of constraints. A path is non-generatable if
· it is an absolute path (e.g., sys.counter).
· it includes method calls (e.g., x.y.m().z).
· it includes do-not-gen fields (e.g., x.y.non_gen_field.z).
· the path is me (e.g., keep root_node => parent == me;).
Otherwise, the path is generatable.
An otherwise generatable path can be defined as input to a constraint using the value() syntax, e.g., keep x<value(y). In this case, the set of values y can take is unaffected by the constraints on x. The parameter y is treated as an input.
Arbitrary expressions can be used as arguments of value(). For example, in keep x<value(y+z), both y and z become inputs of the constraint. The constraint resolution engine generates y and z (unaffected by the possible values of x) and computes their sum, which is then used as an input in the constraints.
Semantically, value() can be viewed as an identity function
value(arg : TYPE) is { result = arg }
defined for each type TYPE known to the generator. The use of value() in constraints is thus identical to the use of such an identity function.
A constraint that has no generatable paths with respect to the current generation context shall be reported as an error.
· Special cases of inputs in constraints	Comment by marat: -moved to 10.2.1.1
 -removed shift and bit-slice, as there is nor reason for them to be unidirectional, nor they are unidirectional in specman.
For some constraints, it is convenient to assume some of the parameters are always treated as inputs. One natural example is method calls. For a constraint, such as keep x==f(y,z), y and z are presumed to be generated first and then their values are used as inputs in the context of x==f(y,z). If x cannot accept the value returned by the call to f(y,z), the generation results in a contradiction error. Thus, given the values of arguments, the constraint resolution engine is presumed to be able to compute and assign the value of the method/function call. The converse is not presumed, however.	Comment by marat: moved to description of CFS
There are four kinds of constraints treating some of their parameters as inputs, even if these parameters represent generatable paths.
· method calls: all arguments of a method call are treated as inputs.
· bit slice: the two boundaries i and j of a bit slice, such as in keep x[j:i]==y, are treated as inputs. It means that i and j are generated first and their values used as inputs for solving it with respect to x and y. Thus, the constraint resolution engine is not required to deduce the values of the bit slice boundaries. Namely,
keep 0b101010010101[j:i] == 0b100
is allowed to cause a contradiction error.
· list segments: in an expression l[i..j], the segment boundaries i and j are treated as inputs in the generation of l. Thus, a constraint such as
keep ({1; 2; 3; 4; 5})[i..j] in {2; 3}
is allowed to cause a contradiction error.
· shift operations: in expressions such as x<<k and x>>k, the number of bits for shifting is treated as input. Thus, a constraint such as 	Comment by marat: The points on bit-slice and shift should be removed. It is bidirectional in Specman, and should be bidirectional in the standard too.
keep 0b1110011010 >> k == 0b1110
is allowed to cause a contradiction error.
· Scope of constraints
A constraint can be either applicable or inapplicable depending on the context of generation. There are two basic rules governing that aspect of generation.
· All constraints defined for sys and any of the nested structs are applicable during the initial generation.
· For generation started by the gen item action (see 10.5.1), the following are applicable:
· The constraints defined within the optional constraints block. 
· All constraints defined in the type of item, if item is of a struct type.
· All constraints referring to item in this struct (me) and in the struct hierarchy containing me.
Example
struct packet {
    x : uint;
    y : uint;
      keep x < y
};

extend sys {
   !p1 : packet;
      keep p1.y == 8;
   !p2 : packet;

    post_generate() is also {
        gen p1 keeping {it.x > 5};
        p2 = new;
        gen p2.x
    }
}
The generation of p1 succeeds. The applicable constraints here are p1.x>5 (by rule b1), p1.x<p1.y (by rule b2), and p1.y==8 (by rule b3) Thus, p1.y becomes 8 and p1.x becomes either 6 or 7.
The generation of p2.x fails. For p2 allocated using new, p2.x=0 and p2.y=0. The only applicable constraints in this case is p2.x<p2.y (by rule b3). p2.y is not a generatable item here in the context of gen p2.x (see 10.2.3); it is used as input, so the constraint is equivalent to p2.x < 0. Since x is a uint, the constraint is not satisfiable.
· [bookmark: RTF350038003000380036003a00]Soft constraints
A constraint can be declared as soft by prefixing it with the soft keyword in the declaration. See also 10.4.5.
keep soft constraint;
gen item keeping {soft constraint; ...};
keep soft item = select {...}
Intuitively, soft constraints are satisfied if possible and otherwise disregarded. Soft constraints suggest default values and relations that can be overridden by hard or other soft constraints. They are considered with respect to the order of importance, which is a reverse of the (textual) order of soft constraints in the model.
The following properties of soft constraints also apply:
· Assume two soft constraints c1 and c2, such that c1 is more important than c2. Then the generator shall always produce a solution satisfying c1, if one exists. It is also required that the generator find a solution satisfying both c1 and c2, if it exists.
· Assume a collection of data items (fields and/or variables) x1...xn, a collection of constraints c1...ck linking the data items, and a solution exists satisfying all c1...ck. Then a solution needs to be found for {soft c1;...;soft ck} such that all soft constraints are satisfied.
Informally, this property means that in the absence of hard constraints, soft constraints act as hard, except for those cases causing contradictions.
Example
struct s {
    x : int;
    y : int;
    z : int;
      keep x in [1..100];
      keep x < y or y < z
}
is the same as
struct s {
    x : int;
    y : int;
    z : int;
      keep soft x in [1..100];
      keep soft x < y or y < z
}
· keep gen-item.reset_soft() 
	Purpose
	Quit evaluation of soft constraints for a field

	Category
	Struct member

	Syntax
	keep gen-item.reset_soft()

	Parameters
	gen-item
	A generatable item (see 10.4.12).


· 
This causes the program to quit the evaluation of soft value constraints for the specified field. Soft constraints for other fields are still evaluated. Soft constraints are considered in reverse order to the order in which they are defined in the e code.
The syntax keep gen-item.reset_soft() is used for discarding soft constraints referring to the gen-item loaded so far. Soft constraints not referring to gen-item or soft constraints referring to gen-item, but loaded later, are taken into account by the constraint resolution engine. The main use of this feature is for overloading the default “soft” behavior of a model.
Syntax example:
keep c.reset_soft()
· [bookmark: RTF320037003800390036003a00]keep soft... select 
	Purpose
	Constrain distribution of values

	Category
	Struct member

	Syntax
	keep soft gen-item==select {weight: value; ...}

	Parameters
	gen-item
	A generatable item of type list (see 10.4.12).

	
	weight
	Any uint expression. Weights are proportions; they do not have to add up to 100. A relatively higher weight indicates a greater probability that the value is chosen.

	
	value
	value is one of the following:
range-list—A range list such as [2..7]. A select expression with a range list selects the portion of the current range that intersects with the specified range list.
· set—An expression of a set type, or a range list such as [2..7] or [a..b]. A select expression with a set as a value, selects the portion of the current range that intersects with the specified set.
· exp—A constant expression. A select expression with a constant expression (usually a single number) selects that number, if it is part of the current range. Any expression returning the type of the gen-item.
· others—Selects the portions of the current range that do not intersect with other select expressions in this constraint.
Using a weight of 0 for others causes the constraint to be ignored, i.e., the effect is the same as if the others option were not entered at all.
· pass—Ignores this constraint and keeps the current range as is.
· edges—Selects the values at the extreme ends of the current range(s).
· min—Selects the minimum value of the gen-item.
· max—Selects the maximum value of the gen-item.


This specifies the relative probability that a particular value or set of values is chosen from the current range of legal values. The current range is the range of values as reduced by hard constraints and by soft constraints that have already been applied. A weighted value shall be assigned with the probability of 
weight/(sum of all weights)
Weights are treated as integers. If an expression is used for a weight, the value of the expression shall be smaller than the maximum integer size (MAX_INT).
Like other soft constraints, keep soft select is order dependent (see 10.2.6) and shall not be met if it conflicts with hard constraints or soft constraints that have already been applied. In those cases where some values conflict with other constraints, keep soft select shall bias the distribution based on the remaining permissible values.
Syntax example:
keep soft me.opcode == select {
    30 : ADD;
    20 : ADDI;
    10 : [SUB, SUBI]
}
· Constraining non-scalar data types
This subclause describes constraining structs and lists.
· Constraining structs
There are two basic constraints that apply to structs: struct equality and struct inequality. Other constraints affecting items of struct types (such as list constraints with structs as list elements) can be equivalently expressed using these basic constraints and Boolean combinators.
· Struct equality
Struct equality constrains two structs to share the same struct layout, i.e., it aliases two struct pointers.
Example
struct packet {
    x : int;
    y : int
};

extend sys {
    p1 : packet;
    p2 : packet;
      keep p1 == p2;

    post_generate() is also {
        p1.x = 5
    }
}
This causes p1 and p2 to represent the same struct, i.e., sys.p1 and sys.p2 can be viewed as pointers pointing to the same place in memory. Thus, the assignment in post_generate has the same effect on both structures, i.e., sys.p1.x = sys.p2.x = 5.
In contrast,
struct packet {
    x : int;
    y : int
};

extend sys {
    p1 : packet;
    p2 : packet;
      keep p1.x == p2.x;
      keep p1.y == p2.y;
post_generate() is also {
        p1.x = 5
    }
}
The first two lines in “extend sys” define two structures with the same contents, sys.p1 and sys.p2. Then the assignment in post_generate changes the value of sys.p1.x, but not of sys.s2.x. Thus, at the end sys.p1.x=5, while sys.p2.x is set to a random value from the range [MIN_INT.. MAX_INT]. Of course, this value could be 5 as well, but the chance for that is 1/(2^32). Thus, most likely at the end sys.p1.x != sys.p2.x.
· Struct inequality
Struct inequality states that two struct pointers cannot be aliased, although they can still have the identical contents. Normally, struct inequality only makes sense for structs with a finite set of possible values (see 10.2.7.2).
Example
struct packet {
    x : int;
    y : int
};

extend sys {
    p1 : packet;
    p2 : packet;
      keep p1 in sys.list_of_input_packets;
      keep p2 in sys.list_of_input_packets;
      keep p1 != p2;
      keep p1.x == p2.x;
      keep p1.y == p2.y
}
This code constrains both p1 and p2 to be elements of a (pre-built) list of input packets, such that p1 and p2 are distinct packets and have the same contents. The generation succeeds if and only if (iff) the list sys.list_of_ input_packets contains repetitions. There is no contradiction in the fact p1 and p2 are different structs with identical contents.
· [bookmark: RTF310031003000310037003a00]Allocation versus aliasing
By default, a new structure is allocated for each item of a struct type. The only exception to that are the cases when the range of possible structs is limited by constraints to a finite number of choices.
Example
p : packet;
  keep (packet == sys.input_packet1) or (packet == sys.input_packet2)
In this example, the range of values for packet is limited by the values sys.input_packet1 and sys.input_packet2, where both values are pre-built structures, i.e., inputs to the constraint. In contrast,
keep packet != sys.input_packet1
does not limit the choices of packet to a finite set. Here, there are an infinite number of ways to allocate packet so that it does not point to sys.input_packet1. Thus, the system allocates a NEW struct for packet in this case. This behavior makes struct inequality redundant for those cases where the set of potential struct values is unlimited.
· [bookmark: RTF370035003100370030003a00]Constraining lists
This subclause describes constraining lists. See also Table 25.
Lists are treated as pointers exactly like structs.
· List equality and inequality
List equality constraint states that two lists are allocated with the same object, and therefore contain the same elements in the same order.
Example
extend sys {
    l1 : list of int;
    l2 : list of int;
   !x  : int;
      keep l1 == l2;

    post_generate() is also {
        x = l2.pop()
    }
}
This generates two identical lists l1 and l2. Then, post_generate() removes the last element of l2 and preserves it in xwhich is also the last element of. l1.  and l2 are not aliased to the same list by the list equality constraint; they are “copies.” Therefore, l2.pop() does not remove the last value of l1.
List inequality
As for the The list inequality constraint (l1 != l2), it states that the items of list type l1 and l2 are not aliased. Still, the lists can have the same number of elements and the save values for their items.different. Namely:
The number of elements in the lists is different; or
The number of elements is the same and there is an index i such that
l1[i] != l2[i]
· List item
The syntax generatable_path_to_list[index] provides a generatable path of a list element. This syntax can be used in constraints as any other generatable path. List item constraints are fully solvable. Thus, the constraint can be used in several different modes.
Examples
keep sys.packets[5] == x;      -- element extraction from fixed list
keep l[7] < 25;                -- constraining certain element of list
keep sys.packets[i].id == 10;  -- index look-up for fixed list and value
keep l[i] < x                  -- multi-way constraint
· Item in list
The expression item in list states that item is an element of the list. Note that a constraint such as
keep x in l
also implies that l includes at least one element, i.e., it is non-empty.
· List in list
The syntax list1 in list2 provides the way of constraining two lists list1 and list2 so list1 is a (possibly permuted) sublist of list2. list1 is a possibly permuted sublist of list2 if for every valid index i in list1 there exists a matching valid index j in list2 such that list1[i]==list2[j]. Every index j of list2 is represented at most once in list1.
Informally, this definition means list1 can be obtained from list2 by a number (possibly zero) of delete operations of elements of list2 and then applying is_a_permutation(list2).
Examples
{1;2;3} is a sublist of {0;1;3;2;3}
{1;2;3} is a permuted sublist of {1;3;2}
{1;1;2} is a sublist of {1;3;1;4;2}
{1;1;2} is NOT a sublist of {1;2;2;3}
{1;1;2} is a permuted sublist of {2;1;1}
· Permutations
The syntax list1.is_a_permutation(list2) states that list1 is a permutation of list2. The lists list1 and list2 contain exactly the same elements and the same numbers of repetitions of each element.
Examples
{2;3;1} is a permutation of {1;2;3}
{2;3} is not a permutation of {1;2;3}
{1;2;3} is a permutation of {1;2;3}
{2;3;2;1} is NOT a permutation of {1;2;3}
is_a_permutation is a symmetric property, i.e., list1 is a permutation of list2 iff list2 is a permutation of list1. Thus, the following two constraints are equivalent:
keep list1.is_a_permutation(list2);
keep list2.is_a_permutation(list1)
· List attributes
There are several properties of lists that can be constrained using the attribute syntax, list.attribute(...).
list.size()—constrains the size of the list, e.g., keep my_list.size() in [5..8]
my_list can have 5,6,7, or 8 elements.
list.count(exp)—counts the number of list elements satisfying exp that have a Boolean type, e.g., keep my_list.count(it == 3) == 5
the number 3 appears exactly five times in my_list.
list.has(exp)—verifies at least one item of the list satisfies the Boolean exp. This is the same as list.count(exp) > 0.
list.all_differentunique(exp[,cond_exp])— returns TRUE if, and only if, evaluation of the expression returns a unique value for each of the list elements, meaning no two items (or expressions) in the list have the same value. If a cond_exp parameter is present, the constraint is applied only to the items with a TRUE cond_exp.  constrains the elements satisfying the Boolean exp so they are unique within the list, e.g., keep my_list.all_different(it, index>5) unique(it.is a(RED packet))
ensures there are no duplicate items in indices above 5.RED packets in my_list.
list.sum(exp)—constrains the sum of the list elements satisfying exp containing a Boolean type. The attribute applies only to lists of numeric type, e.g., keep my_list.sum(it) == 100
for the elements of my_list in the range [0..20] is 100.
list.and_all(exp) — return the logical AND of all Boolean expressions
list.and_all(it>5)  - return TRUE if all the list items are greater than 5.
list.or_all(exp)—verifies at least one item of the list satisfies the Boolean exp. This is the same as list.has(exp)
list.max_value(exp) — constraints the maximum exp in a list
list.max_value(it) == 100  constrains the maximal list item to be 100. 
list.min_value(exp) — constraints the minimum exp in a list
list.min_value(it) == 100  constrains the minimal list item to be 100. 


· [bookmark: RTF320031003300330032003a00]Constraining all list items: keep for each 
	Purpose
	Constrain list items

	Category
	Struct member

	Syntax
	keep for each [(item-name)] [using [index (index-name)] [prev (prev-name)]] in 
        gen-item [do] {(constraint-bool-exp | nested-for-each); ...}

	Parameters
	item-name
	An optional name used as a local variable referring to the current item in the list. The default is it.

	
	index-name
	An optional name referring to the index of the current item in the list. The default is index.

	
	prev-name
	An optional name referring to the previous item in the list. The default is prev.

	
	gen-item
	A generatable item of type list (see 10.4.12).

	
	constraint-
bool-exp
	A simple or a compound Boolean expression (see 10.4.11).

	
	nested-for-each
	A nested for each block, with the same syntax as the enclosing for each block, except that keep is omitted.


· 
This defines a value constraint on multiple list items. The following restrictions also apply:
· for each constraints can be nested. The parameters item-name, index-name, and prev-name of a nested for each can shadow the names used in the outer for each blocks. In particular, if the optional names are unspecified, then the default names it, index, and prev refer to the corresponding details of the innermost for each block.
· Within a for each constraint, index represents a running index in the list, which is treated as a constant with respect to each list item.
· Generated items need to be referenced by using a pathname that starts either with it, prev, or the optional item-name or prev-name, respectively. Items whose pathname does not start with it can only be sampled; their generated values cannot be constrained.
· If a for each constraint is contained in a gen ... keeping action, the iterated variable needs to be named first.
Syntax example:
keep for each (p) in pkl do {
    soft p.protocol in [atm, eth]
}
· All solutions
This feature generates lists of structs covering all possible combinations of values for certain fields. The syntax is list.is_all_iterations(.fieldname, ...), where list is a list of elements and fieldname, ... are field names of some struct type T. The arguments of is_all_iterations are unique, i.e., there are no repetitions in the list of fields. All fields shall be defined under the base type T, i.e., fields defined in when subtypes or like successors are not allowed.
Example
struct s {
    b1 : bool;
    b2 : bool;
    x  : int
};

extend sys {
    l : list of s;
      keep l.is_all_iterations(.b1, .b2)
}
The resulting sys.l includes four elements for all four combinations of TRUE/FALSE of b1 and b2. The values of x are chosen randomly.
· [bookmark: RTF360030003200340038003a00]Type constraints
This subclause describes how to use type constraints to restrict the declared type of a field to one of its like or when subtypes for a given context. A constraint prefixed with the type modifier is both (a) enforced by the generator (like a regular constraint) and (b) presupposed at compile time for purposes of type checking. Expressions for which type constraints apply are automatically downcast to the specified subtype wherever required. This saves explicit downcasting [“is_a()” and “as a” operators] for the expression and lets the downcast expression be used as a generatable term (rather than input) in constraint contexts. 
· keep type 
	Purpose
	Refine the type of a field to one of its subtypes for the specified context

	Category
	Struct member

	Syntax
	keep type [me.]field-name is a type
keep type [me.]field-name.property-name == [me.]my-property-name
keep for each [(item-name)] in list-field-name {
    …
    type item-name is a type;
    …
}
keep for each [(item-name)] in list-field-name {
    …
    type item-name.property-name == [me.]my-property-name;
    …
}

	Parameters
	field-name
	The name of a struct field in the enclosing struct.

	
	type
	The name of a struct or unit type.

	
	property-name
	The name of an enumerated or Boolean const field.

	
	my-property-name
	The name of a field of the same type as the property-name in this constraint.

	
	item-name
	An optional name used as a local variable referring to the current item in the list. The default is it.

	
	list-field-name
	The name of a field of typelist of struct (or unit) in the enclosing struct.


· 
A type constraint can be put either on a field of a struct type or on a list field of a struct type. The declaration is similar to a regular constraint inside a keep struct member, or, in the list case, inside a keep for each construct, with the type keyword prefixing the expression. 
The type keyword is a constraint modifier syntactically analogous to soft. However, unlike soft, it can modify only specific constraint expressions and can appear only in restricted contexts.
The type correlation can be fixed or, when the correlated types are when subtypes, variable. The former case is expressed using the is a operator. In the latter case the determinant property (the when determinant) of the referenced struct is equated to a determinant property of the same type in the declaring struct type.
Type constraints affect the static semantics of field-access expressions of the form instance-expression.field-name (field-access in which instance-expression is omitted is equivalent to one having me as the instance-expression). Typically the static type of a field-access expression is determined according to the type of the field as it was initially declared in the struct type of instance-expression (or in one of its supertypes). Type constraints tying the static type of instance-expression with a subtype of the field’s declared type can change this rule. If the context in which the field-access occurs requires the subtype, the field-access is automatically downcast. In this case, a runtime check is added to ensure that the casting is justified, and an error is issued if it is not. The runtime check involves a minor overhead, not more than that required by the as_a() operator.
NOTE
· In the Boolean expression following type, operators other than == and is a are not allowed.
For example, the following is not allowed:
   keep type TRUE => engine is a FORD engine // not allowed
· The for each clause must occur immediately after keep. For example, the following is not allowed:
   keep my_doors.size() > 4 => for each in my_doors { // not allowed
       type it is a small door 
   }
· Type constraints can equate only constant fields, so the const keyword must appear in the declaration of fields involved in equality constraints.
· Type constraints in general affect code from that point onwards. This includes type constraints that appear inside a for each clause, in which case other expressions in the same scope after the declaration (but not before it) can assume automatic casting.
· Type constraints cannot appear inside a gen action.
· The soft keyword cannot be used with type constraints.
· As with non-type constraints, the determinant field of the when subtype is assigned only during generation. Thus the pre_generate() method of the type specified in the type constraint is not called during generation.
· A field’s type may be restricted by more than one type constraint with respect to different “when” dimensions (determinant fields).
Syntax example:
keep type f.p1 == p1;
keep for each in lf { 
    type it is a B S1 
}
· [bookmark: RTF320034003200360034003a00]Type constraints and struct fields
Automatic casting of a struct-reference field is performed in any context that requires it, including the following:
· Struct-member access
· Assignment
· Parameter passing
· [bookmark: RTF330031003000390035003a00]Type constraints and list fields
When the type relation is one-to-many, in other words, when a list field is concerned, automatic casting is applied not to the list itself but to its elements. Automatic casting affects list operators whose result type is the element type, such as indexing (the [] operator) and pop(). It also affects the iteration variable inside the for each construct, both in procedural and in constraint contexts.
· [bookmark: RTF360037003900320033003a00]Type constraints and like subtypes
Type constraints work just as well for like subtypes of the declared type of the field. They apply to the two “is a” forms of the keep type struct member.
Note that type constraints with like subtypes cannot make the actual like type of a generated field dependent on a when determinant. In other words, they may not figure under a when subtype if they affect a field not declared in the same subtype. This is an error: the constraint is unenforceable.
· [bookmark: RTF330035003200310037003a00]Defining constraints
This subclause describes the constructs used to define constraints. See also 4.10.
· [bookmark: RTF330032003000300038003a00]keep 
	Purpose
	Define a hard value constraint

	Category
	Struct member

	Syntax
	keep [name is [only]] constraint-bool-exp

	Parameters
	 name
	Optional identifier for constraint overriding and reference by tools.

	
	constraint-
bool-exp
	A simple or a compound Boolean expression (see 10.4.11).


· 
This states restrictions on the values generated for fields in the struct or its subtree, or describes required relationships between field values and other items in the struct or its subtree.
Hard constraints are applied whenever the enclosing struct is generated. For any keep constraint in a generated struct, the generator either meets the constraint or issues a constraint contradiction message. If the keep constraint appears under a when construct, the constraint is considered only if the when condition is true.
Syntax example (un-named constraint):
keep kind != tx or len == 16
Syntax example (named constraint):
keep address_range is soft addr in [0..9]
· Constraint overriding
Every named constraint must have exactly one actual definition per struct type. An initial definition of a constraint in a struct type may be overridden in like and when subtypes or in later extensions of the same struct—any number of times—using the is only modifier.
The semantics of constraint overriding is identical to that of overriding other extendable struct members, such as methods. A constraint can be redefined in different when subtypes (even if they are not contradictory), and the latest definition that applies to the generated subtype is chosen (for ordering definitions see Annex B). 
Example:
struct packet {
   size: [big, small];
   data: list of byte;
      keep data_size is undefined; // abstract constraint

   when big packet {
      keep data_size is all of { // concrete definition for big packets
         data.size() > 10;
         data.size() < 20
      }
   }
}
 
· keep 
	Purpose
	Define an abstract constraint

	Category
	Struct member

	Syntax
	keep 	name is [only]undefined

	Parameters
	 name
	Optional identifier for constraint overriding and reference by tools.


· is undefined	Comment by marat: A redundant construct.
Keep name is FALSE; is equivalent to an undefined constraint, and 
Keep name is only TRUE; is equivalent to a “turned-off” constraint.
The undefined keyword can be used to declare an abstract property that will be defined later using a keep is only struct member with the same name.
Trying to generate an instance of a struct type for which a constraint was left undefined results in an error. 
· [bookmark: RTF350035003100300038003a00]keep all of {...} 
	Purpose
	Define a constraint block

	Category
	Struct member

	Syntax
	keep [name is [only]] all of {constraint-bool-exp; ...}

	Parameters
	 name
	Optional identifier for constraint overriding and reference by tools.

	
	constraint-
bool-exp
	A simple or a compound Boolean expression (see 10.4.11).


A keep constraint block is exactly equivalent to a keep constraint for each constraint Boolean expression in the block. The all of block can be used as a constraint Boolean expression itself.
Syntax example:
keep all of {
    kind != tx;
    len == 16
}
· [bookmark: RTF310037003000300035003a00]keep struct-list.is_all_iterations() 
	Purpose
	Cause a list of structs to have all iterations of a field

	Category
	Constraint-specific list method

	Syntax
	keep [name is [only]] gen-item.is_all_iterations(.field-name: exp, ...) 

	Parameters
	 name
	Optional identifier for constraint overriding and reference by tools.

	
	gen-item
	A generatable item of type list of struct (see 10.4.12).

	
	field-name
	The name of a scalar field of a struct. The field name shall be prefixed by a period (.). The order of fields in this list does not affect the order in which they are iterated. The specified field that is defined first in the struct is the one that is iterated first.


This causes a list of structs to have all legal, non-contradicting iterations of the fields specified in the field list. Fields not included in the field list are not iterated; their values can be constrained by other relevant constraints. The highest value always occupies the last element in the list.
Soft constraints on fields specified in the field list are skipped. All other relevant hard constraints on the list and on the struct are applied. If these constraints reduce the ranges of some of the fields in the field list, then the generated list is also reduced.
The following restrictions also apply:
· The number of iterations in a list produced by list.is_all_iterations() is the product of the number of possible values in each field in the list. Use the absolute_max_list_size generation configuration option to set the maximum number of iterations allowed in a list (the default is 524 288).
· The list.is_all_iterations() method shall only be used in a constraint Boolean expression.
· The fields to be iterated shall be of a scalar type, not a list or struct type.
Syntax example:
keep packets.is_all_iterations(.kind, .protocol)
· [bookmark: RTF330032003100310034003a00]keep soft 
	Purpose
	Define a soft value constraint

	Category
	Struct member

	Syntax
	keep [name is [only]] soft constraint-bool-exp

	Parameters
	 name
	Optional identifier for constraint overriding and reference by tools.

	
	constraint-
bool-exp
	A simple Boolean expression (see 10.4.11).


· 
This suggests default values for fields or variables in the struct or its subtree, or describes suggested relationships between field values and other items in the struct or its subtree. The following restrictions apply:
· Soft constraints are order dependent (see 10.2.6) and shall not be met if they conflict with hard constraints or soft constraints that have already been applied.
· The soft keyword shall not be used in compound Boolean expressions.
· Individual constraints inside a constraint block can be soft constraints.
· Because soft constraints only suggest default values, it is better not to use them to define architectural constraints.
Syntax example:
keep soft legal
· [bookmark: RTF320030003600330030003a00]keep gen ... before 
	Purpose
	Modify the generation order

	Category
	Struct member

	Syntax
	keep gen (gen-item: exp, ...) before (gen-item: exp, ...)

	Parameters
	gen-item
	An expression that returns a generatable item. The parentheses [()] are required. See also 10.4.12.

	
	
	


This requires the generatable items specified in the first list to be generated before the items specified in the second list. This constraint can be used to influence the distribution of values by preventing soft value constraints from being consistently skipped (see 10.2). The following restrictions also apply:
· This constraint itself can cause constraint cycles. If a constraint cycle involving one of the fields in the keep gen ... before constraint exists and if the resolve_cycles generation configuration option is TRUE, the constraint can be ignored if the program cannot satisfy both it and other constraints that conflict with it.
· This constraint cannot appear on the LHS of a implication operator (=>).
Syntax example:
keep gen (y) before (x)
· [bookmark: RTF320039003500390035003a00]keep soft gen ... before 
	Purpose
	Suggest order of generation

	Category
	Struct member

	Syntax
	keep soft gen (gen-item: exp, ...) before (gen-item: exp, ...)

	Parameters
	gen-item
	An expression that returns a generatable item. The parentheses [()] are required. See also 10.4.12.

	
	
	


· 
This modifies the soft generation order by recommending the fields specified in the first field list be generated before the fields specified in the second field list. This soft generation order is second in priority to the hard generation order created by dependencies between parameters and keep gen before constraints.
This constraint can be used to suggest a generation order that is later overridden in individual tests with a hard order constraint. This constraint cannot appear on the LHS of a implication operator (=>).
Syntax example:
keep soft gen (y) before (x)
· [bookmark: RTF350032003200340033003a00]keep gen_before_subtypes() 
	Purpose
	Specify a when determinant field for deferred generation

	Category
	Struct member

	Syntax
	keep gen_before_subtypes(determinant-field: field, ...)

	Parameters
	determinant-field
	An expression that evaluates to the name of a field in the struct type. The field shall have at least one value that is used as a when determinant for a subtype definition. If the field is not a when determinant field, a warning is issued and the constraint is ignored.
Multiple field expressions can be entered, separated by commas (,).

	
	
	


To speed up generation of structs with multiple when subtypes, this type of constraint, called a subtype optimization constraint, causes the generator engine to wait until a when determinant value is generated for a specified field before it analyzes constraints and generates fields under the when subtype.
When no subtype optimization constraints are present in a struct, the generator analyzes all of the constraints and fields in the struct before it generates the struct, even those constraints and fields that are defined under when subtypes. When a subtype optimization constraint is present, the generator initially analyzes only the constraints and fields of the base struct type. When a subtype optimization when determinant is encountered, the generator analyzes the associated when subtype and then generates it.
The following considerations also apply:
· Subtype optimization can handle multiple determinants. Subtypes are analyzed and generated in the order in which their when determinants are encountered.
· If multiple determinants are specified, and some of them are subtype optimization determinants while others are not, then a subtype that is a result of multiple inheritance of a subtype optimization determinant and a non-subtype optimization determinant shall be treated the same.
· The generator engine’s ability to resolve contradictions is diminished somewhat by subtype optimization constraints. Specifically, the generator might not be able to resolve contradictions arising from constraints under subtypes that involve fields of the base type.
· The analysis and generation is recursive. If a subtype contains another determinant that is specified in a subtype optimization constraint, then that sub-subtype is analyzed and generated as soon as its determinant field is generated under the higher-level subtype.
Syntax example:
keep gen_before_subtypes(format)
· [bookmark: RTF370038003400360032003a00]keep reset_gen_before_subtypes() 
	Purpose
	Disable all previous keep gen_before_subtypes() subtype optimization constraints

	Category
	Struct member

	Syntax
	keep reset_gen_ before_subtypes()


When subtype optimization is turned off by default, this constraint causes the generator to ignore all previously defined gen_before_subtypes() constraints for the enclosing struct or unit. Any such constraints defined after the reset shall be followed.
When subtype optimization is turned on by default, this constraint turns off subtype optimization for the enclosing struct or unit. When subtype optimization is forced on or off, this constraint has no effect.
Syntax example:
keep reset_gen_before_subtypes()
· [bookmark: RTF310039003700390039003a00]value() 
	Purpose
	Modify generation sequence

	Category
	Pseudo-method

	Syntax
	value(item: exp)

	Parameters
	item
	A legal e expression.


· 
This generates values for any data items that are contained in the expression and returns the value of the expression. This method affects generation order and also makes the constraint unidirectional.
Example
keep a == value(b + c)
This constraint has two results:
· b and c are generated before a.
· The value of a cannot otherwise be constrained.
Syntax example:
keep i < value(j)
· [bookmark: RTF310035003800350034003a00]constraint-bool-exp 
	Purpose
	Define a constraint on a generatable item

	Category
	Expression

	Syntax
	bool-exp [or | and | => bool-exp] ...

	Parameters
	bool-exp
	An expression that returns either TRUE or FALSE when evaluated at runtime.


A constraint Boolean expression is a simple or compound Boolean expression that describes the legal values for at least one generatable item or constrains the relation of one generatable item with others. A compound Boolean expression is composed of two or more simple expressions joined with the or, and, or implication (=>) operators. Table 25 shows the e special constructs that are useful in constraint Boolean expressions. 
	· [bookmark: RTF340035003400370030003a00]Constraining Boolean expressions 

	Constraint
	Definition

	soft
	A keyword that indicates the constraint is either a soft value constraint or a soft order constraint. See 10.4 for a definition of these types of constraints.

	soft...select
	An expression that constrains the distribution of values.

	.reset_soft()
	A pseudo-method that causes the test generator to quit evaluation of soft constraints for a field, in effect, removing previously defined soft constraints.

	.is_all_iterations()
	A list method used only within constraint Boolean expressions that causes a list of structs to have all legal, non-contradicting iterations of the specified fields.

	.is_a_permutation()
	A list method that can be used within constraint Boolean expressions to constrain a list to have the same elements as another list.

	[not] in
	An operator that can be used within constraint Boolean expressions to constrain an item to a range of values or a list to be a subset of another list; or when used with not, to be outside the range or absent from another list.

	is [not] a
	An operator that checks the subtype of a struct.



The following considerations also apply:
· The soft keyword can be used in simple Boolean expressions, but not in compound Boolean expressions.
· The order of precedence for Boolean operators is: and, or, =>. A compound expression containing multiple Boolean operators of equal precedence is evaluated from left to right, unless parentheses [()] are used to indicate expressions of higher precedence.
· Any e operator can be used in a constraint Boolean expression. However, certain operators can affect generation order or can create an constraint that is not enforceable.
· In compound expressions where multiple implication operators are used, the order in which the operations are performed is significant. For example, in the following constraint, the first expression (a => b) is evaluated first by default:
keep a => b => c;               // is equivalent to:
keep (not a or b) => c;         // is equivalent to:
keep a and (not b) or c
However, adding parentheses around the expression (b => c) causes it to be evaluated first, with very different results.
keep a => (b => c);             // is equivalent to:
keep a => (not b) or c;         // is equivalent to:
keep (not a) or (not b) or c
Examples
The following are examples of simple constraint Boolean expressions:
not short					// where "short" is of type "bool"
long == TRUE
soft x > y
x + z == y + 7
The following are examples of compound constraint Boolean expressions:
x > 0 and soft x < y
is_a_good_match(x, y) => z < 1024
color != red or resolution in [900..999]
packet is a good packet => length in [0..1023]
See also 5.1.1.
Syntax example:
z == x + y
· [bookmark: RTF330034003500320031003a00]gen-item 
	Purpose
	Identifies a generatable item

	Category
	Expression

	Syntax
	[me.]field1-name[.field2-name ...]
| it | [it].field1-name[.field2-name ...]

	Parameters
	field-name
	The name of a field in the current struct or struct type.


· 
A generatable item is an operand in a Boolean expression that describes the legal values for that generatable item or constrains its relation with another generatable item. Every constraint shall have at least one generatable item or an error shall be issued.
In a keep constraint, the syntax for specifying a generatable item is a path starting with me of the struct containing the constraint and ending with a field name. In a gen action, the syntax for specifying a generatable item is a path starting with it of the struct containing the constraint and ending with a field name.
A generatable item cannot have an indexed reference in it, except as the last item in the path. See also 4.3.3.
Syntax example:
me.protocol
· [bookmark: RTF330030003400390038003a00]Invoking generation
There are two ways of invoking generation, as follows:
· Generation is invoked automatically when generating the tree of structures starting at sys.
· Generation can be called for any data item by using the gen action. The scope of this type of generation is restricted (see 10.5.1). The generation order is (recursively):
· Allocate the new struct
· Call pre_generate()
· Perform generation
· Call post_generate()
· [bookmark: RTF310035003500340033003a00]gen 
	Purpose
	Generate values for an item

	Category
	Action

	Syntax
	gen gen-item [keeping {[it].constraint-bool-exp; ...}]

	Parameters
	gen-item
	A generatable item. If the expression is a struct, it is automatically allocated, and all fields under it are generated recursively, in depth-first order. 

	
	constraint-
bool-exp
	A simple or compound Boolean expression (see 10.4.11).


This generates a random value for the instance of the item specified in the expression and stores the value in that instance, while considering all the constraints specified in the keeping block, as well as other relevant constraints at the current scope on that item or its children. Constraints defined at a higher scope than the enclosing struct are not considered.
The following considerations also apply:
· Values for particular struct instances, fields, or variables can be generated during simulation (on-the-fly generation) by using the gen action. 
· This constraint can also be used to specify constraints that apply only to one instance of the item.
· The soft keyword can be used in the list of constraints within a gen action.
· The earliest the gen action can be called is from a struct’s pre_generate() method.
· The generatable item for the gen action cannot include an index reference.
· If a gen ... keeping action contains a for each constraint, the iterated variable needs to be named.
Syntax example:
gen next_packet keeping {
    .kind in [normal, control]
}
· [bookmark: RTF320035003400310033003a00]pre_generate() 
	Purpose
	Method run before generation of struct

	Category
	Method of any_struct

	Syntax
	[struct-exp.]pre_generate()

	Parameters
	struct-exp
	An expression that returns a struct. The default is the current struct.


The pre_generate() method is run automatically after an instance of the enclosing struct is allocated, but before generation is performed. This method is initially empty, but can be extended to apply values procedurally to prepare constraints for generation. It can also be used to simplify constraint expressions before they are analyzed by the constraint resolution engine.
NOTE—Prefix the ! character (see 6.8) to the name of any field whose value is determined by pre_generate(). Otherwise, normal generation overwrites this value.
Syntax example:
pre_generate() is also {
    m = 7
}
· [bookmark: RTF310030003200360030003a00]post_generate() 
	Purpose
	Method run after generation of struct

	Category
	Predefined method of any_struct

	Syntax
	[struct-exp.]post_generate()

	Parameters
	struct-exp
	An expression that returns a struct. The default is the current struct.


The post_generate() method is run automatically after an instance of the enclosing struct is allocated and both pre-generation and generation have been performed. This method can be extended for any_struct to manipulate values produced during generation. It can also be used to derive more complex expressions or values from the generated values.
Syntax example:
post_generate() is also {
    m = m1 + 1
}
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