Extended Constraint Construct
Revision 0.2
26/10/2006
Written by Matan Vax

Send comments to matan@cadence.com
1 Introduction
1.1 The Problem

Constraints are used to express properties of entities in a model. The domain meaning of a constraint could be useful in understanding the code and debugging the generation process. However there is no way to express such domain semantics in the code, as constraint declarations currently consist of just the boolean expressions that is associated with the property. Moreover, unlike properties expressed with methods and events, constraint properties of a struct cannot be overridden in later extensions or in subtypes. This is unfortunate, as abstract and default definition for a given constraint property, to be later refined, is a powerful way to supply interface between verification service and user.
1.2 Solution Overview

We propose to extend the syntax of constraint declaration in a struct to allow for a name and a string message in case the constraint cannot be fulfilled. Later extensions of the struct or when/like subtypes can then override the constraint by associating a different boolean expression with the same constraint name. The name would also serve to identify the constraint in the development environment (data/class browsers, gen debugger, collect gen, etc.).

The proposed syntax and semantics for constraints is inline with the definition of other named struct members such as methods and events. In particular, constraints are in complete analogy to expect/assume struct members, as both declare either an anonymous or a named property of a struct as an expression, optionally with a message for the case it does not hold. In constraints, just like in expects, when the property is named it can later be overridden in extensions or subtypes.
2 Syntax
2.1 Definitions

The syntax of constraint struct member definition is augmented to allow for names and error declarations.
keep [<name> is [only]] <constraint-definition>
 [else error(<exp>,...)]

keep <name> is undefined [else error(<exp>,...)]

<name> is any legal identifier used to identify the constraint for reference in extensions and in different tools of the development environment.

<constaint-definition> is the body of the constraint – typically a boolean expression or a composition of constraint definitions in a for each or all of constructs (for more details on constraint syntax see appendix).
The error construct takes any number of parameters of any type (<exp>), and concatenates the string representations of their values.
Note that solver directives gen before and gen_before_subtype() are not constraint definitions, i.e. they are cannot be named or have error messages attached to them (and cannot figure inside all-of and for-each constructs).

Note also that neither name nor error message can be attached to constraint definitions inside a gen keeping action.

2.2 Syntax Example

Here are a few use examples of the new syntax:

struct packet {

 addr: unit (bits: 16);

 data: list of byte;

 keep address_range is soft addr in [0..9];
 keep data_size is undefined else error("Bad data size");

 keep data_pattern is for each in data {
 it != 0 and it != 7;

 } else error("Cannot generate data for ",me);

 keep data_size is only all of {

 data.size() > 10;

 data.size() < 20;

 };

};

3 Semantics

3.1 General Behavior

Names and error messages do not change the effect of a given constraint on the generation processes, or any other semantic aspect of a program. User defined error messages are issued upon solver failure. Names are used to identify a constraint in Specman interactive session and e development environment in ways not described in this document.
3.2 Constraint Overriding

Every named constraint must have exactly one actual definition per struct type. Trying to generate an instance of a struct type for which a constraint was left undefined results in an error. An initial definition of a constraint in a struct type may be overridden in like and when subtypes or in later extensions of the same struct any number of times using the is only modifier.
However, since the actual when subtype of an instance is typically determined during the generation process, the following restriction is introduced to guarantee that the process is monotonous and does not need to backtrack: there may not be more than one actual definition that applies to a possible instance for a given constraint. This implies that one cannot define a constraint in the when base struct and later in a subtype, nor in subtype and then in another subtypes contained in it, nor in two independent subtypes. In other words, if A is a subtype (or when base), it may override a constraint only if for every other subtype (or when base) B that previously defines that constraint, either no instances of A are Bs or all instances of A are Bs.
3.3 Example

This example helps illustrating the rules for constraint overriding.
struct packet {

size: [big, small];

addr: uint (bits: 16);

keep address_range is addr in [5..13];

data: list of byte;

keep data_size is undefined;

when big packet {

 keep data_size is data.size() > 8; // OK -

 //initially undefined

 keep address_range is addr < 10; // ERROR –

 //a second definition applying to big packets

 }

}

extend packet {

 corrupt: bool;

 when corrupt packet {

 keep data_size is data.size() == 0; // ERROR -

 //a second definition applying to big corrupt packets

 };

};

extend packet {

 keep data_size is data.size() < 50; // OK -

 //overriding all previous definitions

};
4 Appendix: Constraint Definition Grammar
Below is a definition of the full constraint grammar in e-style EBNF. Both constraint syntax and meta-model in Reflection API is derived from this grammar.
<constraint-struct-member> ::=

keep [<name> is [only]] <constraint-def>
 [else error(<exp>,...)]

| keep <name> is undefined [else error(<exp>,...)]

| keep <gen-directive>
<constraint-def> ::=

<exp>

| soft <exp>

| all of { <constraint-def>;...}

| reset soft
<gen-directive> ::=

[soft] gen (<exp>,...) before (<exp>,...)

| gen_before_subtypes(<field'name>,...)

| reset_gen_before_subtypes(<field'name>,...)

| read_only(<exp>)
<exp> ::=

for each [(<item'name>)] [using (index (<index'name) | prev
 (<prev'name>)) in <path'exp> {<constraint-def>;...}

| <exp> == select {<weight_selection>;...}

| value(<exp>)

| ... (any legal general expression)
<weight_selection> ::=

<weight'exp> : <value'exp>

| <weight'exp> : <range>

PAGE
1

